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Abstract 12 

Cognition arises from the dynamic flow of neural activity through the brain. To capture these 13 

dynamics, we used mesoscale calcium imaging to record neural activity across the dorsal cortex 14 

of awake mice. We found that the large majority of variance in cortex-wide activity (~75%) could 15 

be explained by a limited set of ~14 ‘motifs’ of neural activity. Each motif captured a unique spatio-16 

temporal pattern of neural activity across the cortex. These motifs generalized across animals 17 

and were seen in multiple behavioral environments. Motif expression differed across behavioral 18 

states and specific motifs were engaged by sensory processing, suggesting the motifs reflect core 19 

cortical computations. Together, our results show that cortex-wide neural activity is highly 20 

dynamic, but that these dynamics are restricted to a low-dimensional set of motifs, potentially to 21 

allow for efficient control of behavior.  22 

Introduction  23 
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The brain is a complex, interconnected network of neurons. Neural activity flows through this 24 

network, carrying and transforming information to support behavior. Previous work has associated 25 

particular computations with specific spatio-temporal patterns of neural activity across the brain 26 

(Buschman and Miller, 2007; Stringer et al., 2019a; Hutchison et al., 2013). For example, 27 

sequential activation of primary sensory and then higher-order cortical regions underlies 28 

perceptual decision making in both mice (Guo et al., 2014) and monkeys (Romo and de Lafuente, 29 

2013; Siegel et al., 2011). Similarly, specific spatio-temporal patterns of cortical regions are 30 

engaged during goal-directed behaviors (Allen et al., 2017), motor planning (Chen et al., 2017), 31 

evidence accumulation (Pinto et al., 2019), motor learning (Makino et al., 2017), and sensory 32 

processing (Mohajerani et al., 2013). Previous work has begun to codify these dynamics, either 33 

in the synchronous activation of brain regions (Fries, 2015; Hutchison et al., 2013) or in the 34 

propagation of waves of neural activity within and across cortical regions (Muller et al., 2018; 35 

Zanos et al., 2015). Together, this work suggests cortical activity is highly dynamic, evolving over 36 

both time and space, and that these dynamics play a computational role in cognition (Buonomano 37 

and Maass, 2009; Miller and Wilson, 2008).  38 

However, despite this work, the nature of cortical dynamics is still not well understood. Previous 39 

work has been restricted to specific regions and/or specific behavioral states and so, we do not 40 

yet know how neural activity evolves across the entire cortex, whether dynamics are similar across 41 

individuals, or how dynamics relate to behavior. This is due, in part, to the difficulty of quantifying 42 

the spatio-temporal dynamics of neural activity across the brain.  43 

To address this, we used mesoscale imaging to measure neural activity across the dorsal cortical 44 

surface of the mouse brain (Silasi et al., 2016). Then, using a convolutional factorization 45 

approach, we identified dynamic ‘motifs’ of cortex-wide neural activity. Each motif captured a 46 

unique spatio-temporal pattern of neural activity as it evolved across the cortex. Importantly, 47 
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because motifs captured the dynamic flow of neural activity across regions, they explained cortex-48 

wide neural activity better than ‘functional connectivity’ network measures. 49 

Surprisingly, the motifs clustered into a limited set of ~14 different spatio-temporal ‘basis’ motifs 50 

that were consistent across all animals. The basis motifs captured the majority of the variance in 51 

neural activity in different behavioral states and in multiple sensory and social environments. 52 

Specific motifs were selectively engaged by each environment and by sensory stimuli, suggesting 53 

the motifs reflect core cortical computations, such as visual or tactile processing. Together, our 54 

results suggest cortex-wide neural activity is highly dynamic but that these dynamics are low-55 

dimensional: they are constrained to a small set of possible spatio-temporal patterns.  56 

Results 57 

Discovery of spatio-temporal motifs of cortical activity in awake, head-fixed mice 58 

We performed widefield ‘mesoscale’ calcium imaging of the dorsal cerebral cortex of awake, 59 

head-fixed mice expressing the fluorescent calcium indicator GCaMP6f in cortical pyramidal 60 

neurons (Fig. 1A; see Methods for details, Chen et al., 2013). A translucent-skull prep provided 61 

optical access to dorsal cortex, allowing us to track the dynamic evolution of neural activity across 62 

multiple brain regions, including visual, somatosensory, retrosplenial, parietal, and motor cortex 63 

(Fig. 1A, inset and Fig. 1 supplement 1, Silasi et al., 2016). We initially characterized the dynamics 64 

of ‘spontaneous’ neural activity when mice were not explicitly performing a specific behavior (Fig. 65 

1B, N=48 sessions across 9 mice, 5-6 sessions per mouse, each session lasted 12 minutes, 66 

yielding a total of 9.6 hours of imaging). These recordings revealed rich dynamics in the spatio-67 

temporal patterns of neural activity across the cortex (Supplemental Movie 1, as also seen by 68 

Cramer et al., 2019; Shimaoka et al., 2019; Murphy et al., 2016; Mohajerani et al., 2013) 69 

Our goal was to capture, quantify, and characterize the dynamic patterns of activity in an unbiased 70 

manner. To do so, we used convolutional non-negative matrix factorization (CNMF, Mackevicius 71 
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et al., 2019) to discover repeated spatio-temporal patterns in the neural activity, in an 72 

unsupervised way (Fig. 1C; see Methods and Fig. 1 supplement 2 for details, including robustness 73 

to parameters). CNMF identified ‘motifs’ of neural activity; these are dynamic patterns of neural 74 

activity that extend over space and time (Fig. 1C, bottom left, shows an example motif and the 75 

corresponding original data). Once identified, the algorithm uses these motifs to reconstruct the 76 

original dataset by temporally weighting them across the entire recording session (Fig. 1C; 77 

transients in temporal weightings indicate motif expression, see Supplemental Movie 2 for 78 

comparison of reconstruction to original data). Importantly, overlapping temporal weightings 79 

between motifs are penalized, which biases factorization towards only one motif being active at a 80 

given point in time. This allows us to capture the spatio-temporal dynamics of neural activity as a 81 

whole, rather than decomposing activity into separate spatial and temporal parts (see Methods 82 

for details).  83 

Figure 1D shows three example motifs identified by CNMF from a single 2-minute recording 84 

epoch. Many of the identified motifs show dynamic neural activity that involves the sequential 85 

activation of multiple regions of cortex (top two rows in Fig. 1D). For example, example motif 1 86 

starts in somatosensory/motor regions and, over the course of a few hundred milliseconds, 87 

propagates posteriorly before ending in the parietal and visual cortices (Fig. 1D, top row). To aid 88 

in visualizing these dynamics, the arrows overlaid on Figure 1D show the direction and magnitude 89 

of activity propagation of the top 50% most active pixels between subsequent timepoints (as in 90 

Afrashteh et al., 2017; see Methods for details). Other motifs were more spatially restricted, 91 

engaging either one (or more) brain regions simultaneously (e.g. third row in Fig. 1D). In total, we 92 

identified 2622 motifs across 144 different 2-minute epochs of imaging (3 independent epochs 93 

from each of 48, 12-minute recording sessions; Fig. 1B, light blue ‘discovery epochs’).  94 

Motifs captured the flow of activity across the brain during a brief time period (~1 second). By 95 

tiling different motifs across time, the entire 2-minute recording epoch could be reconstructed. On 96 
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average, each 2-minute recording epoch could be reconstructed by combining ~19 motifs (Fig 97 

2A. median; 95% Confidence Interval (CI): 18-20). This captured 89.05% of the total variance of 98 

neural activity on average (Fig. 2B; 89.05% median explained variance, CI: 87.78-89.68%; N=144 99 

discovery epochs; see Methods for details). To achieve this, individual motifs occurred repeatedly 100 

during a recording session. Over half of the motifs occurred at least 3 times during a 2-minute 101 

epoch, with motifs occurring 2.48 times per minute on average (Fig. 2C; CI: 2.38-2.59). The broad 102 

distribution of the frequency of motifs suggests all motifs are required to explain cortex-wide 103 

neural activity. Indeed, the cumulative percent explained variance (PEV) in neural activity 104 

captured by individual motifs shows a relatively gradual incline (Fig. 2D, see Methods for details). 105 

On average, no single motif captured more than 20% of the variance of the recording epoch, and 106 

14 motifs were needed to capture over 90% of the relative PEV. Importantly, the number of 107 

discovered motifs and their explained variance was robust to the changes in the regularization 108 

hyperparameter of the CNMF algorithm, suggesting it is a true estimate of the number of motifs 109 

needed and not a consequence of our analytical approach (Fig. 1 supplement 2, see Methods for 110 

details). 111 

Motifs capture the dynamic flow of neural activity across the cortex  112 

Next, we tested whether motifs simply reflected the co-activation of brain regions or if they 113 

captured the dynamic flow of neural activity between regions. Previous work has found neural 114 

activity can be explained by the simultaneous activation of a coherent network of brain regions 115 

(i.e. zero-lag, first-order correlations, as seen in functional connectivity analyses; Hutchison et al., 116 

2013). The CNMF approach used here is a generalization of such approaches; it can capture 117 

spatio-temporal dynamics in the motifs, but it is not required to do so if dynamics are not 118 

necessary to capture variance in neural activity. Therefore, to test whether neural activity is 119 

dynamic, we tested whether dynamics were a necessary component of the motifs. 120 
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First, we determined whether motifs simply reflected the static engagement of a network of 121 

regions. To this end, we measured the autocorrelation of neural activity during the timecourse of 122 

each motif. Consistent with dynamic motifs, the correlation of activity patterns within a motif 123 

quickly decayed with time (Fig. 3A; mean half-life τ across all motifs was 113ms +/- 2ms, 124 

bootstrap; when fit to individual motifs, 25%-50%-75% of τ was 66ms - 117ms - 210ms; see 125 

Methods for details). While activity patterns at adjacent motif timepoints (75ms apart) were 126 

spatially correlated (Pearson’s r=0.39 CI: 0.38-0.40, p<10-16, Wilcoxon Signed-Rank Test versus 127 

r=0, right-tailed; N=2622 Motifs), this similarity quickly declined when time points were farther 128 

apart (Pearson’s r=0.098 CI: 0.095-0.10 at 375ms and r=0.043, CI: 0.039-0.047 at 600ms; a 129 

decrease of 0.29 and 0.35, both p<10-16, Wilcoxon Signed-Rank Test). Similarly, the mean spatial 130 

pattern of activity of a given motif, averaged across the timecourse of the motif, was dissimilar 131 

from individual timepoints within the motif (Fig. 3B; median dissimilarity 0.58, CI: 0.57-0.58 across 132 

motifs). 133 

Second, we tested whether dynamics were necessary to fit neural data. To do this, we compared 134 

the fit of CNMF-derived motifs to alternative decomposition approaches that do not consider 135 

temporal dynamics. We used two ‘static’ decomposition techniques that are standards in the field: 136 

spatial Principal Components Analysis (sPCA) and spatial Non-Negative Matrix Factorization 137 

(sNMF; see Methods for details). Both approaches required >3 times more dimensions to capture 138 

the same amount of variance as the motifs (Fig. 3E; on average, 64.5 and 93 dimensions for 139 

sPCA and sNMF, respectively). If restricted to 19 dimensions, sPCA and sNMF explained 140 

significantly less variance in neural activity than motifs (Fig. 3E; sPCA: 79.87% CI: 78.72-81.46% 141 

a difference of 9.18%, p<10-16; sNMF 77.95% CI: 76.63-79.42% a difference of 11.10%, p<10-16, 142 

Wilcoxon Signed-Rank Test). Although there are differences in the number of terms in each 143 

dimension, the fact that dynamic motifs can capture significantly more variance than temporally 144 
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constrained approaches suggests brain activity has complex spatial-temporal dynamics that are 145 

not captured by traditional decomposition methods but can be captured by our motifs. 146 

Motifs generalize to withheld data and across animals  147 

If the neural dynamics captured by CNMF reflect true, repeated, motifs of neural activity, then the 148 

motifs identified in one recording session should generalize to other recording sessions. To test 149 

if motifs generalized, we refit the motifs identified during a recording ‘discovery’ epoch to withheld 150 

data (Fig. 1B, purple, N=144 ‘withheld epochs’). Motifs were fit to new epochs by only optimizing 151 

the motif weightings over time (i.e. not changing the motifs themselves, see Methods for details).  152 

Indeed, the motifs generalized; the same motifs could explain 74.82% of the variance in neural 153 

activity in withheld data from the same recording session (Fig. 3D, purple, CI: 73.92-76.05%; see 154 

Fig. 3 supplement 1A for robustness to sparsity parameter; see Methods for details). This was 155 

not just due to fitting activity on average: motifs captured neural activity at each timepoint during 156 

a recording epoch, explaining the majority of the variance in the spatial distribution of neural 157 

activity in any given frame (60-80%, Fig. 3 supplement 1B).  158 

Dynamics were important for the ability to generalize. To show this, we created ‘static networks’ 159 

by averaging neural activity across the timecourse of each motif. This maintained the overall 160 

spatial pattern of activity, ensuring the same network of brain regions was activated, but removed 161 

any temporal dynamics within a motif (Fig. 3E; see Methods for details). When the static networks 162 

were fit to withheld data, they captured significantly less variance in neural activity compared to 163 

the dynamic motifs (Fig. 3D, gray; static networks captured 55.50%, CI: 53.74-57.09%; a 19.32% 164 

reduction, p<10-16, Wilcoxon Signed-Rank Test).  165 

Similarly, motifs generalized across animals: motifs identified in one animal cross-generalized to 166 

capture 68.19% of the variance in neural activity in other animals (Fig; 4A, green; CI: 66.74-167 

69.35%, a decrease of 6.63% compared to generalizing within animals, purple, p<10-16, Wilcoxon 168 
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Signed-Rank Test; N=144 withheld epochs; see Methods for details). Together, our results show 169 

motifs can generalize across recording session and across animals, suggesting they reflect 170 

repeated spatio-temporal dynamics in neural activity. 171 

Motifs cluster into a low-dimensional set of basis motifs 172 

The ability of motifs to generalize across time and animals suggests there may be a set of ‘basis 173 

motifs’ that capture canonical patterns of spatio-temporal dynamics. To identify these basis motifs, 174 

we used an unsupervised clustering algorithm to cluster all 2622 motifs that were identified across 175 

all discovery epochs (clustering done with the Phenograph algorithm using peak of cross-176 

correlation as the distance metric between motifs, Nicosia et al., 2009; Levine et al., 2015, see 177 

Methods for details). Motifs clustered into a set of 14 unique groups (Fig. 4B). For each cluster, 178 

we defined the basis motif as the mean of the motifs within the ‘core-community’ of each cluster 179 

(taken as those motifs with the top 10% most within-cluster nearest neighbors, see Methods for 180 

details).  181 

Similar to the motifs discovered within a single session, the basis motifs captured the dynamic 182 

engagement of one or more brain regions (Fig. 4C; all basis motifs shown in Supplemental Movie 183 

3). While some basis motifs engaged a single brain region (e.g. motif 3, Fig. 4C), most of the 184 

basis motifs captured the propagation of activity across cortex. For example, motif 4 captures the 185 

posterior-lateral flow of activity from retrosplenial to visual cortex. Similarly, motif 11 captures a 186 

cortex-wide anterior-to-posterior wave of activity that has been previously studied (Greenberg et 187 

al., 2018; Matsui et al., 2016; Mitra et al., 2018). As expected, these dynamics were similar to 188 

those found in individual recording sessions (e.g. basis motif 9 matches example motif 2 in Fig. 189 

1D).  190 

At the same time, the same brain region, or network of regions, can be engaged in multiple basis 191 

motifs. For instance, parietal cortex is engaged in motifs 3, 5 and 8 (Fig. 4C). In motif 3, neural 192 
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activity remains local to parietal cortex for the duration of the motif. However, in motif 5 parietal 193 

activity is prefaced by a burst of activity in rostrolateral cortex. In motif 8, activity starts in parietal 194 

areas before spreading across the entire dorsal cortex. Similarly, several motifs (6, 8, 11, and 14) 195 

involve coactivation of a network of anterolateral somatosensory and primary motor cortices; a 196 

coupling observed in previous mesoscale imaging studies (Musall et al., 2019; Silasi et al., 2016; 197 

Vanni et al., 2017). Thus, basis motifs reflect the ordered engagement of multiple brain regions, 198 

likely reflecting a specific flow of information through the brain. 199 

Basis motifs explained the large majority of the variance in neural activity across animals (73.91% 200 

CI: 73.14-75.19%, Fig. 4A, orange; N=144 withheld epochs). This is about the same amount of 201 

variance explained by motifs defined within the same animal (Fig. 4A, purple vs. orange; a 0.91% 202 

reduction, p=0.074; Wilcoxon Signed-Rank Test, N=144 withheld epochs). It is significantly more 203 

variance explained than when using motifs defined in another animal (Fig. 4A, orange vs. green 204 

plots; a 5.72% increase in explained variance; p<10-16, Wilcoxon Signed-Rank Test). This 205 

improvement is likely because basis motifs are averaged across many instances, removing the 206 

spurious noise that exists in individual motifs and resulting in a better estimate of the underlying 207 

‘true’ motif that exist across animals.  208 

As before, dynamics were important for basis motifs; when spatial-temporal dynamics were 209 

removed, the variance explained dropped significantly (Fig. 4A, gray vs orange plots; static 210 

networks captured 48.99% CI: 47.15-51.30% of variance, 24.92% less than dynamic motifs, p<10-211 

16, N=144 withheld epochs, Wilcoxon Signed-Rank Test). Furthermore, all basis motifs were 212 

necessary to explain neural activity; the cumulative PEV of motifs followed a gradual rise and no 213 

basis motif contributed less than 2% of relative PEV on average (Fig. 4 supplement 1A).  214 

The high explanatory power of the 14 basis motifs suggests they provide a low-dimensional basis 215 

for capturing the dynamics of neural activity in the cortex. This is consistent with the number of 216 

motifs (~19) identified in each recording session (the slightly lower number of basis motifs could 217 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.895177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.895177
http://creativecommons.org/licenses/by/4.0/


10 
 

reflect spurious noise in individual sessions). Importantly, the number of discovered basis motifs 218 

was robust to CNMF parameters (Fig. 4 supplement 1B) and potential hemodynamic contributions 219 

to basis motifs were minimal (Fig. 4 supplement 2, see Methods for details). In addition, the low 220 

number of basis motifs was not due to the resolution of our approach. We estimated the functional 221 

resolution of our imaging approach by correlating pixels across time (Fig. 4 supplement 3). This 222 

revealed ~18 separate functional regions in dorsal cortex (Fig. 4 supplement 3). Individual motifs 223 

engaged multiple of these regions over time (Fig. 4C and supplement 3), consistent with the idea 224 

that motifs were not constrained by our imaging approach. Indeed, the number of motifs observed 225 

was substantially less than the possible number of motifs; even if motifs engaged only 1-2 of these 226 

regions, there are still 182=324 different potential motifs, much higher than the 14 we observed. 227 

Finally, low dimensionality of basis motifs was not due to compositionality of motifs across time, 228 

as this was penalized in the discovery algorithm and the temporal dependency between motifs 229 

was weak (Fig. 4 supplement 4; see Methods for details).  230 

Basis motifs generalize across behaviors 231 

So far, we have only described the motifs of neural activity in animals ‘at rest’. To test whether 232 

these same motifs can explain neural activity in multiple behavioral states, we imaged dorsal 233 

cortex while animals were engaged in a variety of behaviors. 234 

To begin, we measured the expression of basis motifs in different spontaneous behavioral states. 235 

Two mice, which were not used to define the original basis motifs, were imaged for 1 hour while 236 

head-fixed on a transparent treadmill (Fig. 5A). As with the original mice, basis motifs captured 237 

the majority of variance in neural activity in both animals (Mouse 1: 64.42%, Mouse 2: 66.66%). 238 

The ability of basis motifs to generalize outside the set of animals in which they were discovered 239 

provides further support for the idea that basis motifs capture core, repeated, spatio-temporal 240 

dynamics in neural activity. 241 
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Next, we were interested in whether basis motifs were specific to different behavioral states in the 242 

freely behaving mice. Building from recent work, we used infrared cameras to track three different 243 

behavior measures: limb speed, whisker pad motion energy, and nose motion energy (Mathis et 244 

al., 2018; Musall et al., 2019). To classify behavioral state at each point in time, we fit a gaussian 245 

mixed model to the distribution of these three measures (Fig. 5B; see Methods for details). 246 

Behavior fell into two broad categories: an ‘active’ state (high whisker pad energy, low nose 247 

motion energy, high limb speed) and an ‘inactive’ state (low whisker pad energy, high nose motion 248 

energy, low limb speed; Fig 5A). Behavioral states typically lasted for several seconds (median 249 

duration for active states: 2.65s and 2.46s; inactive states: 7.88s and 11.54s in mouse 1 and 2 250 

respectively), a longer timescale than the motifs (which are all less than 1 second). 251 

All motifs occurred in both behavioral states (Fig. 5B-C). Follow-up, detailed analyses did not find 252 

specific motifs were associated with any specific behaviors, at least as captured by our three 253 

tracked measures of behavior (i.e. no motif was associated with grooming, onset of walking, 254 

stopping walking, paw repositioning, sniffing, whisking, etc.; data not shown). However, the 255 

activity of motifs did vary across the two broad behavioral states (Fig. 5B-C; the activity of 9/14 256 

and 10/14 motifs were different across behavioral states at p<0.05 in Mouse 1 and 2, respectively, 257 

Mann-Whitney U-test; this is significantly more than chance, p=10-11 and p=10-12, binomial test). 258 

Similarly, the distribution of motif responses could be used to classify which behavioral state the 259 

animal was in (mean classification AUC was 63.42% and 66.51% on withheld data, 99/100 cross-260 

validations were above chance for both animals, 50%; see Methods for details). Therefore, while 261 

motifs were not specific to an individual behavioral state, how often a motif was expressed differed 262 

across states.  263 

Similar results were seen when animals were engaged in social behaviors. Using a novel paired-264 

imaging paradigm, two mice were simultaneously imaged under the same widefield macroscope 265 

(Fig. 5D; see Methods for details). Mice were head-fixed near one another (~5mm snout-to-snout), 266 
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enabling sharing of social cues (e.g. whisking, sight, vocalizations, olfaction). To add richness to 267 

the sensory environment, mice were intermittently exposed to ‘auditory movies’ that consisted of 268 

male mouse vocalizations and synthetic tones (see Methods for details). In this way, the social 269 

environment provided a rich, unstructured sensory environment that is fundamentally different 270 

from the solo, low-sensory environment used to define the basis motifs. Even in this vastly 271 

different environment, basis motifs defined in the original environment captured 73.41% (CI: 272 

71.85-75.23%) of the variance in neural activity (Fig. 5E, right orange plot). This was similar to 273 

the variance explained in the solo environment (Fig. 5E, left orange plot; 73.91% CI: 73.14-274 

75.19%; difference between the solo and social environments=0.50%, p=0.49, N=144 solo 275 

epochs, N=123 social epochs; Mann-Whitney U-test). Similarly, the opposite was generally true: 276 

11 basis motifs were identified in the social recordings, which captured slightly less of the neural 277 

activity in the solo environment (Fig. 5E blue plots; solo=70.83% CI: 69.77-72.09%, 278 

social=73.72% CI: 71.54-75.05%; difference=2.89%, p=0.0047, Mann-Whitney U-test). 279 

As before, many basis motifs changed their expression when the behavioral state of the animal 280 

changed. Half of the basis motifs had a significant change in their relative explained variance in 281 

the social environment compared to baseline (Fig. 5F; 7/14 were different at pBonferroni<0.05, Mann-282 

Whitney U-test; significantly more than chance, p=10-16, binomial test). Given the nature of social 283 

interactions in mice, one would expect tactile- and visual-associated motifs to be increased. 284 

Consistent with this prediction, the motifs elevated in the social environment (motifs 1, 9, and 10) 285 

involved somatosensory and/or visual regions (Fig. 5G and 4C).  286 

Specific motifs capture visual and tactile sensory processing  287 

To begin to understand the computational role of specific motifs, we measured the response of 288 

the motifs to tactile and visual stimuli (Fig. 6A, see Methods for details). Solo, awake mice (N=9) 289 

were imaged while presented with either moving gratings on a screen or airpuffs to their whiskers 290 

(see Methods for details). As before, the distribution of motifs differed between both sensory 291 
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environments and the original, resting environment; a large proportion of motifs showed a 292 

significant change in their relative PEV (Fig. 6B-C: visual: 9/14, tactile: 11/14, significantly different 293 

at pBonferroni<0.05, Mann-Whitney U-test; N=1109 visual and N=1110 tactile presentations, N=144 294 

original epochs). Most of these changes were reductions in explained variance, with only a few 295 

motifs increasing their expression to the stimuli (Fig. 6B-C). 296 

Specific motifs were evoked in response to visual or tactile stimulation. Motif 10 was selectively 297 

induced by visual stimulation (Fig. 6D), while motif 1 was selectively induced by tactile stimulation 298 

(Fig. 6E). Consistent with a role in sensory processing, both motifs had increased expression in 299 

their respective environments (Fig. 6B-C). Furthermore, the spatio-temporal pattern of activity in 300 

each motif matched the trial-averaged response to the associated stimulus; motif 10 captured 301 

activity in visual cortex, while motif 1 captured activity in motor, somatosensory and parietal 302 

cortices (Fig. 6F). Reflecting their overlap, both motifs were significantly correlated with the trial-303 

averaged response (Fig. 6F, and Pearson’s R=0.81, p<10-16, for correlation between the average 304 

visual response and motif 10, and R=0.90, p<10-16, for correlation between the average tactile 305 

response and motif 1, all taken during the 13 timepoints post stimulation onset).  306 

While certain basis motifs captured the sensory-evoked neural activity, other motifs were able to 307 

capture trial-by-trial ‘noise’ in neural activity. For both stimuli, basis motifs, identified at rest, 308 

captured the majority of the variance in neural activity (Fig. 6G; visual: 58.13% CI: 57.11-59.18%; 309 

tactile: 62.37% CI: 61.42-63.62%, N=1110 tactile and 1109 visual stimulus presentations; see 310 

Methods for details). This was significantly more variance than could be explained by the mean 311 

response to each sensory stimulus alone (Fig. 6G; Mean response fits: visual: 17.25% CI: 16.61-312 

17.72%; tactile: 34.42% CI: 33.34-35.40%; difference between motif and mean fits: visual: 313 

40.88%, p<10-16; tactile: 27.95%, p<10-16; Wilcoxon Signed-Rank Test). This highlights the high 314 

variability in responses to a sensory stimulus across trials. Typically, such variability would be 315 

discarded as ‘noise’ unrelated to sensory processing. Instead, our results suggest this variability 316 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.895177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.895177
http://creativecommons.org/licenses/by/4.0/


14 
 

has structure: it is due to the engagement of other motifs that are, presumably, related to other, 317 

ongoing, computations.  318 

Finally, we sought to determine whether motifs reflect general stimulus processing or specific 319 

stimulus features. To this end, we compared motif expression in response to two visual stimuli 320 

(Fig. 7; gratings moving medial to lateral or lateral to medial; see Methods for details and Fig. 7 321 

supplement 1 for similar analysis of tactile stimuli). Unlike comparisons across sensory modalities, 322 

the relative percent explained variance in neural activity captured by each basis motif was the 323 

same for both visual stimuli (p>0.24 for all 14 motifs; Mann-Whitney U-Test; N=554 and 555 324 

stimulus presentations for medial to lateral and lateral to medial grating respectively). For 325 

example, the visually responsive motif 10 responded equally to both stimuli (Fig. 7A). This was 326 

not due to limits in spatial resolution of our imaging approach or analytical smoothing. Figure 7B 327 

shows pixel-wise classification of the same data can decode stimulus identify (p=0.022, N=9 328 

animals, one-sample t-test; see Methods for details). However, the same classification analysis 329 

on data reconstructed from motif activity failed to distinguish between stimuli (p=0.87, N=9 330 

animals, one-sample t-test; difference between classification on original and reconstructed data 331 

was significant, p=0.016, paired sample t-test). Thus, the specifics of visual stimuli were encoded 332 

in the residuals after fitting the motifs. However, these details contributed minimally to the overall 333 

neural activity during the stimulus. The stimulus-specific residuals captured only 3.85% +/- 0.70% 334 

SEM of the explainable variance (Fig. 7C). In contrast, motifs captured the vast majority of 335 

explainable variance (19.23% +/- 3.23% SEM for stimulus-specific motif 10; 76.92% +/- 3.86% 336 

SEM, for remaining motifs; Fig. 7C). Taken together, our results show that motifs capture large-337 

scale patterns of neural activity but are generally agnostic to the finer-grain local activity that 338 

captured specifics of stimuli. This is consistent with the idea that motifs capture the broader flow 339 

of information across cortical regions.  340 

Discussion 341 
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Spatio-temporal dynamics of cortex-wide activity 342 

Our results show that neural activity is highly dynamic, evolving in both time and space. 343 

Leveraging mesoscale calcium imaging in mice, we tracked the spatio-temporal dynamics of 344 

neural activity across the dorsal surface of the cortex. Using a convolutional factoring analysis, 345 

we identified ‘motifs’ in neural activity. Each motif reflected a different spatio-temporal pattern of 346 

activity, with many motifs capturing the sequential activation of multiple, functionally diverse, 347 

cortical regions (Figs. 1-3). Together, these motifs explained the large majority of variance in 348 

neural activity across different animals (Fig. 4) and in novel behavioral situations (Fig. 5-6). 349 

A couple of the motifs captured patterns of activity observed in previous work, supporting the 350 

validity of the CNMF approach. For example, previous work has studied spatio-temporal waves 351 

of activity that propagate anterior-to-posteriorly across the cortex at different temporal scales 352 

(Greenberg et al., 2018; Matsui et al., 2016; Mitra et al., 2018). Our motifs (1 and 11) recapitulate 353 

these waves, along with their temporal diversity (motif 1 = fast, motif 11 = slow). In addition to 354 

these motifs, we also discovered several additional, spatio-temporally distinct, anterior-to-355 

posterior propagating waves (motifs 2, 4, and 9).  356 

Similarly, brain regions that were often co-activated in motifs were aligned with previously 357 

reported spatial patterns of co-activation in the mouse cortex (Musall et al., 2019; Silasi et al., 358 

2016; Vanni et al., 2017). For example, motifs 6, 8, 11, and 14 include coactivation of anterolateral 359 

somatosensory and motor regions. This pattern is observed often and reflects the close functional 360 

relationship between motor activity and somatosensory processing. Here, we extend this work by 361 

showing neural activity can flow within and between these networks in different ways. 362 

Relatedly, previous work using mesoscale imaging demonstrated that the mouse cortex exhibits 363 

repeating patterns of activity (Mohajerani et al., 2013). However, this work relied on identifying 364 

average patterns evoked by sensory stimuli (visual, tactile, auditory) and correlating the spatially 365 
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and temporally static templates of those patterns to activity in resting animals. As we demonstrate, 366 

stimulus-evoked patterns capture considerably less variance in neural activity than our approach, 367 

even in response to sensory stimuli themselves (average stimuli responses: ~15-35% of activity 368 

versus motifs: ~60%). In addition, previous work has used zero-lag correlations to show the brain 369 

transitions through different functional network states over time (Ashourvan et al., 2017; 370 

Hutchison et al., 2013; Preti et al., 2017; Vidaurre et al., 2017). Here, we show that these 371 

functional network states themselves have rich dynamics, reflecting specific sequential patterns 372 

of activity across the network. By encapsulating these dynamics, motifs are able to capture 373 

significantly more of the variance in neural activity compared to static networks.  374 

Motifs of neural activity may reflect cognitive computations 375 

Each motif captured a different spatio-temporal pattern of neural activity. As neural activity passes 376 

through the neural network of a brain region, it is thought to be functionally transformed in a 377 

behaviorally-relevant manner (e.g. visual processing in visual cortex or decision-making in parietal 378 

cortex). Therefore, the dynamic activation of multiple regions in a motif, could reflect a specific, 379 

multi-step, ordered transformation of information. In this way, the basis motifs would reflect a set 380 

of ‘core computations’ carried out by the brain.  381 

Consistent with this hypothesis, the distribution of motifs differed across behavioral states (Fig. 5) 382 

and in response to social and sensory stimuli (Figs. 6-7). Specific motifs were also associated 383 

with specific cognitive processes, such as tactile and visual processing (Fig. 7). This follows 384 

previous work showing the engagement of brain networks is specific to the current behavior 385 

(Mattar et al., 2015; Telesford et al., 2016) and that disrupting these networks underlies numerous 386 

pathologies (Badhwar et al., 2017; Braun et al., 2016; Harlalka et al., 2019).  387 

In this way, our results are consistent with a hierarchical relationship between behavior and 388 

cortical dynamics. Behavior engages a set of core cognitive computations, reflected in the 389 
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activation of multiple motifs in each behavioral state (Fig. 5). Multiple behavioral states engage 390 

the same motifs, but they engage them to a different extent. This suggests different behavioral 391 

states do not require independent patterns of neural activities, but rather reflect a re-weighting of 392 

the expression of core computations. 393 

Low dimensional structure of cortex-wide dynamics may facilitate cognitive control of neural 394 

activity 395 

Our results show that the dynamics of the cortex are low dimensional. Motifs identified in different 396 

animals and recording sessions clustered into a limited set of 14 unique ‘basis’ motifs. This limited 397 

number of basis motifs captured the large majority of variance in neural activity (~75%) across 398 

animals, across behavioral states, and in different behavioral environments. Such a low-399 

dimensional repertoire of cortical activity is consistent with previous work using zero-lag 400 

correlations of neural activity to measure functional connectivity between brain regions (e.g. 17 401 

functional networks in the human cortex using fMRI, Yeo et al., 2011).  402 

Why might cortex-wide neural activity be low dimensional? Given the multitude of sensory inputs, 403 

internal states, and motor actions, one might expect neural activity to be extremely high 404 

dimensional. Indeed, recent large-scale electrophysiology and imaging studies have found high 405 

dimensional (>100) representations within a brain region, with neural activity often representing 406 

small aspects of behavior (e.g. facial twitches, limb position, etc; Stringer et al., 2019a, 2019b; 407 

Lieber and Bensmaia, 2019). However, while this high dimensionality of neural representations is 408 

great for capturing the fullness of an experience, its complexity presents a problem for cognitive 409 

control.  410 

In most situations, we do not a priori know the exact set of computations to engage. Instead, we 411 

must learn which computations are optimal for the current situation. One way to do this is to 412 

search through the space of possible computations until the ‘best’ computation is found. This 413 
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could explain the diversity of motifs observed in our animals at rest; the expression of different 414 

motifs reflects the ‘sampling’ of different computations as the animals search for the one that fits 415 

their current, novel, situation. Similarly, the greater consistency in the motifs expressed during 416 

social or sensory environments may reflect a reduction in the uncertainty about what 417 

computations to engage in. 418 

However, in this framework, a high dimensionality is costly. As the number of possible 419 

computations (and their neural representations) increases, it becomes harder to find the optimum 420 

(the classic ‘curse of dimensionality’ problem; Bellman, 2003). Therefore, limiting the number of 421 

motifs may make it easier to find a contextually appropriate computation. The caveat to a low 422 

dimensional repertoire of motifs is that it necessitates a coarser sampling of computational space, 423 

which may limit how well the best computation approximates the true optimal computation. In this 424 

way, the dimensionality of dynamics may reflect a trade-off between the time it takes to identify 425 

an appropriate computation and the optimality of that computation. 426 

More broadly, our results are consistent with a hierarchical control of information processing in 427 

the brain (Mearns et al., 2019; Deco and Kringelbach, 2017; Ashourvan et al., 2019; Park and 428 

Friston, 2013; Botvinick, 2008). Behavioral state changes slowly and reflects the animal’s broad 429 

behavioral goal (Wiltschko et al., 2015). On a shorter timescale, control mechanisms coordinate 430 

broad dynamics across cortical regions (motifs). This allows the animal to engage in a 431 

behaviorally relevant category of computations (e.g. tactile versus visual processing). High 432 

dimensional representations in local circuits then produce more nuanced processing (e.g. the 433 

specific identity of a visual stimulus). In this way, by activating specific motifs, control processes 434 

could direct the broader flow of information across brain regions (a low-dimensional problem) 435 

while avoiding the difficulty of directing detailed single-neuron processing (a high-dimensional 436 

problem). 437 

Future Directions 438 
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Our approach has several limitations that motivate future research. First, although we are able to 439 

capture a large fraction of the cortex, we are limited to the dorsal cortex and so miss out on lateral 440 

auditory cortex, cortical regions deep along the midline, and all sub-cortical regions. Second, while 441 

we probed activity in several different environments, imaging was always restricted to head-fixed 442 

animals. Third, the number and identity of motifs, as well as the relative contributions of spatial 443 

and temporal dynamics to variance in neural activity, is likely influenced by the nature of our 444 

approach. The relatively slow timecourse of GCaMP6f (Chen et al., 2013), and biases in the 445 

neural activity underlying the calcium signal (Allen et al., 2017; Makino et al., 2017) may have 446 

decreased the spatial resolution and slowed the temporal dynamics. However, it is important to 447 

note that the spatial resolution used in our imaging approach (~136 µm2/pixel) is higher than the 448 

broad activation of brain regions observed in the motifs and was high enough to capture pixel-449 

specific information about stimuli beyond the motifs. Furthermore, our functional resolution was 450 

able to distinguish 18 distinct regions. Motifs engaged multiple regions, suggesting motifs were 451 

broader than the functional resolution (and therefore not limited by our approach). Finally, even 452 

given these constraints, the number of potential spatio-temporal patterns is far higher than the 14 453 

basis motifs found.  454 

In addition to addressing these limitations, future work is needed to understand the computations 455 

associated with each motif. Here we’ve used simple behavioral paradigms to associate a few 456 

motifs with sensory processing. However, the computation underlying many of the motifs remains 457 

unknown – by cataloging motif expression across experiments and behaviors, we can begin to 458 

understand the function of each motif and gain a more holistic understanding of how and why 459 

neural activity evolves across the brain in support of behavior.  460 
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Figure 1. Discovery of spatio-temporal patterns in cortical activity of awake, head-fixed 626 

mice.  627 

(A) Schematic of imaging paradigm. Mice expressing GCaMP6f in cortical pyramidal neurons 628 

underwent a translucent skull prep to allow mesoscale imaging of neural activity across the 629 

majority of dorsal cortex. Red dot denotes bregma. Cortical parcellation follows Allen Brain Atlas. 630 

General anatomical parcels are labeled. Motor, motor cortex; SS, somatosensory cortex; Parietal, 631 

parietal cortex; RSP, retrosplenial cortex; Visual: visual cortex (See Fig. 1 supplement 1 for 632 

complete parcellation of 24 regions; 12 per hemisphere).  633 

(B) Schematic of data partitioning. 9 mice were imaged for 12 minutes a day for 5-6 consecutive 634 

days. Recording sessions (N=48) were divided into 2-minute epochs (N=144). Alternating epochs 635 

were used for discovering spatio-temporal motifs in neural activity or were withheld for testing 636 

generalization of motifs. 637 

(C) Schematic of unsupervised discovery of spatio-temporal motifs from a single epoch. 638 

Mesoscale calcium imaging captured patterns of neural activity, measured by change in 639 

fluorescence (ΔF/F), across the dorsal cortex (top-left). Movies were vectorized (top-middle, 640 

black=activity) and then decomposed into dynamic, spatio-temporal motifs (bottom-right; 3 641 

example motifs shown along left, temporal weightings along top). Convolving motifs with temporal 642 

weightings reconstructed the original movie (bottom-left; snapshot of data is highlighted in green 643 

throughout, corresponding to activity in motif 3, which is shown in image format in bottom row of 644 

D). Note: only 3 out of 16 example motifs and their corresponding temporal weightings are shown; 645 

data reconstruction in bottom right used all 16 motifs.  646 

(D) Timecourses of the 3 example motifs in panel C showing spatio-temporal patterns of neural 647 

activity across dorsal cortex. Arrows indicate direction of flow of activity across subsequent 648 

timepoints (see Methods for details). Blue dot denotes center of mass of the most active pixels in 649 
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each hemisphere (>=95% intensity). Red dot denotes bregma. Dotted white lines outline 650 

anatomical parcels as in A. Only every other timepoint is shown. For visualization, motifs were 651 

filtered with 3D gaussian (across space and time), and intensity scale is normalized for each motif. 652 

Intensity value is arbitrary as responses are convolved with independently scaled temporal 653 

weightings to reconstruct the normalized ΔF/F fluorescence trace (see Methods for details).  654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 
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 665 
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 667 

Figure 2. Motifs capture majority of variance in neural activity  668 

(A) Distribution of number of discovered motifs per discovery epoch (N=144). Dotted line indicates 669 

median. 2622 motifs were discovered in total.  670 

(B) Distribution of the total percent of variance in neural activity explained by motifs per discovery 671 

epoch. Dotted line indicates median.  672 

(C) Distribution of how often motifs occurred during discovery epochs. A motif was considered 673 

active when its temporal weighting was 1 standard deviation above its mean (e.g. transients in 674 

Fig. 1C in occurrences per minute; see Methods for details). Dotted line indicates mean. 675 

(D) Cumulative sum of relative percent explained variance (PEV) of each motif in withheld epochs. 676 

Relative PEV was calculated as the PEV of each motif divided by the sum of all motif PEVs in an 677 

epoch. For each epoch, motifs are ordered by their relative PEV (i.e. the first motif is the most 678 

common motif, which is not necessarily the same motif for all epochs). Line and error bars indicate 679 

mean and 95% CI, respectively.  680 

All p-values estimated with Wilcoxon Signed-Rank tests.  681 
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  682 

Figure 3. Motifs capture the flow of neural activity across the cortex  683 

(A) Cross-temporal autocorrelation of motifs (N=2622). Average spatial correlation of activity (y-684 

axis) was calculated for different temporal offsets (x-axis) within a motif. For example, an offset 685 

of 75ms indicates the correlation between timepoint N and timepoints N-1 and N+1 (given 686 
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sampling frequency of 13.33 Hz). Black line and gray shading denote mean and standard 687 

deviation, respectively, across all motifs. Red line shows exponential fit to autocorrelation decay. 688 

Mean half-life of autocorrelation decay (𝜏𝜏) across all motifs was 113ms +/- 2ms SEM.  689 

(B) Average dissimilarity between each timepoint of a dynamic motif and the mean spatial activity 690 

of that motif; averaged across frames of the motifs. Full distribution shown, depicts average 691 

dissimilarity per motif (N=2622 motifs). Dark line indicates median. 692 

(C) Comparison of reconstruction of neural data by CNMF motifs (blue), spatial principal 693 

components analysis (sPCA, green) and spatial non-negative matrix factorization (sNMF, 694 

orange). Central plot shows percent of variance in neural activity explained (y-axis) as a function 695 

of number of dimensions included (x-axis). Lines show median variance explained, shaded 696 

regions show 95% confidence interval. Dashed light blue lines show median number of motifs 697 

discovered (vertical) and the median percent explained variance (horizontal) captured by CNMF 698 

motifs across discovery epochs (N=144). (top) Plot shows the probability density function (PDF) 699 

of number of motifs discovered per discovery epoch (blue), as well as the PDF of the minimum 700 

number of dimensions needed to capture the same amount of variance using sPCA (orange) 701 

and sNMF (green). (right) PDF of percent explained variance by motif reconstructions (blue) 702 

across epochs, as well as the PDF of percent of variance explained by sPCA (orange) and 703 

sNMF (green) when the number of dimensions is restricted to match the number of discovered 704 

motifs in each epoch. For visualization, x-axis is cropped to 125 dimensions.  705 

(D) Percent of variance in neural activity explained by dynamic motifs (blue) and static networks 706 

(grey), defined as the average activity across the motif. Both static networks and motifs are fit to 707 

the data in the same manner (see Methods for details). Full distribution shown; dark lines indicate 708 

median. Analyses performed on withheld epochs (N=144). 709 
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(E) An example motif (top row; example motif 2 from Fig. 1D) and its corresponding static 710 

network (middle row). Bottom row shows normalized residuals between dynamic motif and static 711 

network. For calculation of residuals, motif and networks were scaled to the same mean pixel 712 

value per timepoint. Display follows Figure 1D.  713 

All p-values estimated with Wilcoxon Signed-Rank tests.  714 

 715 
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 716 

Figure 4. Motifs cluster into a low-dimensional set of basis motifs.  717 
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(A) Comparison of the percent of variance in neural activity explained by motifs from the same 718 

mouse (within; purple), by motifs from other mice (between; green), by basis motifs (orange), and 719 

by static network versions of basis motifs (gray). Static networks for each basis motifs were 720 

derived as in Figure 3 (see Methods for details). All show fit to withheld data (N=144). Full 721 

distribution shown; dark lines indicate median. Horizontal lines indicate pairwise comparisons. All 722 

p-values estimated with Mann-Whitney U-test. 723 

(B) Pairwise peak cross-correlation between all 2622 discovered motifs. Motifs are grouped by 724 

their membership in basis motif clusters. Basis motif identity is indicated with color code along 725 

axes. Group numbering (and thus the sorting of the correlation matrix) is determined by relative 726 

variance explained by each basis motif (see Fig. 4 supplement 1A). 727 

(C) Representative timepoints from example basis motifs. Display follows Fig. 1D, except without 728 

direction of flow arrows.  729 
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 730 

Figure 5. Basis motifs generalize to new animals, across behavioral states, and to social 731 

environments.  732 
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(A) Schematic of simultaneous mesoscale imaging and video capture of spontaneous behavior 733 

of head-fixed mice on a transparent treadmill. Two new mice, not from the original cohort were 734 

used. Blue and red squares indicate area used to measure whisker pad motion energy (WME) 735 

and nose motion energy (NME), respectively. Colored dots indicate tracked position of the 736 

forelimbs, nose, and tail. These were used to estimate limb speed (LS). Distribution of behavioral 737 

variables are shown in three histograms along bottom. Gaussian mixture models fit to the 738 

distributions of LS, WME, and NME simultaneously. Two states were discovered: an “active” and 739 

“inactive” state (inset; purple and green respectively, see Methods for details).  740 

(B-C) Motif activity evaluated across different behavioral states in mouse 1 (B) and mouse 2 (C). 741 

Heatmaps show the mean activity of each motif (x-axis) during a behavioral state (y-axis) 742 

normalized to the mean activity for that motif across all states. Motif activity was estimated as the 743 

mean pixel value of a motif reconstruction over time (see Methods for details). P-values compare 744 

motif activity across the two behavioral states. Note: behavioral states across mice are not directly 745 

comparable since “active” and “inactive” states reflect a diversity of possible behaviors, as 746 

confirmed by manual inspection of videos. 747 

(D) Schematic of social environment imaging paradigm.  748 

(E) Comparison of the percent of variance in neural activity that could be explained when animal 749 

was alone (at rest, ‘solo’) or when paired with another animal (‘social’). Basis motifs were 750 

estimated in each setting and then fit to withheld data in both settings (as in Figure 4C; N=144 751 

and N=123 withheld epochs for solo and social settings, respectively). Labels indicate 752 

identification environment: fitting environment (e.g. ‘Solo: Social’ indicates basis motifs from solo 753 

environment fit to withheld social data). Full distribution shown; dark lines indicate median. 754 

(F). Scatter plot of the relative PEV for each basis motif in the solo environment (x-axis; N=144 755 

epochs) versus the social environment (y-axis; N=123 epochs). Motif labels are indicated with 756 
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numbers, red markers indicate significant differences in expression rate between environments. 757 

Identity line shown along diagonal. 758 

(G) Example basis motifs preferentially expressed in the social environment. Display and motif 759 

labels follow Figure 4.  760 

All p-values estimated with Mann-Whitney U-test. 761 
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 762 

Figure 6. Specific basis motifs reflect processing of specific stimulus modalities 763 

(A) Schematic of sensory stimulation paradigm. All stimuli were delivered on animals’ left side.  764 

(B-C) Scatter plot of the relative PEV for each basis motif in the solo environment (x-axis; N=144) 765 

versus the (B) visual or (C) tactile environment (y-axis; N=1109 and N=1110 visual and tactile 766 
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samples, respectively). Display follows Figure 5F, showing activation in solo environment at rest 767 

(x-axis) versus activation in response to sensory stimuli. Significance computed with Mann-768 

Whitney U-test. 769 

 (D-E) Timecourse of (D) motif 10 and (E) motif 1 activity relative to stimulus onset (vertical 770 

dotted line). Lines and shaded regions indicate mean +/- SEM motif activity in response to 771 

visual (red; N=1109) and tactile (blue; N=1110) stimulation. Motif activity calculated as the mean 772 

pixel value of a motif reconstruction over time (see Methods for details). Horizontal grey bar 773 

indicates significant difference in motif activity between visual and tactile stimuli (pBonferroni < 0.05, 774 

two-sample t-test; see Methods for details). 775 

(F) Comparison of the trial-averaged stimulus-evoked response and the stimulus-evoked 776 

response of the selective basis motifs in B-C. First two rows show responses for visual stimuli; 777 

third and fourth rows for tactile stimuli. Correlation between average response and basis motif is 778 

indicated along right side (pixelwise correlation, Pearson’s 𝜌𝜌). As amplitude of response is 779 

arbitrary, pixel intensities were normalized from 0-to-1 before correlation.  780 

(G) Basis motifs explain more of the variance in neural activity than the average stimulus 781 

response. Distributions show the percent of variance in neural activity during the 5 s after stimulus 782 

explained by basis motifs (colors) or average responses (gray). Full distribution shown; dark lines 783 

indicate median. Significance computed with Wilcoxon Signed-Rank test.  784 

  785 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.895177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.895177
http://creativecommons.org/licenses/by/4.0/


43 
 

 786 

Figure 7. Basis motif 10 reflects general visual stimulus processing. 787 

(A) Timecourse of motif 10 intensity relative to onset (vertical dotted line) of visual grating 1 (blue; 788 

N=554) or visual grating 2 (red; N=555). Display follows Figure 6D-E. No significant differences 789 

were observed between stimuli at any timepoint. p>0.11 for all timepoints; two-sample t-test. 790 

(B) Visual stimuli can be decoded from neural response but not motif response. Classification 791 

was done using a support vector machine (SVM) classifier (see Methods for details) and accuracy 792 

is shown for withheld validation trials. Markers indicate classifier performance (measured with 793 

AUC) for each animal (N=9). Classifiers were trained on either raw pixel values (left column) or 794 

reconstructed motif response (right column). Inset shows pixels used for classification (see 795 

Methods for details). Dotted line denotes chance (AUC=0.5). Significance computed with one-796 

sample t-test. 797 

(C) Percent explainable variance in neural activity in response to visual stimuli captured by motifs 798 

and stimulus-specific residuals. Stimulus specific residuals are the trial-averaged residuals of 799 

motif reconstructions to each visual stimulus type. Data points correspond to mice (N=9). Black 800 

bars denote mean (horizontal) and SEM (vertical). 801 
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Material and Methods 802 

Key Resources Table 803 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Experimental Models: Organisms/Strains 
Mouse: Thy1-GCaMP6f:  
C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J 

The Jackson Laboratory #028280 

Software and Algorithms 
MATLAB 2017a-2018b Mathworks N/A 
seqNMF MATLAB Toolbox Mackevicius et al., 2019 N/A 
MUPET MATLAB Toolbox Van Segbroeck et al., 2017 N/A 
OFAMM MATLAB Toolbox Afrashteh et al., 2017 N/A 
Psychtoolbox-3 MATLAB Toolbox http://psychtoolbox.org/ 

(Brainard, 1997) 
N/A 
 

Python version 3.6.4 Python Software Foundation N/A 
DeepLabCut Python Library Mathis et al., 2018  N/A 
Signal Processing and Analysis code for 
Widefield Imaging data 

This paper N/A 

 804 

Lead Contact and Material Availability 805 

Further information and request for resources and reagents should be addressed to Lead Contact, 806 

Timothy J. Buschman (tbuschma@princeton.edu) 807 

Data and Software Availability 808 

Preprocessed data is available on Dryad data repository as image stacks (saved in Matlab file 809 

format; DOI: 10.5061/dryad.kkwh70s1v; url: https://datadryad.org/stash/share/-q39l6jEbN--810 

voeSe2-5Y3Z1pfbeYEFLO-Kf_f-cjpE). The data has been preprocessed as described below 811 

(spatially binned, masked, filtered, and then thresholded). Due to file size constraints, the full 812 

raw data is not available on the Dryad repository but is available upon request. Example data 813 

and figure generation code will be available on GitHub (https://github.com/buschman-lab) upon 814 

acceptance.  815 

Experimental Model  816 
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All experiments and procedures were carried out in accordance with the standards of the Animal 817 

Care and Use Committee (IACUC) of Princeton University and the National Institutes of Health. 818 

All mice were ~6-8 weeks of age at the start of experiments. Mice (N=11) were group housed 819 

prior to surgery and single housed post-surgery on a reverse 12-hr light cycle. All experiments 820 

were performed during the dark period, typically between 12:00 and 18:00. Animals received 821 

standard rodent diets and water ad libitum. Both female (N=5) and male (N=6) mice were used. 822 

All mice were C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J (The Jackson Laboratory; Dana et al., 823 

2014). 9 mice were used for solo (rest) and sensory environment widefield imaging experiments. 824 

These mice were control animals from a larger study. In that context, these animals were the 825 

offspring of female mice that received a single intraperitoneal injection (0.6-0.66mL, depending 826 

on animal weight) of sterile saline while pregnant.  A subset of these mice (N=7) were used for 827 

social imaging experiments. Separate mice (N=2) were used for spontaneous behavioral state 828 

and hemodynamic correction experiments (these mice did not receive in utero exposure to saline).  829 

Surgical Procedures 830 

Surgical procedures closely followed Guo et al. (2014). Mice were anesthetized with isoflurane 831 

(induction ~2.5%; maintenance ~1%). Buprenorphine (0.1mg/kg), Meloxicam (1mg/kg), and 832 

sterile saline (0.01mL/g) were administered at the start of surgery. Anesthesia depth was 833 

confirmed by toe pinch. Hair was removed from the dorsal scalp (Wahl, Series 8655 Hair 834 

Trimmer), the area was disinfected with 3 repeat applications of betadine and 70% isopropanol, 835 

and the skin removed. Periosteum was removed and the skull was dried. A thin, even layer of 836 

clear dental acrylic was applied to the exposed bone and let dry for ~15 minutes (C&B Metabond 837 

Quick Cement System). Acrylic was polished until even and translucent using a rotary tool 838 

(Dremel, Series 7700) with rubber acrylic polishing tip (Shofu, part #0321). A custom titanium 839 

headplate with a 11mm trapezoidal window was cemented to the skull with dental acrylic (C&B 840 

Metabond). After the cement was fixed (~15 minutes), a thin layer of clear nail polish (Electron 841 
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Microscopy Sciences, part #72180) was applied to the translucent skull window and allowed to 842 

dry (~10 minutes). A custom acrylic cover screwed to the headplate protected the translucent 843 

skull after surgery and between imaging sessions. After surgery, mice were placed in a clean 844 

home cage to recover. Mice were administered Meloxicam (1mg/kg) 24 hours post-surgery and 845 

single housed for the duration of the study.  846 

Widefield Imaging  847 

Imaging took place in a quiet, dark, dedicated imaging room. For all experiments except 848 

spontaneous behavioral monitoring (detailed below), mice were head-fixed in a 1.5 inch diameter 849 

x 4 inch long polycarbonate tube (Fig. 1A) and placed under a custom-built fluorescence 850 

macroscope consisting of back-to-back 50 mm objective lens (Leica, 0.63x and 1x magnification), 851 

separated by a 495nm dichroic mirror (Semrock Inc, FF495-Di03-50x70). Excitation light (470nm, 852 

0.4mW/mm2) was delivered through the objective lens from an LED (Luxeon, 470nm Rebel LED, 853 

part #SP-03-B4) with a 470/22 clean-up bandpass filter (Semrock, FF01-470/22-25). 854 

Fluorescence was captured in 75ms exposures (FPS = 13.3Hz) by an Optimos CMOS Camera 855 

(Photometrics). Prior to imaging, the macroscope was focused ~500um below the dorsal cranium, 856 

below surface blood vessels. Fluorescence activity was captured at 980x540 resolution 857 

(~34um/pixel) when the animal was imaged alone. 858 

Images were captured using Micro-Manager software (version 1.4, Edelstein et al., 2014) on a 859 

dedicated imaging computer (Microsoft, Windows 7). Image capture was triggered by an analog 860 

voltage signal from a separate timing acquisition computer. Custom MATLAB (Mathworks) code 861 

controlled stimulus delivery, recorded gross animal movement via a piezo sensor (SparkFun, part 862 

#09197) attached to the animal holding tube, and captured camera exposure timing through a 863 

DAQ card (National Instruments, PCIe-6323 X Series, part #7481045-01). Timing of all camera 864 

exposures, triggers, behavioral measures, and stimulus delivery were captured for post-hoc 865 
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timing validation. No frames were dropped across any imaging experiments. A camera allowed 866 

remote animal monitoring for signs of distress.  867 

For recordings of spontaneous cortical activity, mice were head-fixed in the imaging rig and 868 

habituated for 5 minutes. After habituation, cortical activity was recorded for 12 consecutive 869 

minutes and stored as 3, 4-minute stacks of TIFF images. Qualitative real-time assessment of 870 

behavioral videos and post-hoc analysis of activity (captured by piezo sensor) revealed minimal 871 

episodes of extensive motor activity (e.g. struggling) during imaging. As our goal is to capture all 872 

behavioral states, we did not exclude these moments from our analysis. Instead, motifs captured 873 

these events alongside other cortical events. 874 

Widefield Imaging: Spontaneous Behavioral State Monitoring 875 

Widefield imaging was performed as above with minor modifications. Mice were head-fixed on a 876 

custom transparent acrylic treadmill and illuminated with infrared light (Univivi 850nm IR 877 

Illuminator). During imaging, behavioral measures were captured using two cameras: a PS3 EYE 878 

webcam (640x480 pixel resolution) focused on the animal’s whole body and a GearHead webcam 879 

(320x240 pixel resolution) focused on the animal’s face. Custom python (v3.6.4) scripts 880 

synchronized the frame exposure of the behavioral cameras at 60Hz.   881 

Widefield Imaging: Paired Social Environment 882 

The macroscope objectives from the above widefield imaging paradigm were replaced with 0.63x 883 

and 1.6x magnification back-to-back objectives, permitting an ~30x20mm field of view (lens order: 884 

mouse, 0.63x, 1.6x, CMOS camera). Images were acquired at 1960 x 1080 resolution 885 

(~34um/pixel). Animals were precisely positioned to be the same distance from the objective. 886 

Mice faced one another, approximately eye-to-eye in the anterior-posterior axis. Their snouts 887 

were separated along the medial-lateral axis by a 5-7 mm gap; close enough to permit whisking 888 

and social contact but prevent adverse physical interactions. A 1mm plexiglass divider at snout 889 
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level ensured no paw/limb contact. Mice were positioned in individual plexiglass tubes. Pairs were 890 

imaged together for 12 consecutive minutes, once each recording day. Some pairings included 891 

mice outside this study cohort. 76 recordings from the experimental cohort were collected. After 892 

each recording, the imaging apparatus was thoroughly cleaned with ethanol and dried before 893 

imaging of the next pair (removing olfactory cues). 894 

Animal pairs were provided with sensory stimuli consisting of playback of pre-recorded, 895 

naturalistic ultrasonic vocalizations (USVs) between adult mice, synthetic USVs, or ‘background’ 896 

noise. Naturalistic USV stimuli were obtained from the mouseTube database (Torquet et al., 897 

2016). In particular, we used four recordings of 3 min interactions between male and estrus female 898 

wildtype C57BL/6J mice (files S2-4-4, S2-4-105, S2-4-123, S2-4-138). Details on the methods 899 

used to record these interactions are described in the original study by Schmeisser et al. (2012). 900 

To produce more salient stimuli, we reduced these 3 min recordings into 1 min recordings by 901 

using Praat software (version 6.0.23) to shorten the silent periods between USV bouts. We 902 

bandpass filtered these recordings to the 40-100 kHz range (Hann filter with 100 Hz smoothing) 903 

to reduce extraneous background noise, and down sampled the recordings to 200 kHz. 904 

Synthetic USV stimuli were generated using a customized MATLAB script that created artificial 905 

sine wave tones matching the spectro-temporal properties of naturalistic stimuli. Specifically, 906 

synthetic stimuli had the same rate (calls per minute), average duration, and mean frequency as 907 

naturalistic USVs (we used MUPET to characterize USV properties; Van Segbroeck et al., 2017). 908 

Tones were evenly spaced throughout the synthetic stimulus. Background noise was generated 909 

from the silent periods of the 3-minute vocalization recordings. Each recording session contained 910 

1 epoch of naturalistic USVs, 1 epoch of synthetic USVs, and 1 epoch with background noise. All 911 

acoustic stimuli were presented at ~70dB through a MF1-S speaker (Tucker Davis Technologies) 912 

placed 10cm away from both subjects.  913 

Widefield imaging: Structured Sensory Environments 914 
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Widefield imaging was performed as in the original (solo) condition. All stimuli were provided to 915 

the animals’ left side. Recordings were 15-minutes long, divided into 90 trials of 8000ms duration. 916 

Trials were structured with a 3000ms baseline period, 2000ms stimulus period, and 3000ms post-917 

stimulus period. Trials were separated by an inter-trial interval randomly drawn between 1000 and 918 

1750ms.  919 

Air puffs (10psi) were gated by solenoids (NResearch, Solenoid valve, part #161K011) and were 920 

directed at the whisker pad in either the anterior-to-posterior or posterior-to-anterior direction. 921 

Visual stimuli were gratings of 2.1cm bar width, 100% contrast, delivered on a 10inch monitor 922 

(Eyoyo, 10-inch 1920x1200 IPS LED), positioned 14cm away from animals’ left eye. Gratings 923 

drifted from medial-to-lateral or lateral-to-medial at 8 cycles per second. Visual stimuli were 924 

presented for 2000ms. During these recordings, mice also received trials of auditory stimuli (e.g. 925 

2 tones). These data were not analyzed since auditory cortex was not imaged and so no evoked 926 

response was observed. Each recording captured 30 trials of each stimulus modality. 3329 trials 927 

were captured in total across 9 animals: resulting in 1110 tactile, 1109 visual (and 1110 auditory) 928 

trials. 1 visual trial was lost due to timing issues.  929 

Due to light-artifact of visual stimuli leaking through the ipsilateral cortical bone in a subset of 930 

recordings, a more conservative mask on the ipsilateral hemisphere was used for all sensory 931 

environment analyses (as shown in Fig. 6F). Accordingly, this mask was used for all analyses in 932 

Figures 6-7, including quantification of motifs in the original (solo) environment.  933 

Statistical Analysis:  934 

All analyses were performed in MATLAB (Mathworks). Number of mice used was based on 935 

previously published studies (Makino et al., 2017; Allen et al., 2017; Mohajerani et al., 2013). As 936 

described throughout methods and main text, analyses were performed on 11 separate animals, 937 

across multiple recording sessions, and 4 behavioral environments (e.g. biological replicates). 938 
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Analyses were validated across a range of processing parameters (e.g. technical replicates). All 939 

statistical tests, significance values, and associated statistics are denoted in the main text. P-940 

values below machine precision are reported as p<10-16. All 95% Confidence intervals were 941 

computed using MATLAB bootci function (1000 bootstrap samples).  942 

Widefield Imaging Preprocessing 943 

Image stacks were cropped to a 540x540 pixel outline of the cortical window. Images were aligned 944 

within and across recordings using user-drawn fiducials denoting the sagittal sinus midline and 945 

bregma for each recording. For anatomical reference (Figs. 1A and supplement 1), recordings 946 

were aligned to a 2D projection of the Allen Brain Atlas, version CCFv3 using bregma coordinates 947 

(Oh et al., 2014; ABA API interfacing with MATLAB adapted from https://github.com/Sainsbury 948 

WellcomeCentre/AllenBrainAPI). The complete 2D projection is shown in Fig. 1 Supplement 1. 949 

As they are only intended to be local references, the parcel outlines overlaid in Figures 1, 4, 5 950 

were created by manually tracing this 2D projection (Inkscape Vector Graphics Software).  951 

Changes in fluorescence due to hemodynamic fluctuations may confound the neural activity 952 

captured by widefield imaging (Allen et al., 2017; Ma et al., 2016a, 2016b). However, previous 953 

work has found hemodynamic contributions to fluorescent signal using similar widefield imaging 954 

approaches are minimal (Cramer et al., 2019; Murphy et al., 2016; Vanni and Murphy, 2014) , 955 

and can be mitigated by removing pixels corresponding to vasculature (Makino et al., 2017). To 956 

mitigate impact of hemodynamic contributions, we masked pixels corresponding to vasculature. 957 

To identify vasculature, the middle image of each recording was smoothed with a 2D median filter 958 

(neighborhood 125 pixels2) and subtracted from the raw image. As vasculature pixels are much 959 

darker than pixels of neural tissue, we created a vasculature mask by thresholding the reference 960 

image to pixels intensities >= 2.5 standard deviations below the mean. To remove noise, the mask 961 

was morphologically closed with a 2-pixel disk structuring element. A vasculature mask was 962 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.895177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.895177
http://creativecommons.org/licenses/by/4.0/


51 
 

created for each recording. Supplemental experiments, outlined below, demonstrated that 963 

vascular masks successfully mitigated the contribution of hemodynamics to our signal.   964 

Vasculature masks were combined with a manually drawn outline of the optically accessible 965 

cortical surface and applied to each recording to conservatively mask non-neural pixels. Masks 966 

removed the sagittal sinus, mitigating vascular dilation artifacts. Additionally, masks removed 967 

peripheral lateral regions, such as dorsal auditory cortex, where fluorescence contributions across 968 

animals may be differentially influenced by individual skull curvature. After alignment and 969 

registration, recordings were spatially binned to 135x135 pixels (~68µm2/pixel). Masked pixels 970 

were ignored for spatial binning. Normalized activity was computed as change in fluorescence, 971 

e.g. ΔF/F over time according to 𝐹𝐹−𝐹𝐹0
𝐹𝐹0

 . Baseline fluorescence, F0 was computed using a 9750ms 972 

(130 timepoints) rolling mean. To remove slow fluctuation in signal (e.g. due to change in 973 

excitation intensity), pixels traces were detrended using linear least squares fit.  974 

Recordings were bandpass filtered at 0.1 to 4Hz (10th order Butterworth filter). Pixel traces were 975 

thresholded at 2 standard deviations per pixel in order to remove noise in spontaneous activity. 976 

Values below this threshold were set to zero. Thresholding had minimal impact on subsequent 977 

analyses and conclusions. For example, similar numbers of basis motifs (~14) were discovered 978 

in non-thresholded data. After filtering and thresholding, recordings were spatially binned again 979 

to a final size of 68x68 pixels (~136µm2/pixel). Pixels with zero variance during an epoch (e.g. 980 

masked pixels) were ignored for all subsequent analyses. Subsequent factorizations require non-981 

negative pixel values so recordings where normalized to range of 0 to 1 using the maximum and 982 

minimum pixel values per recording. The 12-minute solo and social recordings were divided into 983 

six, 2-minute epochs; alternating epochs were used for motif discovery or withheld for testing (Fig. 984 

1B). For solo recordings this resulted in 144 ‘discovery’ and 144 ‘withheld’ epochs.  985 
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For social recordings, cortices of individual animals were cropped to 540x540 pixels and 986 

preprocessing followed as above. Again, recordings were divided into 2-minute epochs, resulting 987 

in a total of 228 ‘discovery’ and ‘withheld’ epochs. Given the proximity of the animals, whiskers 988 

from one animal sometimes entered the imaging field of view of the paired animal, creating 989 

artifacts easily detected upon manual inspection. All epochs were manually inspected and epochs 990 

with any whisker artifacts (N=105) were removed, resulting in 123 ‘discovery’ and ‘withheld’ 991 

epochs (8.2 hours in total).  992 

For sensory trials, which were 8 seconds in length, each trial’s ΔF/F was calculated using the 993 

mean of the first 26 timepoints (~2s) as baseline fluorescence. Burst in activity were discovered 994 

by thresholding traces at 1 standard deviation per pixel. All other preprocessing steps were 995 

followed as above.  996 

Multiwavelength Hemodynamic Correction 997 

Additional experiments using multiwavelength hemodynamic correction were performed to 998 

confirm that vasculature masking mitigated hemodynamic contributions to motifs (Fig. 4 999 

supplement 2). Hemodynamic correction followed (Musall et al., 2019). In brief, widefield imaging 1000 

was performed while strobing between illumination with a blue LED (470nm, 0.4mW/mm2) and 1001 

violet LED (410nm, LuxDrive LED, part #A008-UV400-65 with a 405/10 clean-up bandpass filter; 1002 

Edmund Optics part #65-678). Each exposure was 35.5ms and light from both LEDs were 1003 

collimated and coupled to the same excitation path using a 425nm dichroic (Thorlabs part 1004 

#DMLP425). Illumination wavelengths alternated each frame. Strobing was controlled using an 1005 

Arduino Due with custom MOSFET circuits coupled to frame exposure of the macroscope (as in 1006 

Pinto et al., 2019). After vasculature masking and spatial-binning to 135x135 pixels, violet-1007 

exposed frames (e.g. non-calcium dependent GCaMP6f fluorescence, Lerner et al., 2015) were 1008 

rescaled to match the intensity of blue-exposed frames. ΔF/F was then computed as ΔF/Fblue - 1009 

ΔF/Fviolet. Remaining preprocessing steps followed original (solo) experiments.  1010 
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Motif Discovery 1011 

We used the seqNMF algorithm (MATLAB toolbox from Mackevicius et al., 2019) to discover 1012 

spatio-temporal sequences in widefield imaging data. This method employs convolutional non-1013 

negative matrix factorization (CNMF) with a penalty term to facilitate discovery of repeating 1014 

sequences. All equations below are reproduced from the main text and Tables 1 and 2 of 1015 

Mackevicius et al (2019). For interpretability, we maintained the nomenclature of the original 1016 

paper where possible. 1017 

We consider a given image as a P x 1 vector of pixel values and a recording image sequence (i.e. 1018 

recording epoch) as a P x T matrix, where T is the number of timepoints in the recording. This 1019 

matrix can be factorized into a set of K smaller matrices of size P x L representing short sequences 1020 

of events (e.g. motifs). Collectively this set of motifs is termed W (a P x K x L tensor).  1021 

Each pattern is expressed over time according to a K x T temporal weighting matrix termed H. 1022 

Thus, the original data matrix can be approximated as the sum of K convolutions between the 1023 

motifs in W and their corresponding temporal weightings in H: 1024 

𝑋𝑋𝑝𝑝𝑝𝑝 ≈ 𝑋𝑋�𝑝𝑝𝑝𝑝 = ��𝑊𝑊𝑝𝑝𝑝𝑝ℓ𝐻𝐻k(t−ℓ)

𝐿𝐿−1

ℓ=0

𝐾𝐾

𝑝𝑝=1

≡ (𝑊𝑊⊛𝐻𝐻)𝑝𝑝𝑝𝑝    𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1 1026 

   1025 

Here, ⊛ indicates the convolution operator. The values of W and H were found iteratively using 1027 

a multiplicative update algorithm. The number of timepoints for each motif was set to 13 frames 1028 

(975ms). This L value was chosen because it is well above the duration of GCaMP6f event 1029 

kinetics and qualitative assessment of imaging recordings suggested most spontaneous events 1030 

were < 1000ms in duration, agreeing with previous literature (Stringer et al., 2019a). Active 1031 

timepoints in motifs may be shorter than L; in which case unused timepoints are zero-padded. 1032 

Preliminary tests at L > 13 produced similar results to L=13, and explained variance captured by 1033 
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motifs reconstructions plateaued at L values >=13 (Fig. 1 supplement 2C). As increasing L 1034 

increased computation time, L=13 was used for practical purposes.  1035 

 1036 

The maximum number of possible motifs (K) per recording was chosen by iteratively sweeping a 1037 

range of K values and evaluating the number of basis motif clusters at each value (see below 1038 

regarding basis motif clustering). Figure 4 supplement 1B shows the number of basis motifs 1039 

asymptotes at K >= 12. K = 28 was used for all motif discovery experiments. K = 28 was chosen 1040 

as it was well above the elbow of the asymptote and produced a total number of basis motifs on 1041 

the upper range of the test K values (thus not analytically limiting the observe dimensionality). As 1042 

with L, if fewer than K motifs were found, the remaining motifs would be populated with zeros. 1043 

Again, we constrained K because computational demands when adding extra, unnecessary 1044 

(blank) motifs.  1045 

The seqNMF algorithm improves upon typical CNMF by including a spatio-temporal penalty term 1046 

into the cost function of the multiplicative update algorithm. In brief, this reduces redundancy 1047 

between motifs: 1) multiple motifs do not describe the same sequence of activity; 2) a single motif 1048 

is not temporally split into separate motifs; and 3) motifs are encouraged to be non-overlapping 1049 

in time. This penalty termed is implemented as follows:  1050 

𝑅𝑅 = 𝜆𝜆 ��𝑊𝑊⊛
𝑇𝑇
𝑋𝑋� 𝑆𝑆𝐻𝐻𝑇𝑇�

1,𝑖𝑖≠𝑗𝑗
 1051 

Here, temporal overlap (correlation) between motifs is captured by 𝑆𝑆𝐻𝐻𝑇𝑇 . S is a T x T temporal 1052 

smoothing matrix where 𝑆𝑆𝑖𝑖𝑗𝑗 = 1 when |𝑒𝑒 − 𝑗𝑗| < 𝐿𝐿; otherwise 𝑆𝑆𝑖𝑖𝑗𝑗 = 0. Thus, each temporal 1053 

weighting in H is smoothed by a square window of length 2L-1, increasing the product of motifs 1054 

that temporally overlap within that window.  1055 

Competition between spatio-temporal structure of motifs is achieved by calculating the overlap of 1056 

motifs in W with the original data as follows  1057 
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(𝑊𝑊⊛
𝑇𝑇
𝑋𝑋)𝑝𝑝𝑝𝑝  =  � � 𝑊𝑊𝑝𝑝𝑝𝑝ℓ𝑋𝑋𝑝𝑝(𝑝𝑝+ℓ)

𝑝𝑝ℓ
     𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 3 1058 

Motifs containing similar patterns will overlap with the original data matrix at the same times. The 1059 

notation || ∙ ||1,𝑖𝑖≠𝑗𝑗 ignores penalizing terms along the diagonal such that spatial and temporal 1060 

autocorrelation of motifs is not penalized. 𝜆𝜆 is a tunable parameter that controls the magnitude of 1061 

the penalty term. The result of this penalty, when implemented as a cost function in the 1062 

multiplicative update algorithm for fitting H and W, is to bias factorization such that only one motif 1063 

is active at a given timepoint.  1064 

We followed the approach used by Mackevicius et al., to determine the magnitude of the 𝜆𝜆 penalty 1065 

term. 𝜆𝜆 was swept across 6 orders of magnitude from 10-6 to 1 (Fig. 1 supplement 2A). The impact 1066 

on reconstruction cost, motif spatio-temporal correlation, explained variance, and number of 1067 

factors was evaluated. A value slightly above the cross-over point in reconstruction cost and 1068 

explained variance was chosen for subsequent experiments (Fig. 1 supplement 2A). Importantly, 1069 

a similar number of motifs were found for all values of λ, suggesting our results did not depend 1070 

on the exact value. 1071 

Additionally, the seqNMF algorithm contains optional orthogonality constraints to bias 1072 

factorizations towards parts-based and events-based factorizations. In widefield imaging data, 1073 

parts-based would preferentially detect spatially independent motifs. Events-based factorizations, 1074 

used in this study, would preferentially discover temporally independent motifs that correspond to 1075 

specific instantiations of sequential activity patterns. This was achieved with an additional 1076 

smoothed orthogonality cost term penalizing overlap in motif temporal weightings:  1077 

𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝ℎ𝐻𝐻  =  
𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝ℎ𝐻𝐻

2
||𝐻𝐻𝑆𝑆𝐻𝐻𝑇𝑇||1,𝑖𝑖≠𝑗𝑗     𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4 1078 

The magnitude of 𝜆𝜆𝐻𝐻𝐻𝐻𝑝𝑝ℎ𝐻𝐻𝐻𝐻 was set to 1 based on preliminary experiments and remained 1079 

unchanged for all motif discovery experiments, including the parameter sweeps of 𝜆𝜆 and K 1080 
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described above. All fitting processes were run for 300 iterations; at which point the cost function 1081 

leveled out (Fig. 1 supplement 2B). 1082 

Supplemental Table 1 contains a complete list of all adjustable parameter values of the seqNMF 1083 

algorithm toolbox used for each experiment. Descriptions for parameters not discussed above 1084 

can be found in original work. To discover motifs in paired social recordings, the same K and L 1085 

values (28 and 13) were used. λ was refit following the procedure described above.  1086 

Note, one change was made to the seqNMF algorithm toolbox. For convenience, the smoothing 1087 

matrix S was multiplied by 0.01. Specifically, line 98 of original seqNMF code: smoothkernel = 1088 

zeros(1,(2*L)-1) replaced with smoothkernel = 0.01*zeros(1,(2*L)-1). This allowed 𝜆𝜆 values to be 1089 

100x larger and, therefore, easier to read.  1090 

Visualizing Motif Activity Flow 1091 

To aid in visualization of motif patterns (Figs. 1 and 3), we used the Horn-Schunck optical flow 1092 

method to calculate the velocity vector fields between subsequent timepoints of motifs (Horn and 1093 

Schunck, 1981; implemented using HS function from OFAMM MATLAB toolbox, Afrashteh et al., 1094 

2017). For basis motif images, optical flow was only performed for timepoints with non-zero 1095 

variance across pixels. For all plots, arrows depict the direction and velocity of flow for the top 1096 

50% intensity pixels of each timepoint. The number of arrows were downsampled by a factor of 1097 

three for clarity in visualization.  1098 

Comparing Motifs to sPCA and sNMF 1099 

Data preprocessing for Motif, sPCA, and sNMF discovery was identical. For sPCA, pixels were 1100 

treated as variables and timepoints as observations. sNMF was performed by setting L to 1 1101 

(effectively reducing equation 1 to matrix multiplication) and removing all temporal and spatial 1102 

sparsity terms.  1103 
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Refitting Motifs to Withheld Data  1104 

To refit motifs to withheld data, we used the same seqNMF algorithm, but W was fixed to the 1105 

previously discovered motifs (or basis motifs) during fitting. Thus, the only updatable features of 1106 

the factorization were motif temporal weightings, H. See Supplemental Table 1 for a list of all 1107 

parameters used during fitting. Importantly, since only temporal weightings were refit, 𝜆𝜆 was set 1108 

to zero. Thus, unlike motif discovery where motifs were highly spatially and temporally 1109 

independent, refit motifs did not have this constraint and thus some combinatorial motif activation 1110 

was observed. However, increasing λHortho had little impact on the percent of variance explained 1111 

when refitting the motifs, suggesting that any compositionality had minimal impact on results (Fig. 1112 

3 supplement 1). Importantly, all motifs, static networks, and time-varying networks were refit to 1113 

withheld data in the same way and therefore their percent explained variance can be directly 1114 

compared.  1115 

For solo and social recordings, the part-based factorization orthogonality bias was maintained as 1116 

in initial discovery (see Supplemental Table 1). Given the short duration of sensory trials, the 1117 

orthogonality bias was not used. The same process was followed for refitting basis motifs and 1118 

social basis motifs to withheld data. For all refitting processes, motifs and withheld data were first 1119 

spatially smoothed with a 2D gaussian filter (𝜎𝜎 = [1,1]). Only pixels with non-zero variance in both 1120 

motifs and withheld data were used.  1121 

Generating Basis Motifs  1122 

To identify basis motifs, we used an unsupervised clustering algorithm (Phenograph, Nicosia et 1123 

al., 2009; Levine et al., 2015). For clustering, motifs were renormalized to 0-to-1 and 1124 

spatiotemporally smoothed with a 3D gaussian filter (𝜎𝜎 = [1,1,0.1]). The Phenograph algorithm 1125 

generates a directed graph, where each node is connected to its k nearest neighbors. Louvain 1126 

community detection is then performed on this graph to cluster nodes into groups. For finding 1127 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2020. ; https://doi.org/10.1101/2020.01.05.895177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.05.895177
http://creativecommons.org/licenses/by/4.0/


58 
 

neighbors, distances between motifs were computed as the peak in their temporal cross-1128 

correlation. The only tunable parameter of Phenograph is the number of nearest neighbors (k). 1129 

k=15 was chosen based on initial experiments. Similar number of clusters (10-20) were observed 1130 

for k=10 and k=20.  1131 

Basis motifs were generated by taking the mean of the core community of motifs in each cluster. 1132 

The core community was defined as the top 10% of motifs in each cluster with the most within-1133 

cluster nearest neighbors. Prior to averaging, motifs were aligned to a ‘template’ motif. The 1134 

template motif shared the most zero-lag peak temporal cross-correlations with all other motifs. If 1135 

there were multiple templates, one was chosen at random. All motifs were zero-padded to a 1136 

length of 3L (39 timepoints) and aligned to these templates by their maximal cross-correlation 1137 

lag and then basis motifs calculated from the core communities. Basis motifs were then aligned 1138 

to one another by shifting the center of mass of activity to the middle timepoint. Timepoints with 1139 

no variance across all basis motifs were removed, resulting in basis motifs that were 26 1140 

timepoints (~2s) long.  1141 

Percent Explained Variance Calculations 1142 

For all experiments, the percent explained variance (PEV) in neural activity was defined as 1143 

𝑃𝑃𝑃𝑃𝑃𝑃 =  100 ∗ �1 −
 (𝜎𝜎𝑋𝑋2  −  𝜎𝜎𝑋𝑋�2 )

𝜎𝜎𝑋𝑋2 � 1144 

Where 𝜎𝜎𝑋𝑋2 and 𝜎𝜎𝑋𝑋�2 denote the spatio-temporal variance of the original data and reconstructed 1145 

data respectively.  1146 

The PEV of individual motifs was calculated by convolving the motif with its temporal weighting 1147 

and computing PEV as above (see helper.reconstruct function from seqNMF toolbox). Thus, the 1148 

PEV of individual motifs reflected both the frequency of motif occurrence and the quality of fit to 1149 
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the data. Relative PEVs of individual motifs were calculated by dividing the PEV of each motif by 1150 

the total PEV across all motifs for that epoch. 1151 

Timepoint-wise PEV (Fig. 3 supplement 1B) used the same calculation as above but was 1152 

performed separately on each timepoint of an epoch. Thus, these analyses reflect solely the 1153 

spatial variance in activity captured by reconstructed data for each individual timepoint.     1154 

Cross-Temporal Autocorrelation Analysis 1155 

The cross-temporal autocorrelation of each motif was calculated by computing the spatial 1156 

correlation between frames of the motif at vary temporal lags. The resulting autocorrelation was 1157 

then fit with an exponential to estimate the half-life of decay in the autocorrelation (τ). Pixels with 1158 

no variance across motif timepoints were ignored when calculating correlation.  1159 

Static Networks 1160 

Static networks were generated for each motif by replacing all of the active timepoints of a motif 1161 

with the mean activation of that motif (see Fig. 3E for example). Active timepoints were defined 1162 

as any timepoints with variance across pixels greater than zero. Thus, static networks represent 1163 

a constant ‘state’ of activation of the same brain regions for the duration of that motif. The temporal 1164 

weightings of these static networks were refit to the withheld data the same way as dynamic motifs 1165 

(i.e. the activation of these states could vary throughout an epoch; described above). 1166 

Estimating the Working Resolution of Widefield Imaging  1167 

One concern is that the spatial resolution of our approach may have artificially limited the 1168 

dimensionality of the observed motifs. Therefore, we sought to estimate the ‘working resolution’ 1169 

of our approach by grouping pixels into functional clusters, defined as contiguous groups of pixels 1170 

with correlated activity (Fig. 4 supplement 3).  1171 
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To identify functional clusters, we divided each recording epoch into 1 second time periods 1172 

(17,280 total 1-second periods, each with 13 frames). A pixelwise correlation matrix was 1173 

computed for each 1-second period. Next, PCA was applied to each correlation matrix, producing 1174 

a (pixel x component) matrix of ‘eigenconnectivities’. These eigenconnectivities reflected the 1175 

dominant correlation patterns across pixels during that 1-second period (similar to approaches by 1176 

Leonardi et al., 2013; Preti and Ville, 2017) 1177 

The first eigenconnectivity from each 1-second time period were concatenated together, creating 1178 

a (pixel x 17,280) matrix that captured the wide variety of different possible spatial patterns across 1179 

the cortex. We then used Phenograph (k=15) to group pixels according to their correlation across 1180 

these spatial patterns. This produced 37 ‘functional clusters’ of highly correlated pixels (Fig. 4 1181 

supplement 3; 18 in left and 19 in right hemisphere. Similar results (~20 clusters per hemisphere) 1182 

were observed by performing PCA on each 1-second time period and then clustering as above 1183 

(i.e. without first creating a correlation matrix; this creates an ‘eigenimage’ instead of an 1184 

‘eigenconnectivity’ as in Friston, 2004) 1185 

Several lines of evidence suggest our motifs were not constrained by the functional resolution of 1186 

our approach. First, as shown in Figures 1, 3, and 4, most motifs are dynamic – different regions 1187 

are activated over time. This suggests motifs are not limited by the spatial resolution of our 1188 

approach, as the motifs capture the flow of activity across distinct spatial regions. Second, our 1189 

imaging approach can still capture pixel-wise activity (Fig. 7B), suggesting the functional 1190 

clustering is a lower-bound on our resolution. Even using this lower bound, the dimensionality of 1191 

our motifs is far less than the possible dimensionality of our approach. For example, even if motifs 1192 

engaged only 1-2 functional clusters, there are still 182=324 possible patterns.   1193 

Quantifying Spontaneous Behavioral States 1194 
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Behavioral state was quantified using the binarized intensity of nose motion energy, whisker pad 1195 

motion energy, and total limb speed. Nose and whisker pad motion energy was quantified as 1196 

the mean absolute temporal derivative of pixels within a manually selected ROIs (shown on Fig. 1197 

5A). The whisking speed of the mouse was faster than the frame rate of the behavioral videos. 1198 

This caused the whiskers to be blurred when the animal was intensely whisking, resulting in a 1199 

low value for the whisker energy measure. Therefore, whisking motion energy was inverted for 1200 

all analyses (e.g. 𝑀𝑀𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑝𝑝 =  max (𝑀𝑀𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑝𝑝 𝐻𝐻𝐻𝐻𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜)−𝑀𝑀𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑝𝑝 𝐻𝐻𝐻𝐻𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ) so that the axes were 1201 

consistent across the three behavioral variables (i.e. higher values indicate higher energy). 1202 

Markerless tracking of paw position (DeepLabCut; Mathis et al., 2018) was used to measure 1203 

limb speed. Training and validation of DeepLabCut neural network followed Nath et al.'s, 2019 1204 

published protocol, with the network trained to identify paw position as the center point between 1205 

the 1st and 5th digit of each paw. To improve accuracy of limb position estimates, nose, tail base, 1206 

and tail root were also tracked.  360 frames from 3 animals were used for network training. One 1207 

refinement iteration was performed. The network was trained until loss plateaued (Fig. 5 1208 

supplement 1C, 120000 iterations). Total limb speed was calculated as the summed absolute 1209 

temporal derivatives of the x and y position of all four paws.  1210 

To categorize behavioral state, a gaussian mixture model (GMM) was fit to the distributions of 1211 

these three behavioral variables (MATLAB; fitgmdist function; 2 components). Timepoints were 1212 

assigned to one of two behavioral states according to the 2-second running product of the 1213 

posterior probability of being in each state. Any timepoints with a likelihood of being in either 1214 

state that was less than 0.5 were excluded from analysis (this was less than 0.01% of all 1215 

timepoints in both animals).  1216 

To decode behavioral state based on motif activity, we used a support vector machine classifier 1217 

with radial basis function kernels (MATLAB; fitsvm function; Sequential Minimal Optimization 1218 

solver). Prior to training a classifier, 20% of each trial type was held out as a validation test data 1219 
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set. For each classifier, two hyperparameters, “box-constraint” (a regularization parameter to 1220 

prevent overfitting) and “kernel scale” were tuned using cross validation within the training set 1221 

data (5 folds, balanced trial types: using the MATLAB functions fitsvm and cvpartition). 1222 

Hyperparameters were optimized using Bayesian optimization (MATLAB, bayesopt function). 1223 

Tuned classifiers were then tested on withheld validation data. Classifier accuracy was 1224 

quantified using the area under the curve (AUC) of the receiver operator characteristic function 1225 

(MATLAB, perfcurve function). Results of this classification analysis are reported in the main 1226 

text.  1227 

Fitting Average Traces to Sensory Trials 1228 

Average stimulus responses were calculated by taking the mean of all trials across animals for 1229 

visual and tactile stimuli. Different stimuli within a modality were combined to generate the 1230 

average trace (e.g. visual grating 1 and 2 were averaged together). Temporal weightings of 1231 

average traces were refit to trials using the same seqNMF algorithm and parameters as when 1232 

refitting basis motifs, except now the average stimulus response was used in place of the motifs. 1233 

Additionally, prior to fitting, trials were zero-padded which allowed the algorithm to flexibility shift 1234 

the average trace timing to best match the evoked response timing of each trial. This allowed us 1235 

to directly compare the PEV of the motifs and the average stimulus response.  1236 

Comparing Stimulus Evoked Motif Responses 1237 

We sought to compare the motif responses evoked by different stimuli (Fig. 6D-E). Motif activity 1238 

was estimated by convolving each motif with its temporal weight on each trial (as described above; 1239 

see seqNMF Toolbox helper.reconstruct function). Stimulus selectivity of a motif was estimated 1240 

by comparing the evoked responses to each stimulus (two-sample t-test). This was done over 1241 

time, using 300ms windows, stepped every 150ms to give a timecourse of similarity.  Resulting 1242 
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p-values were Bonferroni corrected for multiple comparisons across time and conditions (i.e. 24 1243 

comparisons in Fig. 6D-E, 12 windows x 2 modalities).  1244 

Pixelwise Classifier Analysis Comparing Visual Stimuli 1245 

As described above, mice were presented with two different visual stimuli: visual stimulus 1 1246 

(grating drifting from medial-to-lateral) and visual stimulus 2 (grating drifting from lateral-to-1247 

medial). Mice received 15 trials of each stimulus on 4-5 consecutive recording days (60-75 total 1248 

of each type per mouse). As described in the main text, the response of the ‘visual’ motif (#10) 1249 

did not differ between the two stimuli. To test whether this was due to a limitation in our imaging 1250 

approach, we tested whether we could classify neural responses as belonging to the two stimuli 1251 

(Fig. 7B) 1252 

To classify stimulation response, we used a support vector machine classifier (see detailed 1253 

description above). Classification was performed on pixels restricted to the right hemisphere 1254 

(contralateral to stimulus) and in the top 95% intensity percentile of motif 10 (visually-evoked 1255 

motif). This resulted in a total of 6006 possible feature pixels (231 pixels across the 26 timepoints 1256 

of visual stimulus presentation). For each classifier, we performed a cross-validated ANOVA 1257 

feature selection to select a subset of these pixels as classification features (Pereira et al., 2009). 1258 

The p-value for a one-way ANOVA comparing responses to each stimulus type was computed 1259 

for each pixel in the training data. The 50 pixels with the highest -log10(p-values) were used for 1260 

classification. After determining the feature vector, the classification hyperparameters were tuned 1261 

within the training data, as described above.  1262 

For each mouse, pixelwise classification was performed on two datasets (Fig. 7B). First it was 1263 

performed on the original data (after the preprocessing steps above). Second it was performed 1264 

on the reconstructed activity of the motifs fitted to this original data. Thus, for both classification 1265 

procedures, the data were the same spatial resolution. The only difference between the data sets 1266 
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were the residuals of the motif fitting procedure. Therefore, a total of 18 classifiers were trained 1267 

(2 per animal).  1268 

Evaluating Motif Expression During Two Tactile Stimuli 1269 

Animals were also presented with two different tactile stimuli; airpuffs that either traveled from 1270 

anterior to posterior or from posterior to anterior. Motifs captured the vast majority of explainable 1271 

variance in the response to tactile stimuli. In particular, Motif 1 (tactile-specific; Fig. 6E) captured 1272 

a large portion of response to both stimuli (Fig. 6 supplement 1; 61.08% +/-1.97% SEM for non-1273 

stimulus specific motifs; 36.90% +/- 1.90% SEM for stimulus-specific motif 1).  1274 

However, it is important to note that, unlike the visual stimuli, these two tactile stimuli were likely 1275 

significantly different in their impact on behavior. First, the behavioral connotation of an anterior-1276 

approaching stimulus is likely different than that of a posterior stimulus. Second, although both 1277 

airpuffs were directed at the whisker pad, differences in the solenoids used to control the airflow 1278 

impacted flow rate and air pressure. Thus, one may expect these stimuli to evoke different 1279 

intensity responses (and thus different motif temporal weightings). Consistent with this 1280 

hypothesis, the relative percent variance in neural activity captured by motifs differed in response 1281 

to the two airpuffs (Fig. 7 supplement 1A). Because of these large differences at the level of 1282 

motifs, there was no need for to classify the tactile stimuli. However, stimulus-specific activity in 1283 

the residuals still only captured a small part of the total explainable variance (2.02% +/- 0.38% 1284 

SEM; Fig. 7 supplement 1B). Thus, as we saw for visual stimuli, most cortex-wide neural activity 1285 

can be explained by the expression of motifs. 1286 

 1287 

 1288 

 1289 
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 1293 

 1294 

Supplemental Information:  1295 

Supplemental Movie 1. Example Widefield Imaging of Cortical Activity. Shows an 1296 

example of widefield imaging (left) alongside a video of animal’s behavior (right). 1297 

Supplemental Movie 2. Example Fit of Data Reconstructed from Discovered Motifs. (A) 1298 

Temporal weightings of discovered motifs.  (B) Original data. Color indicates fluorescence 1299 

intensity of original data (i.e. 𝐹𝐹�O: normalized between 0 to 1, using the 99.9th percentile of all 1300 

pixels).  (C) Reconstructed data. Created by convolving motifs with their temporal weightings (see 1301 

Method for details). Color indicates intensity of reconstructed data (𝐹𝐹�R); color scale follows B.  (D) 1302 

Residual of fit (i.e. 𝐹𝐹�O  - 𝐹𝐹�R). Color scale indicates the quality of fit of reconstructed to original data. 1303 

Red dots indicate bregma.  1304 

Supplemental Movie 3. All Basis Motifs. Basis motif display follows Figure 4C. For video 1305 

visualization, all motifs were convolved with a 450ms gaussian temporal weighting vector to mimic 1306 

a ‘spike’ in activity.   1307 
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 1312 

 1313 

 1314 

 1315 
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 1320 

 1321 

 1322 

 1323 

 1324 
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 Discovery: 
Solo 

Fit: 
Solo 

Fit:  
Paired 
Social 

Fit: 
Sensory 

Discovery: 
Paired 
Social 

Fit:  
Paired 
Social 

K 28 14 
(# basis 
motifs) 

14 
(# basis 
motifs) 

14 
(# basis 
motifs) 

28 11  
(# social 

basis 
motifs) 

L 13 13 13 13 13 13 
λ 0.0005 0 0 0 0.003 0 

Winit Random Basis 
Motifs 

Basis 
Motifs 

Basis 
Motifs 

Random Complex 
Basis 
Motifs 

Hinit Random Random Random Random Random Random 
λorthoH 1 1 1 0 1 1 
λorthoW 0 0 0 0 0 0 

Iterations 300 100 100 100 300 100 
Tolerance 0 0 0 0 0 0 

Shift 0 0 0 0 0 0 
WλL1 0 0 0 0 0 0 
HλL1 1 0 0 0 1 0 

Wfixed 0 1 1 1 0 1 
SortFactors 0 0 0 0 0 0 

Wupdate 1 0 0 0 1 0 
 1326 

Supplemental Table 1. CNMF parameters used in each experiment. See methods for 1327 

descriptions of parameter choices and fitting procedures. For complete details refer to seqNMF 1328 

MATLAB Toolbox (Mackevicius et al., 2019).  1329 
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 1335 

Figure 1, Supplement 1. Detailed anatomical parcellation. Left: 2D projection of Allen Brain 1336 

Atlas anatomical parcelation. Right: Allen Brain Atlas anatomical region labels overlaid on 1337 

example mouse brain. Dotted white lines indicate manually drawn region outlines overlayed on 1338 

motifs in main figure text.   1339 
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 1341 

Figure 1, Supplement 2. Testing impact of CNMF parameters on motif discovery. (A) The 1342 

effect of changing the spatio-temporal regulation paramater (λ) in the CNMF algorithm on 1343 

reconstruction cost (red), correlation cost (blue), explained variance (green) and number of 1344 

identified motifs (black). Each data point indicates the mean value from 20 fit epochs (randomly 1345 

selected; no replacement); shaded regions indicate SEM. Y-axis units are arbitrary; values were 1346 

normalized between 0 and 1 across λ values for each of the 20 fits. Chosen lamda is indicated by 1347 

arrow. (B) Reconstruction error as a function of iteration number of CNMF algorithm. All motif 1348 

discovery factorizations were run for 300 iterations, at which point there was minimal improvement 1349 
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in reconstruction error.  (C) Post-hoc validation of choice of motif duration. Motifs were discovered 1350 

using motif durations up to 5 seconds. 1 second motifs captured comparable variance to longer 1351 

motif durations. Shaded regions and dark line show mean and SEM, respectively. (D) Spatial 1352 

resolution did not change number of discovered motifs. Spatial resolution indicated along x-axis. 1353 

When smoothed, a 2D gaussian filter (𝜎𝜎 = [1,1] pixels; see Methods for details) was convolved 1354 

across each frame. Line, box, and whiskers denote median, 25th-75th percentile, and range 1355 

repectively. Significance estimated with one-way ANOVA. 1356 

1357 

Figure 3, Supplement 1 (A) Percent of variance in neural activity explained by motif 1358 

reconstructions as a function of temporal sparsity parameter λHortho. Full distribution shown. Dark 1359 

lines indicate median. (B) Percent of variance in neural activity explained by motif reconstructions 1360 

(purple) and static networks (gray) of withheld epochs per timepoint. The explained variance was 1361 

separately calculated for each timepoint of each epoch (1560 timepoints per epoch, 144 epochs; 1362 

see Methods for details). Timepoints were then binned according to the variance across the image 1363 
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in the original data (100 equal bins). The explained variance captured by the reconstruction was 1364 

averaged per bin per epoch. Dark lines indicate median of 144 epochs. Shading indicates 95% 1365 

confidence interval. Analyses performed on withheld data within the same animals (as in Fig. 3D; 1366 

purple). 1367 
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 1369 

Figure 4, Supplement 1. Additional characterizations of basis motifs (A) Cumulative sum of 1370 

relative percent explained variance of basis motifs. Relative PEV was defined as the fraction of 1371 

total PEV (of all motifs) captured by each motif per epoch. Basis motifs are in descending order 1372 

by their relative PEV; these labels are used for basis motifs throughout manuscript. Line and error 1373 

bars denote mean and 95% CI, respectively. (B) Number of basis motifs discovered (y-axis) as a 1374 

function of CNMF hyperparameter K, the maximum number of discoverable motifs allowed in a 1375 

single epoch (x-axis). Motif discovery and clustering was repeated for each K value (see Methods 1376 

for details). Regardless of parameters, 10-14 basis motifs were identified. Red circle denotes K 1377 

value (28) used for all experiments in the main text, conservatively chosen to maximize the 1378 

number of basis motifs discovered.  1379 
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 1381 

Figure 4, Supplement 2. Multiwavelength hemodynamic correction. (A) Example correlation 1382 

between average pixel intensity of motif 1 reconstruction before and after multiwavelength 1383 

hemodynamic correction (see Methods for details). Gray markers represent mean pixel intensity 1384 

per timepoint. Solid and dotted red lines show linear least squares fit and 95% confidence bounds 1385 

respectively. (B) The correlation in activity between corrected and uncorrected data was high for 1386 

all motifs. Correlation is shown for N=30 2-min epochs across 2 animals. Mean and confidence 1387 

intervals calculated on fisher z-transformed data before reconverting to Pearsons correlation 1388 

coefficient. (C) Average relative variance explained by motifs in corrected and uncorrected 1389 

epochs. Data points show mean of N=30 2-min epochs. Display follows A.   1390 
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 1392 

Figure 4, Supplement 3. Estimating the ‘working resolution’ of widefield imaging approach. 1393 

Parcellation of mouse cortex into functional clusters (N = 18 and 19 for left and right hemisphere, 1394 

respectively). Functional clusters grouped pixels that were correlated over time (see Methods for 1395 

details). Each color denotes a separate functional cluster. Red dot indicates bregma. 1396 
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   1398 

Figure 4, Supplement 4. Temporal cross correlation between motifs. Temporal cross-1399 

correlations (and autocorrelations) performed on the temporal weightings of basis motifs refit to 1400 
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N=144 withheld epochs. Line and shading reflect mean and SEM respectively. No obvious 1401 

hierarchical structure was observed in the activation of different motifs. 1402 

 1403 

Figure 7, Supplement 1. Basis motif expression differs in response to two tactile stimuli.  1404 

(A) The majority of variance in neural activity could be explained by motif activity, not stimulus-1405 

specific activation. Plot shows the percent of explainable variance in the neural response to tactile 1406 

stimuli that is captured by non-specific motifs (left column), the stimulus specific motif (motif 1; 1407 

middle column) and stimulus-specific residuals (right column). Follows Figure 7C. Data points 1408 

correspond to mice (N=9). Black horizontal bars indicate mean and vertical bars indicate SEM. 1409 

(B) Plot shows the relative percent explained variance for each basis motif in response to anterior-1410 

to-posterior airpuffs and a posterior-to-anterior airpuffs directed at the whisker pad. Presentation 1411 

follows Figure 6B. 1412 
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