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Abstract 
When observers make rapid, difficult perceptual decisions, their response time is highly variable from 
trial to trial. In a visual motion discrimination task, it has been reported that human accuracy declines 
with increasing response time, whereas rat accuracy increases with response time. This is of interest 
because different mathematical theories of decision-making differ in their predictions regarding the 
correlation of accuracy with response time. On the premise that perceptual decision-making 
mechanisms are likely to be conserved among mammals, we seek to unify the rodent and primate 
results in a common theoretical framework. We show that a bounded drift diffusion model (DDM) can 
explain both with variable parameters: trial-to-trial variability in the starting point of the diffusion 
process produces the pattern typically observed in rats, whereas variability in the drift rate produces the 
pattern typically observed in humans. We further show that the same effects can be produced by 
deterministic biases, even in the absence of parameter stochasticity or parameter change within a trial.  
 

Introduction 
 One might expect decision-making by humans to be quite different from that of rats. In 

decisions with wide-reaching long-term consequences, we expect (or at least wish) humans would avail 

themselves of abstract conceptual thought, logical reasoning, and culturally accumulated knowledge 

that would be unavailable to a rat. Yet all organisms face a continuous challenge of selecting among 

alternative available actions in order to pursue goals. In order to select an action, sensory information, 

internal knowledge, and goals are combined to assess and evaluate the likely outcomes of possible 

actions relative to survival needs. Often there is not enough time to acquire the evidence necessary to 

determine with certainty the optimal course of action, so an action must be selected despite unresolved 

or unresolvable uncertainty. Some mechanism is needed to ensure timely commitment and to optimize 

outcome on average, and this must adapt flexibly to prevailing sensory context, shifting goal priorities, 

the urgency of action, and the severity of consequences of errors.  When it comes to the continuous 

sensory guidance of moment-by-moment actions, decisions about sensory evidence are made in a 

fraction of a second. We speculate that in this case, mechanisms are largely conserved across mammals. 

A now-classic series of studies in humans and non-human primates introduced the use of a 

stochastic visual motion task to study decision making (Britten, Shadlen et al. 1992, Britten, Shadlen et 

al. 1993, Britten, Newsome et al. 1996, Shadlen, Britten et al. 1996, Shadlen and Newsome 1996, Gold 

and Shadlen 2001, Shadlen and Newsome 2001, Roitman and Shadlen 2002, Mazurek, Roitman et al. 

2003, Huk and Shadlen 2005, Palmer, Huk et al. 2005, Gold and Shadlen 2007).  In each trial a visual 

stimulus provides information regarding which of two available actions is associated with reward and 

which is associated with non-reward or penalty. Stimulus strength is modulated by the motion 

coherence, which is defined as the fraction of the dots in the display that are “signal” (moving toward 

the rewarded response side). The remaining dots are “noise” (moving in random directions). As stimulus 

strength increases, accuracy increases and response time decreases for both monkeys (Roitman and 

Shadlen 2002) and humans (Palmer, Huk et al. 2005). This is parsimoniously explained by drift diffusion 

models, which postulate that noisy sensory evidence is integrated over time until the accumulated 

evidence reaches a decision threshold (Stone 1960, Ashby 1983, Busemeyer and Townsend 1993, Gold 

and Shadlen 2001, Usher and McClelland 2001, Ratcliff and Tuerlinckx 2002, Palmer, Huk et al. 2005, 

Gold and Shadlen 2007, Brown and Heathcote 2008, Ratcliff and McKoon 2008, Ratcliff, Smith et al. 
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2016). Although this class of model is highly successful, more data are needed to test model predictions 

and differentiate among competing versions of the model and alternative model classes (Wang 2002, 

Ratcliff and McKoon 2008, Pleskac and Busemeyer 2010, Purcell, Heitz et al. 2010, Rao 2010, Heathcote 

and Love 2012, Tsetsos, Gao et al. 2012, Huang and Rao 2013, Usher, Tsetsos et al. 2013, Scott, 

Constantinople et al. 2015, Ratcliff, Smith et al. 2016, Sun and Landy 2016, White, Servant et al. 2018). 

For example, when monkeys or humans perform this task, among trials of the same stimulus 

strength the interleaved trials with longer response times are more likely to be errors (Roitman and 

Shadlen 2002, Palmer, Huk et al. 2005). In its simplest form the drift diffusion model does not explain 

this result; therefore the observation has been an important constraint for recent theoretical efforts. 

The result can be explained if the decision bound is not constant but instead decays as a function of time 

(Bowman, Kording et al. 2012, Drugowitsch, Moreno-Bote et al. 2012). A collapsing decision bound can 

be rationalized as an optimal strategy under some task constraints (Rao 2010, Hanks, Mazurek et al. 

2011, Huang and Rao 2013, Tajima, Drugowitsch et al. 2016) though this argument has been challenged 

by others (Hawkins, Forstmann et al. 2015, Boehm, Hawkins et al. 2016). There are alternative ways to 

explain the data within the drift diffusion model framework without positing an explicit urgency signal or 

decaying bound (Ditterich 2006, Ditterich 2006, Ratcliff and McKoon 2008, Ratcliff and Starns 2013). 

When rats performed the same random dot motion task, however, the opposite effect was 

found: their later decisions were more likely to be accurate (Reinagel 2013, Shevinsky and Reinagel 

2019). The same has also been reported for image discriminations in rats (Reinagel 2013), for visual 

orientation decisions in mice (Sriram, Li et al. 2020), and in humans in some other tasks (McCormack 

and Swenson 1972, Ratcliff and Rouder 1998, Long, Jiang et al. 2015, Stirman, Townsend et al. 2016). 

This result is not readily explained by some of the models suggested to explain the late errors of 

primates (reviewed in (Heitz 2014, Ratcliff, Smith et al. 2016, Hanks and Summerfield 2017)). Here we 

explore a stochastic variant of the drift-diffusion model (Ratcliff and Tuerlinckx 2002, Ratcliff and 

McKoon 2008) for its ability to explain these problematic findings in both species. 

 In a basic drift diffusion model (DDM), the relative sensory evidence in favor of a 

decision (e.g. “motion is rightward” vs. “motion is leftward”) is accumulated by an internal decision 

variable, resulting in a biased random walk, i.e., diffusion with drift (Fig 1A). The average drift rate is 

determined by the sensory signal strength (e.g., the coherence of visual motion). When the decision 

variable reaches either decision threshold, the agent commits to a choice. The time at which the 

decision variable crosses a threshold (response time), and the identity of the decision threshold that is 

crossed (correct vs. incorrect), vary from trial to trial. The model parameters are the starting point 𝑧, 

threshold separation 𝑎, drift rate 𝑣, and nondecision time 𝑡 (in Fig 1A-E, 𝑧 = 0 𝑎 = 2, 𝑡 = 0, 𝑣 = 0.7). 

 An interesting feature of this model is that for any set of parameters, the errors and correct 

responses have identical response time distributions (Fig 1B-E, red vs. green). Therefore errors are on 

average the same speed as correct responses – even if the signal is so strong that errors are very rare.  
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Fig 1. The basic drift diffusion model is incompatible with data from rats or humans. A. Simulated evidence 
accumulation in a basic drift diffusion model, for six example trials that terminated in correct decisions (green shades, 
solid symbols) and six that terminated in error decisions (red shades, open symbols). Although an equal number of 
traces are shown, in the condition illustrated 80% of the traces terminated by crossing the correct boundary. B. 
Response time distributions for errors (red, dashed) vs. correct trials (green, solid) of 104 trials like those simulated as 
in A.  C. Cumulatives of the distributions shown in B.  D-E: Distributions in B and C normalized to the number of trials. 
F. Cumulative probability distribution of response time for errors and correct trials for an example experiment in a 
rat, a fixed-coherence experiment with 65% coherence, for which the rat was 82% correct. The null hypothesis that 
the distributions are the same can be rejected with P=2.91e-171 (N=8851,1913) by two-tailed Kolmogorov–Smirnov 
(KS) test. G-I. Analysis of an example rat psychometric experiment. G. Accuracy increased with coherence. H.  Mean 
response time decreased with coherence. I. On average, the response of a correct trial is greater than that of a 
temporally nearby error trial of the same coherence.  J. Like F, for an example experiment in a human, a fixed-
coherence epoch with 10% coherence for which the subject was 83% correct; P= 4.69e-05 (N=745,153) by KS test. K-
M: Like G-I, for example human psychometric epoch.  Data from (Shevinsky and Reinagel 2019, Reinagel and 
Shevinsky 2020). 
 

 We note that this does not, but may at first appear to, contradict two other facts. First, 

responses to stronger stimuli tend to be both more accurate and faster, which in this model is explained 

by a higher drift rate 𝑣. In this sense response time is negatively correlated with accuracy – but only 

when comparing trials of differing stimulus strengths. Second, conservative subjects tend to take more 
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time to respond and are more accurate, which in this model is explained by a greater threshold 

separation 𝑎. In this sense response time is positively correlated with accuracy – but only when 

comparing blocks of trials with different overall degrees of caution. Both of these facts are consistent 

with the fact that within a block of fixed overall caution, comparing among the trials of the same 

stimulus strength, response time and accuracy are uncorrelated in the basic DDM model. 

 Both humans and rats deviate systematically from the prediction that correct and error trials 

have the same mean and probability distribution, however. In the random dot motion discrimination 

task, for example, correct trials of rat subjects tend to have longer response times compared to errors 

(e.g., Fig 1F-I). Humans also violate the basic DDM model prediction, but in the opposite way. For 

humans, errors tend to have longer response times (e.g., Fig 1J-M). The goal is to find a unified 

framework to account for both these deviations from predictions. 

 

Results 
Drift Diffusion Model with variable parameters 
 It was previously shown that adding noise to the parameters of a bounded drift diffusion model 

can differentially affect the error and correct response time distributions (Ratcliff and Tuerlinckx 2002, 

Ratcliff and McKoon 2008). The version we implemented has three additional parameters: variability in 

starting point z, variability in non-decision-time t, and variability in drift rate v (Fig 2A). By hand-

tuning, we are able to find parameter sets that produce behavior qualitatively similar to either a rat (Fig 

2B-E, c.f. Fig 1F-I) or a human (Fig2 F-I, c.f. Fig 1J-M). Removing the drift rate variability and starting 

point variability from these simulations improved accuracy (Fig 2C,G open vs. filled symbols), increased 

the response time for ambiguous stimuli (Fig 2D,H), and eliminated the difference between correct and 

error response times (Fig 2E,I). 
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Fig 2. Addition of variability to the parameters of the drift diffusion model. A. Definition of parameters. The 
parameter a is the distance between the error and correct thresholds. The starting point of evidence accumulation is 
given by 𝑧. The average drift rate 𝑣 depends on the stimulus strength. The observable outcomes are response time 
(RT) and decision (correct or error). The non-decision-time t reflects both sensory latency and motor latency, but is 
drawn at left for graphical simplicity. Parameters t, z, and v vary from trial to trial according to the variability 

parameters t, z, and v respectively. Drift rate variability was simulated by a normal distribution around the mean 
parameter. Starting point variability and non-decision time variability were simulated by uniform distributions 
centered on the mean parameter. Diagram after (Ratcliff and McKoon, 2008). B-E. Analysis of trials simulated with 
parameters that produce qualitatively rat-like behavior: 𝑎 = 1.84, 𝑡 = 0.74, 𝜎𝑣 = 0.1, 𝜎𝑧 = 1.5, 𝜎𝑡 = 0.2, and 𝑣 =
−0.5 𝑐2 + 2.5𝑐, where 𝑐 is coherence (motion stimulus strength). B. Cumulative probability distributions of correct 
vs. error trial response times, for 𝑐 = 0.8. C. Psychometric curve. D. Chronometric curve E. Difference between mean 
response times of errors and correct trials. F-I. Like panels B-E but with parameters that produce qualitatively human-
like behavior: 𝑎 = 2.0, 𝑡 = 0.5, 𝜎𝑣 = 1.5, 𝜎𝑧 = 0.3, 𝜎𝑡 = 0.03, and 𝑣 = −80 𝑐2 + 80𝑐. F. Cumulative RT probability 
distributions for 𝑐 = 0.03.  For all these simulations, the mean starting point 𝑧 = 0, timestep 𝜏 = 0.001, diffusion 

noise 𝜎𝑛 = 1, 𝑁 = 105 trials per coherence. Open symbols show results obtained after setting z=0 and v=0.  Note 

that conditions with ~100% accuracy did not yield enough error trials to estimate RTe, so the RT difference is 
undefined. 
 

 In general, it is difficult or impossible to fit the parameters of this model to data (Boehm, Annis et 

al. 2018). Therefore we systematically varied the parameters (Fig 3) to determine all the conditions under 

which the mean RT of correct trials can be greater or less than the mean RT of error trials, using parameter 

ranges from the literature (Ratcliff and Tuerlinckx 2002, Wagenmakers, van der Maas et al. 2007, Ratcliff 

and McKoon 2008). Like the basic DDM, the simulations with 𝜎𝑧 = 0 ,  𝜎𝑣 = 0  showed no difference 

between correct and error RT for any drift rate (black curve is on y=0 line), in spite of the addition of non-

decision time variability 𝜎𝑡. 
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Fig 3. Parameter sweep of the variable-parameter DDM. Curves show the difference between correct and error 
mean response times, 〈𝑅𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡〉 −  〈𝑅𝑇𝑒𝑟𝑟𝑜𝑟〉, as a function of drift rate parameter 𝑣 = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. 
Colors indicate starting point variability 𝜎𝑧 = [0.0, 0.02, 0.07, 0.10], in spectral order from low (dark blue) to high 
(red). Symbols indicate drift rate variability 𝜎𝑣 =  [0.0, 0.08, 0.12, 0.16], increasing in the order: circle, square, 
triangle, diamond. Black curve with circles represents the special case of 𝜎𝑣 = 0, 𝜎𝑧 = 0.  A. Simulations with 
threshold separation 𝑎 = 0.08. B. Simulations with 𝑎 = 0.11. C. Simulations with 𝑎 = 0.16. For all the simulations 
shown, 𝑧 = 0, 𝑡 = 0.3, 𝜎𝑡 = 0.2, 𝜏 = 0.001, and 𝜎𝑛 = 0.1.  We classified models “human-like” when the RT 
difference was negative and “rat-like” when it was positive, per (Shevinsky and Reinagel 2019). 
 

 We never observed a positive RT difference in this model unless the starting point was variable 

(the dark blue or black curves, 𝜎𝑧 = 0, lie entirely on or below the abscissa). Whenever 𝜎𝑧 > 0 and 𝜎𝑣=0, 

the RT difference was positive (circles other than black). We never observed a negative RT difference in 

the absence of drift rate variability (the circles, 𝜎𝑣 = 0, lie entirely on or above the abscissa). Whenever 

𝜎𝑣 > 0 and 𝜎𝑧=0, the RT difference was negative (blue curves). Holding other parameters constant, the 

RT difference always increased (more positive, or less negative) with increasing 𝜎𝑧  (red > orange > cyan > 

blue) and decreased with increasing 𝜎𝑣 (circle > square > triangle > diamond). When both starting point 

variability and drift rate variability are present simultaneously, these effects trade off against one another 

quantitatively, such that there are many parameter combinations consistent with any given sign and 

amplitude of effect. This explains why parameter fits to data are generally degenerate. Nevertheless the 

simulations show that human-like pattern is generally associated with dominance of 𝜎𝑣 and the rat-like 

pattern with dominance of 𝜎𝑧 . The nondecision time 𝑡 and its variability 𝜎𝑡  were explored in separate 

simulations and did not impact the effect of interest in either species (not shown). 

 

Variability need not be random 
We have defined decision thresholds as “correct” vs. “error” rather than “left” vs. “right” (Fig 2A). 

Therefore it is impossible for the mean starting point 𝑧 to be biased, because the agent cannot know a 

priori which side is correct. If a subject’s starting point were systematically biased to one response side, 

the starting point would be closer to the correct threshold on half the trials (when the preferred side 
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was the correct response), but further on the other half of the trials (when the non-preferred response 

was required). Thus the mean starting point would be 𝑧 = 0, but the distribution of 𝑧 would be binary 

(or at least bimodal), and thus high in variance. This could mimic a model with high 𝜎𝑧, even in the 

absence of stochastic parameter variability. 

We confirmed by simulation that adding a fixed response side bias to the standard DDM was 

sufficient to produce longer RT in correct trials than error trials, as commonly seen in rodents (Fig 4A-D). 

What if such static or dynamic response biases were computationally implemented not as shifts in the 

starting point of evidence accumulation, but rather as assymetries in the drift rate for leftward vs. 

rightward motion: 𝑣𝑐,𝑅 ≠ 𝑣𝑐,𝐿? Again, this would bias toward or away from the correct response with 

equal probability, resulting in a binary or bimodal distribution in 𝑣, and producing effects equivalent to 

high drift rate variability 𝜎𝑣 (Fig 4E-H).   

 

 
Fig 4. Bias is sufficient to produce either a rat-like or human-like effect within the basic DDM. Simulations were 
performed with 𝜎𝑣 = 0,  𝜎𝑧 = 0, 𝜎𝑡 = 0 (i.e. the basic model in Fig 1) but with different forms of bias added. Trials were 
simulated with 50% Left targets. A-D. A Left side bias was simulated by displacing the starting point towards the correct 
boundary on Left-target trials, or towards the error boundary for Right-target trials, by the amount indicated by color 
key at right. A. Percent Left responses, as a function drift rate 𝑣   (sensory stimulus strength). B. Average accuracy of 
the response as a function of 𝑣. C. Average response time as a function of 𝑣. D. Difference between correct and error 
mean response times, 〈𝑅𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡〉 −  〈𝑅𝑇𝑒𝑟𝑟𝑜𝑟〉, as a function 𝑣. E-H: like A-D, but here bias was simulated by increasing 
the drift rate 𝑣 on L-target trials, or decreasing it on R-target trials, by the amount indicated in color key at right. 
 

The simulations in Fig 4 only require that a bias to one side (L or R) exists in each trial. It does not 

matter if that bias is fixed or varying from trial to trial, only that it is uncorrelated with the correct 

response. If the starting point or drift rate were biased in individual trials based on the recent trial 

history, for example, this would also bias the decision towards or away from the correct response with 

equal probability in each trial. Therefore history-dependent bias could mimic high 𝜎𝑧  or high 𝜎𝑣, even in 

the absence of an overall left or right side bias. 
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In principle, therefore, systematic response biases could be sufficient to explain the observed 

dependence of accuracy on response time in both species, even in the absence of overt bias, random 

variability of parameters, or within-trial parameter change. More generally, the observed effects could 

be explained by a combination of fixed bias, contextual biases, and noise impacting both starting point 

and drift rate in both species. On this model, the difference between rats and humans could be 

explained by assuming that noise and/or biases have a stronger effect on drift rate in humans and a 

stronger effect on starting point in rats.  

 

Discussion 
The impetus for this study was an observed difference between human and rat decision-making: 

for humans correct decisions are on average faster than errors, whereas for rats correct decisions are on 

average slower than errors. Both observations violate the predictions of the standard drift diffusion 

model. This species difference was seen even when sensory task was matched such that rats were just 

as accurate and just as fast as humans in the task (Shevinsky and Reinagel 2019). 

We do not presume that the difference in response time of correct vs. error trials is functionally 

significant for either species; the difference is small and accounts for a small fraction of the variance in 

response time. The reason this effect is interesting is because it is places constraints on the underlying 

decision-making algorithms, and in particular, because it is inconsistent with DDM in its basic form.  

Decreasing accuracy with response time has been widely reported in both humans and 

nonhuman primates (Roitman and Shadlen 2002, Palmer, Huk et al. 2005) and has been explained by a 

number of competing models (Ditterich 2006, Ditterich 2006, Ratcliff and McKoon 2008, Rao 2010, 

Hanks, Mazurek et al. 2011, Huang and Rao 2013, Ratcliff and Starns 2013, Tajima, Drugowitsch et al. 

2016).  It was only recently appreciated that accuracy increases with response time in this type of task in 

rats (Reinagel 2013, Reinagel 2013, Shevinsky and Reinagel 2019, Sriram, Li et al. 2020), and it remains 

unclear which of those models can accommodate this observation as well. We used a simple drift 

diffusion model with parameter noise (Ratcliff and Tuerlinckx 2002, Ratcliff and McKoon 2008) to 

illustrate that trial-to-trial parameter variability could explain the observed interaction between reaction 

time and accuracy in either species. While this was demonstrated in a simple DDM, similar effects might 

be found in other DDM-based decision-making models. 

 

Can context account for variability? 
Although stochastic trial-by-trial variability of parameters could explain the effects of interest 

(Fig 3), systematic variations can also do so. We demonstrate this for the simple case of response side 

bias (Fig 4). Response bias is more prevalent in rats than in humans, but correct trials have longer RT 

than errors even in rats with no bias (Shevinsky and Reinagel 2019). In any case, these simulations show 

that response side bias would only produce the rat-like pattern if that bias impacted starting point to a 

greater degree than drift rate. 

It is known that decisions in this type of task can be biased by the previous trial’s stimulus, 

response, and outcome in mice (Busse, Ayaz et al. 2011, Hwang, Dahlen et al. 2017, Roy, Bak et al. 

2021), rats (Lavan, McDonald et al. 2011, Roy, Bak et al. 2021), non-human primates (Sugrue, Corrado et 

al. 2004), and humans (Goldfarb, Wong-Lin et al. 2012, Roy, Bak et al. 2021), reviewed in (Frund, 
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Wichmann et al. 2014). Such history-dependent biases can be strong without causing an average side 

preference or an observable lapse rate (errors on strong stimuli). Species differ in the strength of such 

biases (Roy, Bak et al. 2021), but a difference in strength of bias does not determine whether accuracy 

increases or decreases with response time (c.f. 2D vs. 2H). This requires a difference in the 

computational site of action of bias. 

Fluctuations in arousal, motivation, satiety or fatigue could conceivably modulate decision 

thresholds or drift rates from trial to trial independently of either response side or trial history. (Note 

that in the model of Fig 2-3, fluctuations in the threshold separation parameter a are referred to the 

starting-point variability parameter 𝜎𝑧 (Ratcliff and Tuerlinckx 2002, Ratcliff and McKoon 2008)). Such 

sources of variation might be correlated with measurable states, such as alacrity (e.g., latency to trial 

initiation, or in rodents the number or frequency of request licks), arousal (e.g., assessed by 

pupillometry), fatigue (the number of trials recently completed), satiety (amount of reward recently 

consumed), or frustration/success (fraction of recent trials penalized/rewarded).  It would be of interest 

to determine how much of the observed behavioral variability is reducable to such deterministic 

components in each species, and whether those effects can be attributed differentially to starting point 

vs. drift rate effects in either decision-making models or neural recordings. 

 

Is parameter variability a feature or a bug? 
To the extent that parameter variability is attributable to systematic influences rather than 

noise, a separate question would be whether this variability is adaptive or dysfunctional, in either 

species. It is possible that non-sensory influences shift the decision-making computation from trial to 

trial in a systematic and reproducible fashion that would be functionally adaptive in the context of 

natural behavior, even though we have artificially broken natural spatial and temporal correlations to 

render it maladaptive in our laboratory task.  

For example, in nature some locations may be intrinsically more reward-rich, or very recent 

reward yields may be informative about the expected rewards at each location. In the real world, 

recently experienced visual motion might be highly predictive of the direction of subsequent motion 

stimuli. Therefore biasing either starting point or drift rate according to location or recent stimulus or 

reward history may be adaptive strategies under ecological constraints, for either or both species.  

  

Conclusions 
It has been argued that neural computations underlying sensory decisions could integrate 

comparative information about incoming sensory stimuli (e.g., left vs. right motion signals), internal 

representations of prior probability (frequency of left vs. right motion trials) and the expected values 

(rewards or costs) associated with correct vs. incorrect decisions, in a common currency (Gold and 

Shadlen 2001, Gold and Shadlen 2007).  On the premise that basic mechanisms of perceptual decision-

making are likely to be conserved, fitting a single model to data from multiple species – especially where 

they differ – is a powerful way to develop and distinguish among alternative computational models, and 

enables direct comparison of species.  
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Methods 
Experimental data 

No experiments were reported in this manuscript. Example human and rat data shown in Fig 1 

were previously published (Shevinsky and Reinagel 2019, Reinagel and Shevinsky 2020). Specifically, Fig 

1F used rat fixed-coherence epoch 256; Fig 1G-I used rat psychometric epoch 146. Fig 1J used human 

fixed-coherence epoch 63, and Fig1K-M used human psychometric epoch 81 from that data set. 

To summarize the experiment briefly: the task was random dot coherent motion discrimination. 

When subjects initiated a trial, white dots appeared at random locations on a black screen and 

commenced to move. Some fraction of the dots (“signal”) moved at the same speed toward the 

rewarded response side. The others (“noise”) moved at random velocities. Subjects could respond at 

any time by a left vs. right keypress (human) or lick (rat). Correct responses were rewarded with money 

or water; error responses were penalized by a brief time-out. Stimulus strength was varied by the 

motion coherence (fraction of dots that were signal dots). Other stimulus parameters (e.g. dot size, dot 

density, motion speed, contrast) were chosen for each species to ensure that accuracy ranged from 

chance (50%) to perfect (100%) and response times ranged from ~500-2500ms for typical subjects of the 

species. The psychometric parameters with respect to coherence could be, but were not, matched. 

   

Computational methods 
The drift diffusion process was simulated according to the equation X(t) = X(t-1) ±  with 

probability p of increasing and (1-p) of decreasing. Here t is the time point of the process, with time step 

 in seconds; 𝛿 = 𝜎 ⋅ √𝜏 denotes the step size, where  is the standard deviation of the Gaussian white 

noise of the diffusion; 𝑝 = 0.5 ⋅ (1 + 𝑣 ⋅
√𝜏

𝜎 
), where v is the drift rate. The values for  and  were fixed 

at 0.1 msec and 1, respectively. For any trial, the process starts at a starting position z, sampled from a 

uniform distribution of range z, assumes a constant drift rate v, sampled from a normal distribution of 

standard deviation v, and continues until X(t) exceeds either threshold boundary. The non-decision-

time t, sampled from a uniform distribution of range t, is added to the elapsed time to obtain the final 

RT associated with that trial. 

In Fig 1I and Fig1M we measured the interaction between accuracy and response time using the 

temporally local measure ⟨RTcorrect - RTerror⟩ introduced in (Shevinsky and Reinagel 2019). This method is 

preferred for real data because it is robust to non-trending non-stationarities that are commonly 

present in both human and rat data, not detected by traditional stationarity tests, and that could 

confound estimation of the effect of interest. The response time of each error trial is compared to a 

temporally adjacent correct trial of the same coherence, requiring a minimum distance of 3-5 trials to 

avoid sequential effects. For simulated data, where stationarity is guaranteed, the temporally local 

measure ⟨RTcorrect - RTerror⟩ and global measure ⟨RTcorrect⟩ - ⟨RTerror⟩ are numerically equivalent. 

The data and code required to replicate all results in this manuscript are archived in a verified 

replication capsule (Reinagel and Nguyen 2021). 
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