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Abstract

The causal mechanism of Alzheimer’s disease is extremely complex. It usually requires a huge number of samples

to achieve a good statistical power in association studies. In this work, we illustrated a different strategy to identify

AD risk genes by clustering AD patients into modules based on their single-patient differential expression signatures.

Evaluation suggested that our method could enrich AD patients with common clinical manifestations. Applying it

to a cohort of only 310 AD patients, we identified 175 AD risk loci at a strict threshold of empirical p < 0.05 while

only two loci were identified using all the AD patients. As an evaluation, we collected 23 AD risk genes reported in

a recent large-scale meta-analysis and found that 18 of them were re-discovered by association studies using clustered

AD patients, while only three of them were re-discovered using all AD patients. Functional annotation suggested that

AD associated genetic variants mainly disturbed neuronal/synaptic function. Our results suggested module analysis,

even randomly clustering, helped to enrich AD patients affected by the common risk variants.

1 Introduction

Alzheimer’s disease is the most prevalent neurological disease among ageing population. It has been intensively studied for

decades while its causal mechanisms remain elusive. Studies to the familial early-onset cases revealed a close association

with three mutated genes, including APP, PSEN1 and PSEN2 [1]. They provided valuable insights into the contribution

of amyloidogenic pathway as a causal mechanism of AD. Genome-wide association studies (GWAS) to late-onset AD

patients discovered more rare and common risk variants. Among them, APOE ε4, an apolipoprotein, is the strongest

genetic risk allele for late-onset AD, accounting for 3- (heterozygous) to 15-fold (homozygous) increase in AD risk [2].

However, it is still no clear how APOE contributes to AD genesis [3]. Many other risk genes, as listed in the AlzGene

database (http://www.alzgene.org), are also discovered by GWAS. This entangles more biological processes and pathways

as the risk mechanism of AD, such as immune system process (TNF, IL8, CR1, CLU, CCR2, PICALM and CHRNB2),

cellular membrane organization (SORL1, APOE, PICALM, BIN1 and LDLR) and endocytosis (PICALM, BIN1, CD2AP)

[4]. However, identified AD risk genes only explain a limited proportion of heritability, which indicates the complexity

of AD genesis. Such diverse functional involvements of AD risk genes complicate mechanism studies. It is still a great

challenge on how to illustrate the AD causal mechanism in an integrated way, limiting their application in new drug

discovery.

Power is a critical consideration in association studies to detect risk variants [5]. As an extremely complex disease,

AD often requires a large sample size to achieve a good power [3, 6]. For example, a recent meta-analysis included

71,880 cases and 383,378 controls, which identified 25 risk loci, implicating 215 potential causative genes [7]. However,
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such studies are limited by sample collection and cost, which blockades the discovery of more variants. To overcome

such a problem, a strategy is to stratify patients based on some disease-relevant features [8]. For AD, carrier’s status of

APOE-ε4 has been used to cluster AD population in association studies and reveals novel features [9]. Other factors, e.g.

sex [10] and age [11], have also be used and the improved performance supports the values of population stratification in

association studies.

Recently, many efforts were made to generate multi-omics data of AD for integrated studies. One example is the

Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-AD) projects, which includes transcriptomics, epige-

nomics, genetics, and proteomics data from over 2000 human brain samples. Some system biology analyses have been

proposed for systematic insight into AD [12, 13, 14]. These studies led to a systematic understanding of how gene regula-

tory network perturbation contributed to the complex causal mechanism of AD and proposed key genes. However, such

studies are also limited by the complexity of AD patients. The commonly used tools, such as WGCNA [15], MEGENA

[16] and SpeakEasy [17], have limited consideration to population diversity. For complex diseases, e.g. AD, it is always

a risk to treat the diverse patients as a homogeneous whole to compare with healthy controls. With the accumulation of

multi-omics data, it allows a systematic integration of multiple omics data, e.g. to integrate genetic and transcriptomic

data.

In this work, we proposed a new strategy to stratify AD patients based on the expression profiles similarity of single-

patient DEGs. Our evaluation suggested that this method could enrich AD patients with common clinical manifestations.

We applied it to 310 AD patients for both patient clustering analysis and genetic association studies. We identified 175

AD risk loci in 143 modules at a strict cutoff of empirical p < 0.05, while there were only two risk loci identified using

all the AD patients. Function annotation suggested that identified risk genes were mainly related to neuronal/synaptic

functions. We also evaluated 23 known AD risk genes and re-discovered 18 of them in at least one module. Allele

frequency studies indicated that clustering analysis using single-patient DEGs enriched AD patients affected by common

risk variants.

2 Results

2.1 A new pipeline to cluster AD patients utilizing single-patient DEGs

Considering the diversity of AD patients, we propose a new analysis strategy to cluster the AD patients affected by the

common mechanisms. This method is based on differential expression analysis at single-patient levels. Figure 1(a) and

Figure S1 describes the schema of the whole analysis pipeline. In our analysis, the reference expression profile was firstly

built using the RNA-seq counts data of the normal individuals, which defined the ranges of gene expression values at a

non-disease status. Next, gene expression values of patients were transformed into binary status by fitting to the reference

expression profiles. In detail, if the gene expression values of patients exceeded the range of reference expression profiles,

1 or -1 is assigned to indicate up- or down-regulation. To improve confidence, a bi-clustering analysis algorithm is applied

to perform filtering and cross-validation so that the whole set of single-patient differentially expressed genes (spDEGs)

can be repeatedly observed in multiple patients, e.g. n = 5. Finally, using each patient as seed, we cluster the patients

into modules if they carry the same set of spDEGs.

As an evaluation, we applied this pipeline to the dataset collected from the ROS/MAP study [2], which includes 251

AD samples with both RNA-seq data and clinical annotation. We identified cross-validated spDEGs for 171 patients.

Among 15582 brain expressed genes, 3878 were predicted to be differentially expressed in at least one AD patient. Then,

we investigated their differential expression status among all the AD patients. Figure 1(b) showed results of the top 20

most observed DEGs. We did not observe any shared differential expressed genes across all the AD patients. On the

contrary, all DEGs were only differentially expressed in a small proportion of 251 AD patients. Additionally, we also
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Figure 1: Clustering AD patients into modules based on single-patient differential expression profile similarity. (a) A
analysis pipeline to cluster AD patients. The RNA-seq count data of AD patients were transformed into binary DEG
matrix based on the reference profile built using the data of normal individuals; the AD patients with the shared DEG
signatures are clustered as modules using a bi-clustering algorithm; genome-wide association study was performed in each
patient module to identify the AD risk loci and genes. (b) Single-patient differential expression analysis indicated the
complexity of AD patients, where genes displayed diverse DE status. (c) Clustering analysis enriched AD patients with
similar clinical outcomes, e.g. cognitive test scores while not by the differentially expressed genes in all AD patients or
random genes.
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Figure 2: More risk variants were identified in AD patient modules. (a) Manhattan plot for the association studies to both
all AD patients and patient modules, where more AD risk SNPs were identified in AD modules. (b) Allele frequencies
in module patients, non-modules patients and control subjects. More risk allele enrichment was observed in module
patients, suggested that clustering analysis enriched the AD patients affected by common risk variance. (c) Functional
annotation to AD risk genes. Here, synaptic function related terms were most significantly enriched.

observed inconsistent differential expression directions. Taking QDPR gene an as example, it was up-regulated in 22%

of AD patients while also down-regulated in 3% AD patients. The similar results were observed with other spDEGs (see

Figure 1(b)). We also performed clustering analysis using the most observed differential expressed genes and observed

distinct differential expression patterns (see Figure S2). All these results suggested that AD patients were greatly diverse

and that it would be a risk to treat AD patients as a homogeneous whole in any analysis.

Next, we investigated if AD patient clustering could enrich AD patients with common clinical manifestations. We

generated patient modules based on sgDEG expression profile similarity. The modules were set to have different sizes,

e.g. 40, 60, 100, which could be denoted as pdeg40, pdeg60 and pdeg100, respectively. The patients within the same

module were supposed to be affected by the common mechanisms. As control, we also generated modules using randomly

selecting genes and DEGs identified by traditional differential expression analysis. Figure 1(b) showed the evaluation

results using cognitive scores (cts). At a cutoff of p < 0.01, 37 “pdeg60” modules were enriched with detrimental cts

scores while only five modules identified by common DEGs or random genes were enriched. The most significant p-value

was up to p = 2.51× 10−5 in the “pdeg60” module. On the contrary, no module in “common DEG” and ”random gene”

exceeded the significance of p = 0.001. This result suggested that modules analysis using spDEG better enriched AD

patients with common clinical manifestations.

2.2 More risk variants were identified in AD patient modules

We collected genotyping data from “hbtrc” study [18], including 310 LOAD patients and 153 non-demented healthy

controls. We performed genome-wide association study (GWAS) using all the AD patients. In this process, we performed

permutation procedure for 1000 times to estimate empirical p values. We found only two loci to have significant association

with AD at a cutoff of empirical p < 0.05. The significant SNPs included rs2405283 (p = 1.15 × 10−7) and rs769450

(p = 1.65× 10−6) (see Figure 2(a)). rs769450 was mapped to the second intron of APOE gene, consistent with published

reports about the critical roles of APOE.
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Applying clustering analysis, we predicted 143 modules of AD patients. Three association tests were performed for

each module: (1) module patients against normal control; (2) module patients against non-module patients; and (3)

non-module patients against normal control. The p-values were denoted as p1, p2 and p3, respectively. At a strict cutoff

of empirical p1 < 0.05, we found 175 loci to have significant association in at least one of 143 modules (see Figure 2(a)

and Table S1). Compared to association study using all the AD patients, more AD risk loci were observed within module

patients. The APOE SNP rs769450 was observed in 41 modules and its association significance was also greatly improved.

For example, the significance of rs769450 was up to p1 = 2.08×10−8 in a module of 80 AD patients while the significance

for all 310 patients was p1 = 1.65 × 10−6. Tests between module patients and non-module patients supported allele

frequency differences in 165 out of 175 loci at a cutoff of p2 < 0.01. Figure 2(b) showed the allele frequency for some

exemplary SNPs. We observed that allele frequencies of identified risk SNPs were obviously different from the non-module

patients and normal individuals. In most cases, non-module patients usually had similar allele frequencies with normal

subjects. We checked if module patients were more associated with risk SNPs than non-module patients by comparing p1

and p3 value distribution (see Figure S3). We found module patients tended to report more significant association than

non-module patients. It suggested that clustering analysis enriched the AD patient affected by the common risk SNPs.

We mapped 175 AD risk loci to 107 genes based on genomic proxy and GTEx eQTL annotation (see Table S1).

Among them, 86 genes were observed in more than one module at a cutoff of empirical p1 < 0.05. APOE is the most

observed risk gene, which is significantly associated with AD patients in 41 modules. We searched the published GWAS

results and found that 46 genes had been reported for AD or brain-related function (see Table 1). Some of them had

been reported in association studies of AD, such as PDE1A, JAM3, DLGAP1, CYYR1, SERPINB11 and MCPH1. To

understand their function involvement, we performed Gene Ontology enrichment analysis to 107 AD risk genes (see

Figure 2(c)). We found that the most enriched terms were also related to synaptic and neuronal function, e.g. “synapse

organization” (p = 7.65 × 10−6). It suggested that the identified AD risk genes were related to normal brain function

and had potential roles in AD genesis.

In a recent large-scale meta-analysis, 23 AD risk loci were reported [6]. We checked their association using either

all patients or module patients. We loosed the cutoffs of significant association by replacing empirical p < 0.05 with

p1 < 10−4. Association study using all AD patients failed to identify any extra known AD risk gene to satisfy threshold

of p1 < 10−4. Dislike the results using all AD patients, we observed that 18 out of 23 AD genes to have significant

association with AD in at least one module. Table 2 summarized analysis results using module patients. By checking

p2 and p3 values, we found significant allele frequency differences between module patients and no-module patients,

supporting a conclusion that clustering analysis enriched AD patients affected by common known risk variants.

2.3 Biological relevance of AD risk genes

Module based clustering analysis allows us to bridge AD risk genes to clinical features and affected biological processes.

The clinical association of modules is determined by statistical test between module and non-module patients. Using

HBRTC’s dataset, we identified nine and eight modules to be associated with braak and brain generalized atrophy at a

cutoff of p < 0.01, respectively. Among them, 3 modules were associated with both braak and brain atrophy. Association

study to these modules identified 8 and 20 loci respectively. In Table 3, we summarized the analysis results. These results

supported that some AD risk genes might be more associated with some AD clinical outcomes. For example, NTN1 gene

is a microtubule-associated force-producing protein and it is predicted to related to braak stage.

AD patient modules are always associated with a list of spDEG signature genes, which could be used to investigate

biological relevance of AD risk genes. Figure 3 showed the analysis results of functional annotation to module spDEG

signature genes. Among the significant terms, ”extracellular matrix assembly”, ”synaptic signaling”, ”learning and

memory” and ”protein folding” were more observed or more significant. By textmining studies, we found many published
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Table 1: The results of association studies using module patients, non-module patients and control
id chr pos p1 p2 p3 p(emp) OR Type gene region PubMed ID

rs3867593 17 7464046 1.59E-08 1.20E-04 3.73E-03 0.001 2.63 pdeg60 ZBTB4 intron 29045054
rs769450 19 44907187 2.08E-08 1.94E-02 1.44E-04 0.001 2.91 pdeg80 APOE intron 24821312

rs146624252 2 182412080 2.40E-08 3.14E-07 2.60E-01 0.002 2.01 pdeg60 PDE1A intron 29363967
rs9912864 17 9105233 2.31E-07 9.05E-04 2.53E-02 0.005 2.51 pdeg120 NTN1 intron 27060954
rs80167208 3 113224966 2.46E-07 1.69E-05 1.11E-01 0.009 1.99 pdeg60 BOC intron 22445332
rs34233526 6 150947695 2.91E-07 6.86E-06 5.81E-02 0.013 2.31 pdeg60 MTHFD1L intron 22330827
rs72129870 1 107645322 3.07E-07 1.25E-05 3.32E-01 0.008 2.03 pdeg100 VAV3 intron 28927664
rs4788579 16 71917942 3.77E-07 3.00E-04 1.45E-02 0.011 3.24 pdeg60 IST1 intron 31223056

rs113337484 6 87710980 4.05E-07 5.46E-04 2.03E-02 0.009 2.87 pdeg60 AKIRIN2 Intergenic 27871306
rs11253483 10 872071 4.83E-07 7.06E-04 5.34E-03 0.029 2.26 pdeg40 LARP4B intron 20435134
rs17077094 8 6480005 5.50E-07 3.75E-03 1.73E-02 0.015 3.01 pdeg60 MCPH1 intron 21297427
rs11339072 11 85061332 5.87E-07 4.92E-04 2.66E-02 0.019 2.86 pdeg60 DLG2 intron 29290481
rs33954745 2 169259162 6.69E-07 2.54E-04 8.27E-02 0.039 0.52 pdeg60 LRP2 exon 20971101
rs11412426 3 65493079 6.77E-07 8.09E-04 1.07E-02 0.012 0.44 pdeg80 MAGI1 intron 22166940
rs222960 21 26551898 7.11E-07 2.34E-04 4.81E-02 0.006 2.19 pdeg80 CYYR1 intron 30820047
rs8088835 18 3728055 7.17E-07 6.90E-05 1.76E-01 0.006 3.23 pdeg120 DLGAP1 intron 30448613
rs11859292 16 6491819 8.68E-07 7.55E-03 3.35E-03 0.02 2.09 pdeg80 RBFOX1 NMD 30596066
rs10138555 14 30020759 8.74E-07 2.14E-04 2.10E-02 0.035 2.15 pdeg60 PRKD1 nocoding 21696630
rs2501215 13 70069895 9.29E-07 1.92E-03 1.76E-02 0.011 2.47 pdeg100 KLHL1 intron 15715669
rs1783749 11 85049683 9.82E-07 4.92E-04 3.71E-02 0.03 4.01 pdeg60 DLG2 intron 29290481
rs348658 12 62063579 1.04E-06 2.38E-03 2.33E-02 0.028 3.06 pdeg80 TAFA2 intron 30137205
rs6958644 7 139796416 1.06E-06 1.91E-03 1.92E-02 0.035 2.03 pdeg80 TBXAS1 nocoding 24608097
rs5892206 8 69583407 1.11E-06 2.10E-02 1.89E-03 0.04 2.67 pdeg60 SULF1 intron 30035253
rs11862587 16 83628162 1.27E-06 2.69E-04 2.01E-02 0.021 2.11 pdeg60 CDH13 intron 29771432,26460479
rs28764186 17 79306443 1.30E-06 6.08E-03 8.46E-03 0.021 0.44 pdeg100 RBFOX3 intron 30475774
rs12281243 11 40133562 1.46E-06 6.98E-05 9.56E-02 0.039 2.58 pdeg60 LRRC4C intron 29751835
rs12705741 7 110873688 1.48E-06 2.33E-04 1.18E-01 0.046 2.14 pdeg80 IMMP2L intron 22486522
rs2373961 7 150984122 1.50E-06 1.45E-07 8.23E-01 0.044 0.42 pdeg80 KCNH2 Intergenic 19412172

rs115231703 1 182348704 1.51E-06 5.15E-05 3.88E-01 0.046 0.47 pdeg120 GLUL Intergenic 29441491
rs548084743 17 47919005 1.64E-06 4.09E-04 1.29E-01 0.028 2.26 pdeg60 SP2,SP2-AS1 intron 23293287
rs77144903 13 102144657 1.82E-06 1.41E-03 3.92E-02 0.039 0.2 pdeg100 FGF14 intron 28522250,28469558
rs146092846 15 100217974 1.87E-06 1.22E-03 4.53E-02 0.03 0.43 pdeg120 ADAMTS17 intron 22710270
rs7147828 14 71994665 1.88E-06 7.58E-04 8.16E-02 0.039 2.18 pdeg80 RGS6 intron 27002730
rs75538719 8 36794270 1.90E-06 3.36E-03 8.00E-03 0.046 2.47 pdeg100 KCNU1 intron 26858991
rs2977548 8 133224849 1.92E-06 7.50E-04 1.05E-01 0.044 2.53 pdeg60 CCN4 NMD 22475393
rs78818922 14 54638870 2.03E-06 5.89E-04 1.87E-01 0.038 2.06 pdeg100 SAMD4A intron 29432188
rs62223372 21 31377966 2.04E-06 1.09E-03 8.62E-03 0.009 0.42 pdeg80 TIAM1 intron 23109420
rs12881844 14 51639930 2.06E-06 1.79E-02 1.77E-03 0.023 0.39 pdeg120 FRMD6 nocoding 22190428
rs609214 13 102174932 2.20E-06 3.00E-03 7.04E-02 0.037 0.23 pdeg120 FGF14 intron 28522250,28469558
rs4903566 14 77274080 2.30E-06 9.77E-05 9.71E-02 0.045 0.46 pdeg60 POMT2 Intergenic 22984654
rs60119577 18 57155356 2.56E-06 1.22E-03 1.59E-01 0.029 0.41 pdeg100 BOD1L2 Intergenic 27166630
rs146623074 15 32107801 2.76E-06 2.36E-03 6.07E-03 0.035 0.43 pdeg80 CHRNA7 intron 24951635
rs141887840 18 79482278 2.79E-06 1.18E-03 3.07E-02 0.036 2 pdeg60 NFATC1 intron 20401186
rs12902710 15 55318928 3.03E-06 7.21E-04 6.12E-02 0.048 0.47 pdeg100 PIGBOS1,RAB27A 5’UTR 26985808
rs10444855 15 33393629 3.25E-06 1.97E-07 5.52E-01 0.047 1.89 pdeg60 RYR3 intron 29590321
rs6103379 20 43547767 3.94E-06 2.28E-04 1.99E-01 0.041 0.49 pdeg100 L3MBTL1 NMD 29898393,31061493

Table 2: The association results for known AD risk genes
Association of module patients Association of all AD patients

SNP gene p1 p2 p3 p(emp) OR module type region SNP p1 p(emp) region
rs769450 APOE 2.08E-08 1.94E-02 1.44E-04 0.001 3.68 pdeg80 intron rs769450 1.65E-06 0.015 intron

rs71454394 MS4A2 9.25E-06 3.73E-03 4.32E-02 0.257 2.48 pdeg40 intergenic - - - -
rs9462659 TREM2 1.08E-05 8.99E-03 4.85E-02 0.35 2.02 pdeg40 intergenic - - - -
rs7152488 SLC24A4 1.21E-05 1.85E-04 1.71E-01 0.175 0.3 pdeg100 intron - - - -
rs5021727 HLA-DRB1 1.59E-05 1.80E-04 3.88E-01 0.389 0.45 pdeg120 intergenic - - - -

rs144409358 CR1 2.09E-05 1.44E-03 1.79E-01 0.552 0.3 pdeg120 intron - - - -
rs12416009 ECHDC3 2.10E-05 2.66E-04 2.19E-01 0.514 1.86 pdeg40 intergenic - - - -
rs9897336 ACE 2.41E-05 2.03E-04 4.91E-01 0.306 0.48 pdeg100 intergenic - - - -
rs55662472 EPHA1 2.61E-05 5.33E-03 7.65E-02 0.519 3.15 pdeg80 intergenic - - - -
rs34708229 MEF2C 2.81E-05 4.09E-03 2.17E-02 0.675 2.45 pdeg40 intron rs79820174 1.40E-04 1 intron
rs6099038 CASS4 2.86E-05 1.55E-04 3.16E-01 0.305 2.30 pdeg100 intergenic - - - -
rs13422890 BIN1 3.35E-05 4.42E-06 8.04E-01 0.753 1.96 pdeg60 intron - - - -
rs36057699 PTK2B 3.39E-05 8.08E-03 4.63E-02 0.576 0.41 pdeg120 intron rs36057699 8.70E-04 1 intron
rs659023 PICALM 6.53E-05 8.73E-06 4.35E-01 0.797 0.54 pdeg120 intergenic - - - -

rs77792633 FERMT2 8.95E-05 5.18E-04 5.44E-01 0.8 0.62 pdeg60 intergenic - - - -
rs57816367 CD2AP 9.17E-05 9.36E-05 4.60E-01 0.957 2.13 pdeg40 intron - - - -
rs10539341 INPP5D 9.42E-05 7.99E-03 9.36E-02 0.983 0.42 pdeg100 intron - - - -
rs2285898 ABCA7 9.09E-05 1.00E-02 1.48E-01 0.632 0.53 pdeg120 intergenic - - - -
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Table 3: The association results for known AD risk genes

SNPs associated with atrophy
SNP chr pos p1 p1(emp) seed patient tp gene region braak atrophy

rs147216627 1 157467609 7.04E-07 0.022 X15888 pdeg100 - 7.4E-02 9.05E-04
rs78818922 14 54638870 2.03E-06 0.038 X15888 pdeg100 SAMD4A intron 7.4E-02 9.05E-04
rs1231702 11 29525814 4.97E-07 0.012 X15914 pdeg60 AC110058.1,AC090124.1 Intergenic 0.95 7.96E-03
rs3867263 18 63664376 9.40E-07 0.031 X15914 pdeg40 SERPINB11 intron 0.24 7.18E-03
rs236111 20 5952889 7.13E-07 0.011 X15914 pdeg60 MCM8 intron 0.95 7.96E-03
rs7113161 11 16969038 9.68E-07 0.024 X15941 pdeg120 PLEKHA7 intron 1.34E-02 3.82E-03
rs10489293 1 172217647 1.12E-07 0.005 X16020 pdeg40 DNM3 intron 6.52E-02 7.87E-04
rs12819631 12 104013393 2.84E-07 0.01 X16020 pdeg40 GLT8D2 intron 6.52E-02 7.87E-04
rs9912864 17 9105233 2.89E-06 0.037 X16020 pdeg100 NTN1 intron 0.97 2.28E-03
rs6875561 5 121537532 1.47E-06 0.049 X16037 pdeg80 - 1.27E-02 1.42E-03
rs7930638 11 5567722 1.85E-06 0.043 X16179 pdeg120 AC104389.4 NMD 3.56E-02 4.16E-03

rs548084743 17 47919005 9.62E-07 0.021 X16179 pdeg40 SP2,SP2-AS1 intron 9.51E-02 7.26E-03
rs764624 14 71993857 2.32E-06 0.049 X16183 pdeg60 RGS6 intron 0.11 8.66E-03

rs78641850 10 53421383 2.17E-07 0.001 X21821 pdeg100 - 2.02E-02 6.43E-03
rs17112518 14 21948703 2.30E-06 0.027 X21901 pdeg120 - 0.10 6.98E-03
rs12881844 14 51639930 2.06E-06 0.023 X21901 pdeg120 FRMD6 Intergenic 0.10 6.98E-03
rs12480378 20 3110711 2.29E-06 0.025 X21901 pdeg120 UBOX5-AS1,UBOX5 Intergenic 0.10 6.98E-03

SNPs associated with braak
SNP chr pos p1 p1(emp) seed patient tp gene region braak atrophy

rs6103379 20 43547767 3.94E-06 0.041 X15917 pdeg100 Z98752.3,L3MBTL1 NMD 8.37E-03 1.01E-01
rs11850894 14 22312243 2.04E-06 0.033 X15989 pdeg80 TRAV40 Intergenic 1.33E-04 7.33E-02
rs73699762 7 57341624 1.01E-06 0.028 X15989 pdeg120 - 2.55E-03 6.59E-02
rs222960 21 26551898 4.39E-06 0.033 X16038 pdeg60 CYYR1,CYYR1-AS1 intron 7.20E-03 5.03E-01
rs6880404 5 163990493 9.32E-07 0.031 X16105 pdeg120 - 2.86E-03 4.77E-02

rs538060878 17 9142309 1.10E-07 0.004 X21810 pdeg40 NTN1 intron 4.27E-03 6.56E-01
rs1016268 12 129517265 1.88E-06 0.048 X21810 pdeg80 TMEM132D intron 6.58E-04 1.92E-01
rs6769967 3 44217312 1.77E-07 0.012 X21810 pdeg40 - 4.27E-03 6.56E-01
rs16885931 6 22265940 8.04E-07 0.021 X21810 pdeg120 CASC15 Intergenic 6.11E-04 2.32E-02

SNPs associated with both atrophy and braak
SNP chr pos p1 p1(emp) seed patient tp gene region braak atrophy

rs769450 19 44907187 7.12E-07 0.008 X16149 pdeg120 APOE intron 9.62E-03 1.94E-03
rs78415808 12 69406115 8.07E-07 0.023 X16183 pdeg80 - 2.18E-03 5.84E-03
rs820562 3 112745366 1.46E-06 0.042 X16037 pdeg120 LINC02042 Intergenic 6.11E-03 3.99E-05

evidence for their close association with AD, supporting that predicted AD risk genes contributed to AD development. For

example, extracellular matrix was observed to have significant changes during the early stages of AD [19] and extracellular

matrix could induce β-Amyloid Levels [20]. Among predicted risk genes, APOE, POMT2, FGF14, CDH13 and RBFOX3

display more functional involvements.

2.4 Evaluation using randomly clustering of AD patients

In above analysis, we attempted to cluster AD patients with a common set of spDEGs so that the clustered patients were

more affected by common AD variants. As an evaluation, we performed a simulated study by randomly splitting AD

patients into simulated modules at corresponding sizes. Then we predicted AD risk SNPs using the exact same setting.

In each round of simulation, we identified about 105 AD risk SNPs on average at a cutoff of empirical p < 0.05. We

compared their analysis results to that of true modules and found that about 63% of risked SNP (out of total 175 loci)

could be overlapped with the SNPs predicted using true modules. This evaluation seemed to support a conclusion that

subsetting AD patients had benefits to improve the power of association studies, even when the criteria to stratify AD

patients was to randomly pick up. Comparing to random modules, clustering using spDEG signature could recover more

AD risk SNPs.

3 Discussion

In this work, we took more consideration to AD patient diversity and attempted to stratify patients into modules affected

by different genetics background. Therefore, we came up with a analysis pipeline to cluster AD patients based on
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Figure 3: Functional relevance of AD risk genes. Here, the module spDEG signatures were used for Gene Ontology
enrichment to indicate the functional involvement of modules.
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some assumptions, including that (1) AD patients are very diverse and differential expression patterns differ among AD

patients; (2) we can used single-patient DEGs as biomarkers to indicate the dysregulation status of AD patients and to

cluster the AD patients affected by common mechanisms. In our previous work, we have applied similar strategies to

discover enriched transcription factor binding sites [21] and cancer driver mutations [22], and achieved good performance.

Evaluation using real patient data suggested that this method could group AD patients with similar clinical outcomes

and common risk variants, validating our assumptions.

We applied a new strategy to find the differentially expressed genes for each AD patient and clustering patients based

on the spDEG signatures. In this process, we made some assumptions. For example, we defined the reference expression

profiles for normal individuals by fitting to a Gaussian or negative binomial distribution. The robustness of this step was

dependent on the number and homogeneity of control individuals. To identify the differentially expressed genes, we need

to set some thresholds to determine if the gene expression level of one AD patient was beyond the normal ranges. In our

work, we tested different cutoffs and selected p = 0.1.

We did association study in each module of size 40 to 120. Compared to the study using all AD patients, the statistical

power decreased with decreased sample size in each association study. However, more AD risk loci were identified for

increased number of AD patient modules. 175 loci were predicted to be associated with AD at a strict threshold of

empirical p < 0.05, while only two loci exceed such a threshold using all AD patients. The genotype frequency was

found to be different between module and non-module patients. All these results suggested that AD risk variants might

contribute only limited subset of AD population.

In this work, we proved the benefits of patient clustering in association studies to AD. In our application, we reported

more AD risk genes even when only 310 AD patients were used. In large-scale meta analysis, there were about 20-30

genes identified as AD risk genes [7, 23]. However, by searching public literature and databases, e.g. GWAS catalog,

we found more than 100 studies and more than 300 genes that had been reported in associated studies to AD patients.

These studies could be treated as a subset of large-scale AD meta-analysis. This results suggested that there might be

more AD risk genes and AD patients subsetting helped to identify them.

4 Methods

4.1 The samples and subjects

The AD and control sample data were collected from the “ROS/MAP” study [2] and “HBTRC” study [18]. “ROS/MAP”

data included the genotype, expression and clinical data for 1788 subjects. The AD-related clinical annotation were

provided by the data suppliers. The important one included ages, the cognitive score (cts), years of education, ApoE

genotype, braak stage (braak) and assessment of neuritic plaques (ceradsc). We use the clinical annotation for “cogdx”,

a physician’s overall cognitive diagnostic category, to select the AD patient (cogdx = 4 or 5) and control subjects (cogdx

= 1). After filtering the ones with missed or unclear information for either clinical records or RNA-seq, we found 219

AD patients and 187 control subjects that would be used for module analysis and clinical enrichment studies. “HBTRC”

study had both RNA-seq and genotype data for 573 samples, including 311 AD samples. We filtered the one with missed

clinical information, RNA-seq or genotyped data. Finally, 310 AD patients and 153 control subjects were used.

4.2 Clustering the AD patient using single-patient DEGs

We developed a computational algorithm to cluster AD patients (see Figure S1). The main idea behind this tool is that

AD patients are highly diverse and can affected by divergent mechanisms; it is possible to cluster AD patients if they

shared a subset of differentially expressed genes (DEGs). This algorithm is implemented in R package DEComplexDisease.
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It mainly includes four steps:

• Utilize RNA-seq data of normal subjects to construct reference expression profiles. In this step, the parameters

of negative binomial distribution or Gaussian distribution are estimated to describe the distribution profile of

non-disease samples;

• The gene expression of AD patients are transformed into binary differential expression status. In this step, the

expression values of genes are fitted against reference expression profiles. Binary differential expression status is

assigned as 1, -1 or 0 to indicate up-, down-regulation or no difference;

• Apply a bi-clustering analysis to identify DEGs that are repeatedly observed in multiple AD patients, e.g. n=5;

• Using the spDEG of each AD patient as signature, we compute the co-expression correlation and identify the

patients with the most similar expression profiles to construct modules.

The R codes are publicly available in https://github.com/menggf/DEComplexDisease.

4.3 Clinical manifestation association analysis

“ROS/MAP” data mainly includes three AD related clinical features, including cognitive score (cts), CERAD score and

braaksc. “HBTRC” has clinical information for braak and atrophy. Such clinical features can be used to evaluate the

disease relevance of modules. Therefore, we applied our tool to generate modules of different sizes, e.g. 40, 60 and 120.

For each module, AD patients can be grouped as module patient and non-module patients. We did Kolmogorov-Smirnov

(KS) test to evaluate the clinical manifestation differences between two groups of AD patients.

4.4 Processing genotype data

We applied stringent quality control (QC) filters to the genotype data. First, we removed the individuals with missing

genotype rates > 0.05 and SNPs with missing call rate > 0.05. In next step, the SNPs with minor allele frequency

MAF < 0.1 or Hardary-Weinberg equilibruim p-value < 1.0 × 10−5 were excluded. The individual with autosomal

heterozygosity above empirically determined thresholds were filtered. Identity-by-descent (IBD) of all possible gene pairs

were also calculated and we removed the ones with potential genetic relatedness. These QC filters were performed for

multiple rounds to make sure that no indivivual or SNP could be filtered any way. Then, We performed prephasing in

SHAPEIT2 [24] using the 1000 Genome Project data as reference. Then, we conducted whole-genome imputation using

IMPUTE2 [25] in 5-Mb segments with a filtering of the SNP with MAF less than 0.1 in EUR population. The imputed

data were evaluated for quality control using the thresholds mentioned before. We performed principal component analysis

(PCA) on autosomal genotype data and adjustment for stratification.

4.5 Association study

Association studies were performed for both all AD patients and module patients. To simplify it, we only include

the definite AD patients and control individuals in association analysis so that binary disease status could be assigned

for each patient. We performed population stratification by use of the principal components of chromosomal genetic

variations. Association analysis perform using fast score test implemented in GenABEL package. In this step, the first

10 principle components were used as covarites to remove the effects of population structure to make sure of no clear

evidence of inflation in the association results. To control the false positive discovery, we also estimated the empirical

p-values using performing permutation analysis by generating the distribution under the null hypothesis for 1000 times.

In each round of call, minimal p-value was compared with original p values. For a SNP, its empirical p-values is
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defined as a proportion of times minimal p-values in 1000 resampling less than the original p-value. We set empirical

p-values < 0.05 as the cutoff to select the module associated SNPs. The codes for association studies is available in

https://github.com/menggf/spDEG_and_Association.
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Anne-Claire Richard, Florence Pasquier, Adeline Rollin-Sillaire, Olivier Martinaud, Muriel Quillard-Muraine, Vin-

cent de la Sayette, Claire Boutoleau-Bretonniere, Frédérique Etcharry-Bouyx, Valérie Chauviré, Marie Sarazin,
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