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ABSTRACT

Modern biological electron microscopy produces nanoscale images from biological samples of unprecedented
volume, and researchers now face the problem of making use of the data. Image segmentation has played a
fundamental role in EM image analysis for decades, but challenges from biological EM have spurred interest
and rapid advances in computer vision for automating the segmentation process. In this paper, we demonstrate
dense cellular segmentation as a method for generating rich, 3D models of tissues and their constituent cells
and organelles from scanning electron microscopy images. We describe how to use ensembles of 2D-3D neural
networks to compute dense cellular segmentations of cells and organelles inside two human platelet tissue
samples. We conclude by discussing ongoing challenges for realizing practical dense cellular segmentation
algorithms.

Biomedical researchers use electron microscopy (EM) to image the structure of cells, organelles, and their con-
stituents at the nanoscale. New EM instruments such as serial block-face scanning electron microscopes (SBF-SEM)1

and focused ion-beam scanning electron microscopes (FIB-SEM)2 use automated serial sectioning techniques to
rapidly produce gigavoxel image volumes and beyond. This rapid growth in throughput challenges traditional image
analytic workflows for EM, which relies on trained humans to identify salient image features. High-throughput
EM offers to revolutionize systems biology by providing nanoscale structural detail across macroscopic tissue
regions, but analyses of such datasets in their entirety will be infeasibly expensive and time-consuming until analytic
bottlenecks are automated.
A fundamental component of common EM image anaylsis workflows is segmentation, which groups image voxels
together into labeled regions that correspond to image content. For semantic segmentation, each voxel is assigned
an object classification label, such as cell or mitochondrion. In this paper we introduce a dense semantic
segmentation task, illustrated in Figure 1, which seeks to segment the entirety of an image volume with multiple
granular class labels. Dense semantic segmentation is vital for systems biologists seeking to create semantically-rich
3D models of cells and subcellular structure interconnected within tissue environments.
Manually performing dense segmentation tasks for EM volumes is tedious and infeasible at scale for new high-
throughput microscopes. However, automating dense segmentation for EM is challenging due to the image
complexity of biological structures at the nanoscale. Current state-of-the-art computational solutions use a variety of
convolutional neural network architectures to solve problems on a per-task basis, and automation difficulty is task-
dependent. An image with little noise and high contrast between features may be accurately segmented with simple
methods such as thresholding3, while accurate segmentation of complex images with multiscale features, noise,
and textural content remains an open problem for many tasks of interest to biomedicine. The field of connectomics
has spurred a number of advances in biomedical segmentation in its pursuit of accurate neural circuit tracing4, but
there are few solutions for other analysis problems facing systems biologists, and working with 3D data presents
challenges for common compute hardware to properly exploit 3D spatial context during classification.
In this paper, we introduce a new 3D biomedical segmentation algorithm based on neural networks with separate
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2D and 3D prediction modules, building off of existing work in volumetric image segmentation5 to solve a dense
segmentation task for a platelet SBF-SEM dataset. We also demonstrate a simple ensembling technique for
improving the performance of segmentation networks. The resulting segmentation algorithms outperform existing
3D segmentation networks trained on dense segmentation of our platelet data. We also highlight a challenge for
validating segmentation network design choices - the wide distribution of trained architecture performance results
due to random initialization - and offer a simple solution to make better-informed conclusions on segmentation
network architecture design.

Prior Work

In recent years, deep convolutional neural networks (CNN) became the de facto algorithms on most computer vision
tasks6–8. The field of 2D segmentation of natural images has received enormous attention, with major companies
releasing sophisticated trained models in the pursuit of solutions to vision problems of economic importance9–12.
In comparison, work in biomedical image segmentation has been comparatively modest, with more work done
in medical imaging such as CT [cite] than in microscopy. A seminal contribution from this area was the U-Net7,
which spawned numerous encoder-decoder variants sporting architectural improvements13–15. The proliferation of
volumetric data in biomedicine has also spurred developments in 3D segmentation5, 16–22, though the field suffers
from a lack of high-quality benchmark datasets for use with testing different architectural choices. For this paper, we
adapted existing U-Net, Deeplab, and DeepVess22 architectures to our segmentation task as a baseline for our new
results.

Methods

SBF-SEM image volumes were obtained from identically-prepared platelet samples from two humans. Lab members
manually segmented portions of each volume into seven classes to analyze the structure of the platelets. The
labels were used for the supervised training of candidate network architectures, as well as baseline comparisons.
Each candidate architecture was trained multiple times with different random initializations. The best-performing
instances were ensembled together to produce the final segmentation algorithms used in this paper.

Data collection
This study used datasets prepared from human platelet samples as part of a collaborative effort between the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH and the University of Arkansas for Medical
Sciences. The platelet samples were imaged using a Zeiss 3View SBF-SEM. The Patient 1 dataset, the main one
used in this study, is a 250×4000×4000 voxel image with a lateral resolution of 10nm and an axial resolution of
50nm, from a sample volume with dimensions 12.5×40×40µm3.
We assembled labeled training, evaluation, and test datasets from manually-segmented regions of the platelet datasets.
Lab members created initial manual segmentations using Amira23. For the test dataset, segmentations were reviewed
by subject experts and corrected. The training image was a 50× 800× 800 subvolume of the Patient 1 dataset
spanning the region 81≤ z≤ 130, 620≤ x≤ 1419, 1073≤ y≤ 1872 in 0-indexed notation. The evaluation image
was a 24× 800× 800 subvolume of the Patient 1 dataset spanning the region 100 ≤ z ≤ 123, 620 ≤ x ≤ 1419,
200 ≤ y ≤ 999. The test image was a 121× 609× 400 subvolume of the Patient 2 dataset spanning the region
0 ≤ z ≤ 120, 460 ≤ x ≤ 1068, 308 ≤ y ≤ 707. The training and evaluation labels covered the entirety of their
respective images, while the test labels covered a single cell contained within the test image. The labeling schema
divides image content into seven classes: background, cell, mitochondrion, canalicular vessel,
alpha granule, dense granule, and dense granule core.

Neural architectures and ensembling
The Patient 1 and Patient 2 datasets were binned by 2 in x and y and aligned. For each of the training, evaluation,
and testing procedures, the respective image subvolumes were normalized to have mean 0 and standard deviation 1
before further processing.
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The highest-performing network architecture in this paper, 2D-3D+3x3x3, is a composition of a 2D U-net-style
encoder-decoder and 3D convolutional spatial pyramid, with additional 3x3x3 convolutions at the beginning of
convolution blocks in the encoder-decoder. All convolutions are zero-padded to preserve array shape throughout
the network, allowing deep architectures to operate on data windows with small z-dimension. A ReLU activation
follows each convolution. All convolution and transposed convolutions use bias terms. The architecture is fully
specified as a diagram in Figure 2(a). Additionally, several baseline comparison networks and three 2D-3D+3x3x3
ablation networks were also tested in this paper and are described in Validation and Performance Metrics.
To build a 2D-3D network, one can adapt a 2D U-net-style encoder-decoder module to work on 3D data by recasting
2D 3x3 convolutions as 1x3x3 convolutions, and 2D 2x2 max-pooling and transposed convolution layers as 1x2x2
equivalents. In this way, a 3D input volume can be processed as a sequence of independent 2D regions in a single
computation graph, and the 2D and 3D modules can be jointly trained end-to-end. Intermediate 2D class predictions
x̂2D are formed from the 2D module output, and the 2D output and class predictions are concatenated along the
feature axis to form an input to a 3D spatial pyramid module. The 3D module applies a 1x2x2 max pool to its input
to form a two-level spatial pyramid with scales 0 (input) and 1 (pooled). The pyramid elements separately pass
through convolution blocks, and the scale 1 block output is upsampled and added to the scale 0 block output with a
residual connection to form the module output. 3D class predictions x̂3D are formed from the 3D module output,
and the final segmentation output ˆ̀ of the algorithm is a voxelwise argmax of the 3D class predictions. To build a
2D-3D+3x3x3 network, we inserted 3x3x3 convolution layers at the beginning of the first two convolution blocks in
the 2D encoder and the last two convolution blocks in the 2D decoder.
Given a collection of networks’ 3D class predictions, one can form an ensemble prediction by computing a voxelwise
average of the predictions and computing a segmentation from that. Ensembling high-quality but non-identical
predictions can produce better predictions24, and there is reason to think that more sophisticated ensembles could be
constructed from collections of diverse neural architectures25, but in this paper we use a simple source of differing
predictions to boost performance: ensembles of identical architectures trained from different random initializations.
The sources of randomness in the training procedure are examined more thoroughly in Validation and Performance
Metrics, but in our experiments this variation produced a small number of high-performing network instances per
architecture with partially-uncorrelated errors.

Network training
Assume a network predicting classes C = {0, . . . ,6} for each voxel in a shape-(oz,ox,oy) data window Ω containing
N = ozoxoy voxels {vi}N

i=1. The ground-truth segmentation of this region is a shape-(oz,ox,oy) array ` such that
`(v) ∈C is the ground-truth label for voxel v. A network output prediction is a shape-(7,oz,ox,oy) array x̂ such
that xv , x̂(:,v) is a probability distribution over possible class labels for voxel v. The corresponding segmentation
ˆ̀ is the per-voxel argmax of x̂. Inversely, from ` one may construct a shape-(7,oz,ox,oy) per-voxel probability
distribution x such that xv(i) = 1 if i = `(v) and 0 if not, which is useful during training.
We trained our networks as a series of experiments, with each experiment training and evaluating 1 or more instances
of a fixed network architecture. Instances within an experiment varied only in the random number generator (RNG)
seed used to control trainable variable initialization and training data presentation order. In addition to the main
2D-3D+3x3x3 architecture, there were three ablation experiments - No 3x3x3 Convs, No Multi-Loss, No 3D Pyramid
- and five baseline experiments - Original U-Net, 3D U-Net Thin, 3D U-Net Thick, Deeplab + DRN, and Deeplab +
ResNet101. Instances were trained and ranked by evaluation dataset MIoU. Experiments tracked evaluation MIoU
for each instance at each evaluation point throughout training, and saved the final weight checkpoint as well as
the checkpoint with highest eval MIoU. In this work we report eval MIoU checkpoints for each instance. The
2D-3D+3x3x3 experiment and its ablations trained 26 instances for 40 epochs (33k steps). The Original U-Net
experiment trained 500 instances for 100 epochs (180k steps). The 3D U-Net Thin experiment trained 26 instances
for 100 epochs (29k steps), and the 3D U-Net Thick experiment trained 26 instances for 100 epochs (30k steps).
The Deeplab + DRN and Deeplab + ResNet101 experiments trained 1 instance each for 40 epochs (4k steps). Due
to poor performance and slow training times of the Deeplab models, we deemed it unnecessary to train further
instances. Networks were trained on NVIDIA GTX 1080 and NVIDIA Tesla P100 GPUs.
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This subsection details the training of the 2D-3D+3x3x3 network. Baseline and ablation networks were trained
identically except as noted in Validation and Performance Metrics. All trainable variables were initialized from
Xavier uniform distributions. Each instance was trained for 40 epochs on shape-(5,300,300) windows extracted
from the training volume, and output a shape-(7,5,296,296) class prediction array. The number of windows in each
epoch was determined by a window spacing parameter which determined the distance along each axis between the
top-back-left corners of each window, here (2,100,100), resulting in 828 windows per epoch. An early stopping
criterion halted the training of any network that failed to reach a mean intersection-over-union (MIoU) of 0.3 after
10 epochs.
Networks were trained using a regularized, weighted sum of cross-entropy functions. The network has a set Θ

trainable variables divided into four subsets: Θ2D for variables in the 2D encoder-decoder module, Θ3D for variables
in the 3D spatial pyramid module, the single 1x1x1 convolution variable {θ2DP} which produces intermediate 2D
class predictions x̂2D from the encoder-decoder’s 64 output features, and the single 1x1x1 convolution variable
{θ3DP} which produces the final 3D class predictions x̂3D from the spatial pyramid’s 64 output features. Predictions
are compared against ground-truth labels as

L(x, x̂3D, x̂2D;Θ) =
1
N

N

∑
i=1

[W⊗H (x, x̂3D)]i +
c2D

N

N

∑
i=1

[W⊗H (x, x̂2D)]

+λ2D ∑
θ∈Θ2D

‖θ‖2
2 +λ3D ∑

θ∈Θ3D

‖θ‖2
2 +λP

(
‖θ2DP‖2

2 +‖θ3DP‖2
2
)
, (1)

where λ2D = 1×10−4.7 and λ3D = 1×10−5 are L2 regularization hyperparameters for the variables in Θ2D and Θ3D,
λP = 1×10−9 is an L2 regularization hyperparameter for the predictor variables θ2DP and θ3DP, and c2D = 0.33 is a
constant that weights the importance of the intermediate 2D class predictions in the loss function. H(x, x̂) is the
voxelwise cross-entropy function, i.e.,

H(x, x̂)v , H(xv, x̂v) =−
7

∑
j=1

xv( j) log [x̂v( j)] =−xv(`v) log [x̂v(`v)] .

W is a shape-(5,296,296) array of weights; its Kronecker product with H produces a relative weighting of the
cross-entropy error per voxel. This weighting strategy is based generally on the approach in (Ronneberger et al.,
2015)7:

W= w+Wcb +Wep.

The initial w = 0.01 is a constant that sets a floor for the minimum weight value, Wcb is a class-balancing term such
that Wcb,i ∝ 1/Ni, where Ni is the number of occurences in the training data of `i. Wep is an edge-preserving term that
upweights voxels near boundaries between image objects and within small 2D cross-sections. In (Ronneberger et al.,
2015) this is computed using morphological operations. We used a sum of scaled, thresholded diffusion operations
to approximate this strategy in a manner that requires no morphology information. The weight file used in this paper
is available with the rest of the platelet dataset at leapmanlab.github.io/dense-cell.
We employed data augmentation to partially compensate for the limited available training data. Augmentations
were random reflections along each axis, random shifts in brightness (±12%) and contrast (±20%), and elastic
deformation as in (Ronneberger et al., 2015). For elastic deformation, each 800x800 x− y plane in the shape-
(50,800,800) training data and label arrays was displaced according to a shape-(800,800,2) array of 2D random
pixel displacement vectors, generated by bilinearly upsampling a shape-(20,20,2) array of iid Gaussian random
variables with mean 20 and standard deviation 0.6. During each epoch of training, a single displacement map was
created and applied to the entire training volume before creating the epoch’s batch of input and output windows.
Training used the ADAM optimizer with learning rate 1× 10−3, β1 = 1− 1× 10−1.5, β2 = 1− 1× 10−2.1, and
ε = 1×10−7. Training also used learning rate decay with an exponential decay rate of 0.75 every 1×103.4 training
iterations.
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Validation and performance metrics
The performance metric used in this work is mean intersection-over-union (MIoU) between ground-truth image
segmentation `’s 7 labeled sets {L j = v ∈ Ω |`(v) = j} j∈C and predicted segmentation’s ˆ̀ labeled sets {L̂ j = v ∈
Ω | ˆ̀(v) = j} j∈C. Given two sets A and B,

IoU(A,B) =
|A∩B|
|A∪B|

.

Then for segmentations ` and ˆ̀ with their corresponding labeled sets,

MIoU(`, ˆ̀) =
1
7 ∑

j∈C
IoU(L j, L̂ j).

More generally, for a subset of labels D⊆C, one can compute the MIoU over D, or MIoU(D), as

MIoU(D)(`, ˆ̀) =
1
|D| ∑j∈D

IoU(L j, L̂ j).

Here we are concerned with MIoU’s over two sets of labels: MIoU(all) over the set of all 7 class labels, and
MIoU(org) over the set of 5 organelle labels 2-7. Our network validation metrics were MIoU(all) and MIoU(org) on
the evaluation dataset, and MIoU(org) on the test dataset. Test data uses MIoU(org) because the labeled region is a
single cell among several unlabeled ones, and restricting validation to the labeled region invalidates MIoU stats for
the background and cell classes (0 and 1). We include eval MIoU(org) to quantify how performance drops between a
region taken from the physical sample used to generate the training data, and a new physical sample of the same
tissue system.
Using this procedure, the performance of the 2D-3D+3x3x3 network was compared against three ablations and five
baseline networks. The three ablations each tested one of three features that distinguish the 2D-3D+3x3x3 network
in this paper from similar baselines. The first, 2D+3x3x3 No 3x3x3 Convs, replaces the 3x3x3 convolutions in the
net’s encoder-decoder module with 1x3x3 convolutions that are otherwise identical. With this ablation, the network’s
encoder-decoder loses any fully-3D layers. The second, 2D+3x3x3 No Multi-Loss, modifies the loss function in
Equation (1) by removing the term involving x̂2D but otherwise leaving the architecture and training procedure
unchanged. This ablation tests whether it is important to have auxiliary accuracy loss terms during training. The
third ablation, 2D-3D+3x3x3 No 3D Pyramid, removes the 3D spatial pyramid module and 3D class predictor
module from the network architecture, so that x̂2D is the network’s output. Correspondingly, the loss term involving
x̂3D is removed from Equation (1).
We implemented five baseline networks by adapting common models in the literature to our platelet segmentation
problem. Three of these were 2D - The original U-Net7 as well as two Deeplab variants10, 11 using a deep residual
network (DRN) backbone and a ResNet101 backbone8, minimally modified to output 7 class predictions. The
original U-Net used (572,572) input windows and (388,388) output windows, while the Deeplab variants used
(572,572) input and output windows. The two 3D networks were fully-3D U-Net variants adapted on the 3D
U-Net in (Çiçek et al., 2016)26 - 3D U-Net Thin and 3D U-Net Thick. The variants used same-padding, had three
convolutions per convolution block, and two pooling operations in the encoder for convolution blocks at three
spatial scales. The 3D U-Net Thin network used (5,300,300) input windows and (5,296,296) output windows, and
pooling and upsampling operations did not affect the z spatial axis. The 3D U-Net Thick network used (16,180,180)
input windows and (16,180,180) output windows, and pooled and upsampled along all three spatial axes.
To determine whether one architecture is superior to another, trained instances are compared with each other.
However, sources of randomness in the training process induce a distribution of final performance metric scores
across trained instances of an architecture, so that a single sample per architecture may be insufficient to determine
which is better. While expensive, a collection of instances can be trained and evaluated to empirically approximate
the performance distribution for each architecture. In this way, better inferences may be made about architecture
design choices. Figure 4 shows the empirical performance distributions for the 26 trials of the 2D-3D+3x3x3
architecture and its three ablations, as well as the 26 trials of the 3D U-Net and 500 trials of the 2D Original U-Net.
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A final point of comparison was drawn between algorithm performance and network performance by computing
performance metrics for two independent human segmentations of a single test region. For this comparison, two
trained lab members were tasked with producing segmentations of a cell from the Patient 2 dataset, and a cell from
the Patient 3 dataset. The MIoU(org) of the segmentations were computed between the humans, to be compared with
MIoU(org) results from networks on the test dataset.

Reproducibility
All data used in this experiment, as well as examples showing how to download and train neural networks used in
this paper on the platelet segmentation task, can be found at leapmanlab.github.io/dense-cell.

Results

Our results are outlined in Table 1 along with Figures 3 and 4. Table 1 lists several networks and ensembles of
networks along with their performance metrics: MIoU(all) refers to the mean IoU score across all classes, while
MIoU(org) refers to the mean IoU score over the organelle classes only, not considering the background and cell
body; Eval refers to the evaluation data consisting of a subset of Patient 1’s data which is held-out during training;
Test refers to the test data consisting of a single cell from patient 2. We consider performance on the test data to be
the best indicator of the algorithm’s performance as it shows its ability to generalize across different samples.
Our Top-4 2D-3D+3x3x3 model performs best on the test data scoring 44.6% MIoU(org) while the next best ensemble
only achieves 42.1% MIoU(org). Our best model significantly improves segmentation results compared to all baseline
networks. We also significantly outperform the best ensemble of 2D U-Nets, improving the test MIoU(org) by 20%.
Our ablation analysis confirms our conjectures about the importance of 3D context input to the network, and the
importance of 3x3x3 convolutions over 1x3x3 convolutions for generalization performance. The latter do not capture
correlations along the z spatial dimension, likely contributing to their poorer performance. Ablation analysis also
indicates that removing either the multi-loss training setup or the 3D spatial pyramid module from the 2D-3D+3x3x3
architecture carries significant performance penalties.
We have also tried using the work in18, namely their DeepVess network, on our data;, however, DeepVess performed
poorly, and learned to assign a single class (background) to the entire output patch. We believe there may be two
reasons behind DeepVess’ poor performance: (1) Unlike U-Net and Deeplab networks, the DeepVess network is
designed with very small input patches in mind; small patches do not contain enough context for the network to
distinguish between objects. (2) DeepVess’s last layer consists of a fully-connected operation with a single hidden
layer containing 1024 neurons, therefore any attempt to input significantly larger patches would imply increasing the
number of neurons in the last layer, but fully-connected layers do not scale well and the network quickly outgrows
GPU memory.
We display the output segmentations of the algorithms in table 1 in figure 3 for a qualitative assessment. We
experimented with simple post-processing to remove small connected components from the segmentation (similar to
the techniques used here18). However, we found those techniques did not improve MIoU(org) results and did not look
better qualitatively. We believe this is because platelet cells have complex multiscale correctly-labeled regions, and
removing small connected components can remove correct regions as well, especially if they are only partly labeled,
or are assigned multiple labels, or are covered by multiple connected components by noisy algorithmic segmentations.

In Figure 4 we experiment with various weight initialization random seeds to determine the robustness of various
models to the weight initialization scheme. In order to determine whether one architecture choice is superior to
another, the outputs of different trained networks are compared with each other. However, sources of randomness
in the training process (initialization of trainable weights from a Xavier uniform distribution, and the random
presentation order of training data elements) induce a distribution of final performance metric scores. These scores
are random variables, and a single sample per architecture may be insufficient to determine which is better. By
empirically approximating the distribution for each architecture, better inferences may be made about architecture
design choices. For this figure, multiple instances of the same architecture (26 for 2D-3D and fully-3D nets, 500 for
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the U-Net) were trained under identical conditions, varying only random number generation seeds. The resulting
distributions support the conclusions that 2D-3D networks outperform their 2D and fully-3D counterparts.
Finally, we can provide context for the MIoU(org) numbers for each network by comparing two human segmentations
of two cells similar to the test dataset. For the first cell, the two humans had a MIoU(org) of 0.54 relative to one
another. For the second cell, the MIoU(org) was 0.57. These results indicate two things: (1) The process for
human segmentation in complex biological datasets may need further improvement in order to create gold-standard
dense semantic segmentations for research use. (2) While algorithmic segmentation errors may differ from human
segmentation errors, overall quality approaches or exceeds human labelers when applied to new regions within a
volume that supplied training data, but does not yet meet human quality when generalizing to new datasets. This
suggests that further work remains to boost algorithm performance, but in the near-term algorithmic suggestions may
be productively integrated into human annotation tools to boost human productivity for semi-supervised labeling of
large datasets.

Discussion

In this work, we argued that dense semantic labeling of 3D EM images for biomedicine is an image analysis method
with revolutionary potential for systems biology. We demonstrated that while challenges exist for both human
and algorithmic labelers, automated methods are approaching the performance of trained humans, and may soon
be integrated into annotation software for enhancing the productivty of humans segmenting large datasets. We
introduced a new hybrid 2D-3D convolutional neural network architecture and demonstrated that it outperforms
baseline networks on our platelet segmentation task, and that the novel architecture features are responsible for
performance improvements. We do this by training multiple network instances per architecture and comparing the
resulting trained network performance distributions, in order to account for variation introduced by randomness in
the training procedure. By highlighting the biomedical dense semantic labeling task, building neural architectures
and ensembles to better solve this task for a challenging dataset, and suggesting a way forward for developing
better algorithms to enable this method to be useful in practice, we hope to spur the research and development of
techniques to make large-scale EM imaging more useful to systems biology as a field.
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List of figures

Figure 1. Overview of SBF-SEM imaging and dense cellular segmentation. (Top) Lateral (x-y) view of the platelet
training dataset, its ground-truth segmentation into 7 semantic classes, and a digital cell model built from the
semantic segmentation. (Bottom) 3D views of the training dataset and its ground-truth segmentation.
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Figure 2. (Top) Diagram of the 2D-3D+3x3x3 network architecture. The outputs of a 2D encoder-decoder (left
two columns) are connected to a 3D convolutional spatial pyramid (right two columns) to produce a prediction of
per-voxel probability distributions across a 3D spatial window. The first two encoder convolution blocks and the last
two decoder convolution blocks begin with a 3x3x3 convolution to add additional 3D context into the 2D initial
module. (Bottom) Illustration of initialization-dependent performance of trained segmentation networks, and
exploiting it for ensembling. In the first row, an example image of a cell and its ground-truth segmentation is
compared with the result of an ensemble of the top 4 trained 2D-3D+3x3x3 network instances, which has an
MIoU(org) of 0.45. The second row shows the segmentations from the individual instances and their MIoU(org)

scores. The ensemble shows an 8.3% improvement in MIoU(org) over the best single network alone.
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Figure 3. Visualizations of segmentations created by the best 2D and 3D ensembles. (Top) Comparison of
segmentations on 2D cross-sections of the evaluation data volume, a subvolume from the patient 1 platelet dataset.
Both 2D and 3D ensembles perform similarly on organelle segmentation, making similar mistakes in locations
where organelles not within the classification schema are encountered. The 3D ensemble is better at separating cells
in regions of near contact between neighbors. (Bottom) Comparison of 3D renderings of segmentations of the test
volume, a cell from the patient 2 platelet dataset. Testing networks on the same biological system from a different
physical sample helps gauge how robust they are to image variations due to preparation differences.
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Eval MIoU(all) Eval MIoU(org) Test MIoU(org)

Top-4 2D-3D+3x3x3 0.686 0.595 0.446
Top-5 No 3x3x3 Convs 0.690 0.601 0.419

Top-3 No Multi-Loss 0.633 0.524 0.338
Top-3 No 3D Pyramid 0.681 0.590 0.421
Top-5 Original U-Net 0.663 0.562 0.371

(a) Ensembles of Networks

2D-3D+3x3x3 (10.3M) 0.665 0.568 0.417
No 3x3x3 Convs (9.9M) 0.667 0.571 0.358
No Multi-Loss (10.3M) 0.652 0.550 0.355
No 3D Pyramid (7.9M) 0.646 0.542 0.376

(b) Single 2D-3D+3x3x3 Network and Ablations

Original U-Net (31.0M) 0.626 0.515 0.334
3D U-Net Thick (2.1M) 0.496 0.348 0.314
3D U-Net Thin (2.0M) 0.613 0.502 0.280
Deeplab + DRN (40.7M) 0.511 0.368 0.159
Deeplab + ResNet101 (59.3M) 0.501 0.361 0.174

(c) Baseline Networks

Table 1. Segmentation algorithm results summary showing mean intersection-over-union (MIoU) across all classes
(MIoU(all)) on evaluation data and MIoU across organelle classes (MIoU(org)) on evaluation and test data. The
patient 2 dataset from which the test data is taken contains only a small number of labeled cells among unlabeled
ones; we use MIoU(org) to measure test performance since restricting the MIoU stat to labeled regions invalidates
background and cell class statistics. (a) Results for the best ensemble from each architecture tested. A top-k
ensemble averages the predictions of the best k trained networks as judged by MIoU(all) on the evaluation dataset.
(b) Results for the best single network from each architecture class. Trainable parameter counts are in parentheses.
(c) Results from baseline comparison networks. Trainable parameter counts are in parentheses
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Figure 4. Normalized histograms of peak MIoU on the evaluation data volume for each of the architectures
examined in this paper. In order to determine whether one architecture choice is superior to another, the outputs of
different trained networks are compared with each other. However, sources of randomness in the training process
(initialization of trainable weights from a Xavier uniform distribution, and the random presentation order of training
data elements) induce a distribution of final performance metric scores. These scores are random variables, and a
single sample per architecture may be insufficient to determine which is better. By empirically approximating the
distribution for each architecture, better inferences may be made about architecture design choices. For this figure,
multiple instances of the same architecture (26 for 2D-3D nets, 500 for the U-Net) were trained under identical
conditions, varying only random number generation seeds. The resulting distributions support the conclusions that
2D-3D networks outperform the 2D U-Net and that multi-loss training is necessary for 2D-3D architectures.
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