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Summary statement 22 

Using a novel closed-loop behavioral assay, we show that Drosophila larvae can navigate light 23 

gradients exclusively using temporal cues. Analyzing and modeling their behavior in detail, we 24 

propose that larvae achieve this by integrating brightness change during runs. 25 
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Abstract 27 

Navigating across light gradients is essential for survival for many animals. However, we still 28 

have a poor understanding of the algorithms that underlie such behaviors. Here we develop a 29 

novel phototaxis assay for Drosophila larvae in which light intensity is always spatially uniform 30 

but updates depending on the location of the animal in the arena. Even though larvae can only 31 

rely on temporal cues in this closed-loop setup, we find that they are capable of finding 32 

preferred areas of low light intensity. Further detailed analysis of their behavior reveals that 33 

larvae turn more frequently and that heading angle changes increase when they experience 34 

brightness increments over extended periods of time. We suggest that temporal integration of 35 

brightness change during runs is an important – and so far largely unexplored – element of 36 

phototaxis. 37 
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Introduction  39 

Many animals have evolved behaviors to find favorable locations in complex natural 40 

environments. Such behaviors include chemotaxis to approach or avoid chemical stimuli; 41 

thermotaxis to find cooler or warmer regions; and phototaxis to approach or avoid light (Gepner 42 

et al., 2015; Gomez-Marin and Louis, 2014; Gomez-Marin et al., 2011; Kane et al., 2013; Klein 43 

et al., 2015; Luo et al., 2010). 44 

Drosophila larvae are negatively phototactic, preferring darker regions (Sawin et al., 1994). 45 

To navigate, larvae alternate between runs and turns. During runs, larvae move relatively 46 

straight. During turns, they slow down and perform head-casts (Lahiri et al., 2011) to sample 47 

their environment for navigational decisions (Gomez-Marin and Louis, 2012; Humberg and 48 

Sprecher, 2018; Humberg et al., 2018; Kane et al., 2013). However, it is unclear whether such 49 

local spatial sampling is necessary to perform phototaxis. Zebrafish larvae, for example, can 50 

perform phototaxis even when light intensity is uniform across space but changes over time with 51 

the animal's position (Chen and Engert, 2014). In a purely temporal phototaxis assay, spatial 52 

information is absent, so navigation must depend on other cues. 53 

Previous work indicates that as brightness increases, Drosophila larvae make shorter runs 54 

and bigger turns (Humberg et al., 2018; Kane et al., 2013). This is reminiscent of chemotactic 55 

strategies, where decreasing concentrations of a favorable odorant increase the likelihood of 56 

turning (Gomez-Marin et al., 2011). While it has been shown that temporal sampling of olfactory 57 

cues is sufficient to guide chemotaxis (Schulze et al., 2015), it remains unclear whether larvae 58 

can use a purely temporal strategy for visual navigation. 59 

Using a virtual landscape in which brightness is always spatially uniform but depends on the 60 

location of the animal in the arena, we confirm that larvae can perform phototaxis by modulating 61 

run-length and heading angle. Our data indicate that larvae achieve this by integrating 62 

brightness change during runs (Video S1). 63 
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Materials and methods 65 

 66 

Experimental setup 67 

All experiments were performed using wild-type 2nd-instar Drosophila melanogaster larvae 68 

collected 3–4 days after egg-laying. This age was chosen to ensure consistent phototactic 69 

behavior because older larvae might change their light preference (Sawin-McCormack et al., 70 

1995). Larvae were raised on agarose plates with grape juice and yeast paste, with a 12h/12h 71 

light-dark cycle at 22°C and 60% humidity. Before experiments, larvae were washed in droplets 72 

of deionized water. All experiments were carried out between 2 pm and 7 pm to avoid potential 73 

circadian effects (Mazzoni et al., 2005). Each experiment lasted for 60 min. For all stimuli, 74 

animals were presented with constant gray during the first 15 min, allowing them to distribute in 75 

the arena. 76 

Larvae were placed in the center of a custom-made circular acrylic dish (6 cm radius) filled 77 

with a thin layer of freshly made 2% agarose (Fig. 1A). As previously described (Bahl and 78 

Engert, 2020), spatially uniform whole-field illumination was presented via a projector (60 Hz, 79 

AAXA P300 Pico Projector) from below. Brightness was set by the computer and ranged from 80 

values 0 to 255. Respective light intensity was measured using an Extech Instruments Light 81 

Meter LT300 and ranged from 41 Lux to 2870 Lux (Fig. S1A). We did not attempt to linearize 82 

this curve as it is unclear how the larval visual system processes contrast. Therefore, for all 83 

brightness-dependent behavioral analyses, the original pixel brightness value, as set by the 84 

program, was used. 85 

Three virtual light intensity landscapes were tested: a “Valley” stimulus, a “Ramp” stimulus, 86 

and a “Constant” stimulus. For the “Valley” and “Ramp” stimuli, the spatially uniform light 87 

brightness (�) was updated in closed-loop according to � � 255 � �� � 3
�/ 9 (Figs. 1B and S2A) 88 

and � � 255 � �1 � �1 � �/6
 (Fig. S3A), respectively, where � is the larva’s radial distance to 89 

the center of the arena. Both profiles ensure that brightness levels near the wall are high, 90 

decreasing the edge preference of larvae and reducing boundary effects. For the “Constant” 91 

stimulus, brightness values remained gray (� � 128) regardless of the larva’s position. 92 

For online tracking, the scene was illuminated using infrared LED panels (940 nm panel, 15-93 

IL05, Cop Security). A high-speed camera (90 Hz, USB3 Grasshopper3-NIR, FLIR Systems) 94 

with an infrared filter (R72, Hoya) was used to track the larva’s centroid position in real-time. 95 

Eight independent arenas were operated in parallel, making the system medium to high-96 
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throughput and relatively cost-effective. The position of the animal was determined by spatially 97 

filtering the background-subtracted image and then searching for the largest contour. The 98 

procedure provides a reliable estimate of the animal’s centroid position but cannot determine 99 

the precise location of the head or the tail. Using the centroid as a closed-loop position signal 100 

significantly simplifies the experimental procedure and is justified as larvae are small in size 101 

relative to the slowly changing and always spatially uniform virtual brightness landscapes. The 102 

spatial precision of our tracking was in the order of ±0.01 cm per ~10 ms, resulting in a nearly 103 

noise-free presentation of the stimulus profiles (Fig. S1B). In addition to the online-tracking, a 104 

video of the animal was stored for offline posture analysis (Video S2). 105 

In our system, the closed-loop latency between the detection of the animal’s position and 106 

the update of the visual stimulus is 100 ms. This value was determined using the following 107 

protocol: Infrared filters were removed from the cameras, allowing for direct measurements of 108 

the brightness from the projector. Arena brightness starts at a high level but is set to a dark 109 

state after a few seconds. When the camera detects such an event, the computer sets the 110 

brightness back at a high level. The length of the resulting dark period is the closed-loop delay. 111 

Using this strategy, the resulting value contains the sum of all delays of the system (camera 112 

image acquisition, image buffering, data transport to the USB 3.0 hub, PCI-express to CPU 113 

transport, CPU image analysis, command to the graphics card, graphics buffering, and buffering 114 

and image display on the projector). While it is hard to use GPU-based systems to reach 115 

closed-loop delays below 100 ms (Stowers et al., 2017), simpler systems with direct LED control 116 

allow for delays as short as 30 ms (Tadres and Louis, 2020). 117 

 118 

Control experiments 119 

Notably, animals navigating the “Constant” stimulus were always analyzed as if they navigated 120 

the respective experimental stimulus (“Valley” or “Ramp”), using the same binning, naming 121 

conventions, and analysis methods. For example, control animals that spend time in the “Dark” 122 

ring (gray open circles in Fig. 1D) actually perceive constant gray during the entire experiment. 123 

This analysis was chosen to control for the spatial arrangement of our stimulus and boundary 124 

effects. The best example where this strategy is important can be seen for the turn-triggered 125 

brightness change (Fig. 2G): Even though control animals always perceive gray, the turn-126 

triggered brightness dynamics indicate a complex dependency on the spatial arrangement of 127 

the arena. Only by using this control analysis is it possible to appreciate the dynamics in the 128 

experimental group. 129 
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 130 

Data analysis and statistics 131 

All data analysis was performed using custom-written Python code on the 45 min period after 132 

acclimatization. To avoid tracking problems and minimize boundary effects, data were excluded 133 

where larvae were within 0.1 cm distance to the edge. 134 

The circular arena was binned in three concentric regions depending on the radius �:� � 0 �135 

2 ��, � � 2 � 4 ��, and � � 4 � 6 ��. These regions were named the “Bright” center, the “Dark” 136 

ring, and the “Bright” ring for the “Valley” stimulus (Fig. 1B) and the “Dark” center, the “Gray” 137 

ring, and the “Bright” ring for the “Ramp” stimulus (Fig. S3A). Animal speed was computed by 138 

interpolating the trajectory to 1 s bins and then by taking the average distance of consecutive 139 

points (Fig. 1E). 140 

For the turn event-based offline analysis (Fig. 2), a pose estimation toolbox, DeepPoseKit 141 

(Graving et al., 2019), was used. To this end, 100 frames were manually annotated (head, 142 

centroid, and tail) to train the neural network, which was then used to predict animal posture 143 

across all frames from all animals. Body curvature was defined as the angle between the tail-to-144 

centroid vector and the centroid-to-head vector (Fig. 2A). The pose estimation algorithm 145 

occasionally had difficulties distinguishing between the head and the tail. This problem was, 146 

however, not relevant for the curvature measurement as the angle between these two body 147 

parts does not change when they are flipped. In a few frames, the algorithm placed the head 148 

and the tail at the same location, leading to the transient detection of large body curvatures. 149 

These events were discarded by low-pass filtering traces with a Butterworth filter (cutoff 150 

frequency: 3 Hz). Turn events were defined as a local curvature peak above 30° and needed to 151 

be separated from the previous event by at least 2 s in time and 0.2 cm in space. The value for 152 

the curvature threshold was chosen such that the identified curvature peaks clearly stood out 153 

from the curvature fluctuations in between events (Fig. 2A). 154 

Turn angles were defined as the angle between the location in the arena 2 s before a turn 155 

event and 2 s after. Run-length was defined as the time between consecutive turn events. Each 156 

turn event was labeled as “Dark” or “Bright”, based on the brightness equations and binning 157 

described above (Dark: pixel brightness less than 29, Bright: otherwise), and as “Darkening” or 158 

“Brightening” based on the sign in brightness change since the last turn event (Fig. 2E,F). As 159 

turn events are short and spatially confined, by stimulus design, the whole-field brightness 160 

change during such events is nearly zero (Fig. 2D). Notably, our curvature-based turn event 161 

identification procedure does not allow for precise labeling of the beginning and the end of the 162 
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event. Therefore, the brightness change during turns was defined as the brightness difference 163 

0.5 s before and 0.5 s after the event. This time range often includes brief periods of runs, 164 

explaining the small residual width of the reported brightness distribution (Figs. 2D and 3E). 165 

The brightness change during runs was defined as the difference in brightness between two 166 

consecutive turn events (Figs. 2D and 3E). 167 

Two-sample t-tests were used for pairwise comparisons between the experimental and 168 

control data. Paired-sample t-tests were used for pairwise comparisons within groups. Statistics 169 

for the linear regression fits (Figs. S4A,B and S5A,B) were based on a bootstrapping approach 170 

by repeating the analysis 1000 times for shuffled data and then comparing the distribution of R2 171 

values to the one from the original dataset. 172 

Larvae were discarded if they spent more than 99% of the experimental time in a single 173 

region or if their speed was zero. All data analysis was done automatically in the same way for 174 

the experimental and control groups. 175 

 176 

Modeling 177 

Simulations (Figs. 3, S5, and S6) were custom written in Python 3.7, using the high-178 

performance Python compiler numba. Simulations were performed using Euler’s Method with a 179 

timestep of dt = 0.01 s. Model larvae were initialized with a random position and orientation. At 180 

each time step, larvae stochastically chose one of two possible actions: They could either move 181 

forward, with a speed of 0.04 cm/s (parameter was taken directly from the experiment, Fig. 1E), 182 

or turn. The baseline probability for turning was p = 0.00066. This value was directly computed 183 

from the experiment to match the measured average run-length of T = 15 s (Fig. 2E,F), 184 

following p = dt / T. When making turns, turn angles were drawn from a Gaussian distribution 185 

with a baseline standard deviation of 32°, matching the experimental value (Fig. 2C,E,F). When 186 

model larvae reached the edge, a new random direction vector was chosen, preventing them 187 

from leaving the arena. 188 

In correspondence with our experimental findings (Fig. 2E,F), the model was equipped with 189 

four additional navigational rules (Fig. 3A). 190 

“Rule 1”: When the environment is “Dark” (brightness smaller than 29), turn angles 191 

decrease. When it is “Bright” (brightness larger than 29), turn angles increase. 192 

“Rule 2”: When the environment is “Dark” (brightness smaller than 29), run-lengths increase. 193 

When it is “Bright” (brightness larger than 29), run-lengths decrease. 194 
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“Rule 3”: When the environment is “Darkening” (change since previous turn smaller than 195 

zero), turn angles decrease. When it is “Brightening'' (change since previous turn larger than 196 

zero), turn angles increase. 197 

“Rule 4”: When the environment is “Darkening” (change since previous turn smaller than 198 

zero), run-lengths increase. When it is “Brightening'' (change since previous turn larger than 199 

zero), run-lengths decrease. 200 

Changes in turn angle were accomplished by adjusting the standard deviation of the 201 

Gaussian distribution by ±30%, the effect size observed in our experiments (Fig. 2E,F). We 202 

modulated run-length (T) by scaling them by ±30%, thereby modulating the probability of turning 203 

(p = dt / T). When combinations of those rules were tested (Fig. 3A), effects were concatenated. 204 

A performance index (PI) (Fig. 3A) was used to characterize how well animals or models 205 

performed temporal phototaxis. The metric was based on the difference between the 206 

experimental and control group for the fraction of time spent in the “Dark” ring. To compute this 207 

value, bootstrapping was used to average 1000 samples of randomly chosen differences 208 

between experimental and control conditions. 209 

For the parameter grid search (Fig. 3A), the absolute turn angle and the run-length were 210 

varied systematically. To this end, respective baseline parameter values (taken from the 211 

experiment, Fig. 2E,F), were changed by scaling them with two multipliers (run-length multiplier 212 

and turn angle multiplier). 213 

Data generated from model larvae were analyzed and displayed using the exact same 214 

scripts that were used to analyze experimental data, allowing for easy comparison between 215 

model and animal behavior. 216 
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Results 218 

 219 

Fly larvae can navigate a virtual brightness gradient 220 

We first asked whether fly larvae can perform temporal phototaxis, i.e. navigate a virtual light 221 

landscape lacking spatial information. We placed individual animals in an agarose-filled arena, 222 

allowed them to freely explore, and tracked their position in real-time (Fig. 1A). We presented 223 

spatially uniform light from below, with brightness levels following a quadratic dependence of the 224 

larva’s distance from the center (“Valley” stimulus, Fig. 1B) or constant gray as a control 225 

(“Constant” stimulus). For both groups, we analyzed how animals distribute across three 226 

concentric regions: the “Bright” center, the “Dark” ring, and the “Bright” ring. Notably, throughout 227 

this study control animals were always analyzed as if they navigated the experimental stimulus 228 

even though they in fact perceived constant gray. This analysis is important to control for the 229 

spatial arrangement of our stimulus and boundary effects. 230 

 Larvae that navigated the “Valley” stimulus spent a significantly higher fraction of time in the 231 

“Dark” ring than those that navigated the “Constant” stimulus (Figs. 1C,D and S2B). This 232 

behavior was most pronounced between minutes 10 and 40 of the experiment (Fig. S2C). To 233 

verify that this behavior was not an artifact of our specific stimulus design, we also tested a 234 

gradient where brightness monotonically “ramps” with radial distance (Fig. S3A) and observed 235 

that larvae also here navigated to dark regions (Fig. S3B,C). 236 

Because larvae lacked spatial brightness cues in our setup, it was unclear which behavioral 237 

algorithms they employ. One basic, yet potentially sufficient, algorithm would be to reduce 238 

movement in darker regions. However, speed was independent of brightness (Figs. 1E and 239 

S3D), suggesting that larvae employ more complex navigational strategies. 240 

We conclude that Drosophila larvae are capable of performing phototaxis in the absence of 241 

spatial information and that this behavior cannot be explained by a simple brightness-dependent 242 

modulation of crawling speed. 243 

 244 

Larval temporal phototaxis depends on brightness change over time 245 

In spatially differentiated light landscapes, fly larvae make navigational decisions by sampling 246 

brightness differences during head-casts. In our setup, by design, larvae experience no 247 

brightness fluctuations during head-casts. Hence, they have to use whole-field brightness or 248 

brightness history information to modulate the magnitude and/or frequency of turns. To explore 249 
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this possibility, we segmented trajectories into runs and turns. We applied a deep learning-250 

based package, DeepPoseKit (Graving et al., 2019) to extract the larvae’s head, centroid, and 251 

tail positions from the experimental video (Fig. 2A and Video S2). From there, we calculated 252 

the animal’s body curvature to identify head-casting events and to quantify turn angles and run-253 

lengths (Fig. 2A–C). 254 

As expected, brightness changes during the spatially confined turns were negligible 255 

compared to ones measured during runs (Fig. 2D). To quantify the effect of brightness on 256 

heading angles and run-lengths, we checked how these parameters varied with the larva’s 257 

position. During the “Valley” but not the “Constant” stimulus, turns in the “Dark” region led to 258 

smaller heading angle changes than in the “Bright” regions (Fig. 2E). Similarly, runs before a 259 

turn in the “Dark” region of the “Valley” stimulus were slightly longer compared to runs ending in 260 

the “Bright” region. However, this also partly occurred with the “Constant” stimulus, suggesting 261 

that the effect might not arise from a visuomotor transformation. 262 

Next, we explored whether brightness history affects behavior. As run-lengths were highly 263 

variable, ranging from ~3 s to ~40 s (Fig. 2C), we focused our analysis on the brightness 264 

change between consecutive turns. We classified turns by whether larvae experienced a 265 

decrease or increase in whole-field brightness during the preceding run. We found that heading 266 

angle changes were smaller and that run-lengths were longer when larvae had experienced a 267 

brightness decrease compared to an increase (Fig. 2F). We did not observe these effects in 268 

control animals. 269 

To further quantify the effects of brightness and brightness change on heading angle 270 

change, we performed regression analysis directly on individual events (Fig. S4). While turn 271 

angles scale with brightness, they do so more strongly with brightness change. 272 

These observations led us to hypothesize that larvae might integrate information about the 273 

change in brightness during runs and that this integration period might span several seconds. 274 

To obtain an idea about time-scales, we computed a turn event-triggered brightness average 275 

(Fig. 2G). We observed that, on average, turns performed in the “Valley” stimulus are preceded 276 

by an extended period of >20 seconds of brightening, suggesting that long-term brightness 277 

increases drive turns. 278 

In summary, our analysis of turns and runs confirms that, first, brightness levels modulate 279 

heading angle change and, second, changes in brightness prior to turns modulate heading 280 

angle change as well as run-length. 281 

 282 
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A simple algorithmic model can explain larval temporal phototaxis 283 

We next wanted to test whether the identified behavioral features are sufficient to explain larval 284 

temporal phototaxis. Based on our experimental findings (Fig. 2), we propose four rules as 285 

navigational strategies (Fig. 3A). For rules 1 and 2, the instantaneous brightness modulates the 286 

heading angle change and run-length, respectively. By contrast, for rules 3 and 4, the 287 

brightness change since the last turn modulates the heading angle changes and run-lengths. 288 

To test these navigational rules, we simulated larvae as particles that could either move 289 

straight or make turns. To compare the performances of different models, we calculated a 290 

phototaxis index (difference of time spent in the “Dark” ring between experimental and control 291 

groups, Fig. 3A). For all permutations of our rules, we explored a set of multipliers for the 292 

heading angle change and run-length, with a multiplier of 1 corresponding to the experimental 293 

averages (Fig. 2E,F). This allowed us to assess the robustness of our model to parameter 294 

choice. As expected, with no active rules, the larval distribution was comparable between the 295 

“Valley” and “Constant” stimulus. Activating rules 1 or 2, performance did not improve, 296 

suggesting that modulation of behavior based on instantaneous brightness is insufficient to 297 

perform temporal phototaxis. Activating rules 3 or 4, phototaxis emerged for small run-lengths 298 

and large turn angle multipliers. However, for multipliers set to 1, the resulting phototaxis index 299 

was weaker than in experiments (= 14 %). Only when combining rules 3 and 4, phototaxis 300 

performance matches the experimental values. Combining all four rules yielded minimal 301 

improvements. Therefore, for further analysis, we focused on a combination of rules 3 and 4, 302 

with both multipliers set to 1. 303 

Like real larvae (Fig. 1C–E), simulated larvae navigating the “Valley” stimulus spent more 304 

time in the “Dark” ring than larvae navigating the “Constant” stimulus (Fig. 3B,C) without 305 

modulating speed (Fig. 3D). Furthermore, distributions of turn angle changes, run-lengths, and 306 

brightness changes were comparable to experimental data (compare Figs. 2C,D and 3E,F). 307 

Residual differences in those distributions are likely due to additional mechanisms used by the 308 

animal, such as a refractory period for turn initiation, which we did not incorporate in our model. 309 

When we examined the effects of instantaneous brightness and brightness change on turn 310 

angle amplitude and run-length (Fig. 3G,H), we observed similar patterns as in the experimental 311 

data (Fig. 2E,F). As found in experiments (Fig. 2G), turns are preceded by long stretches of 312 

increasing brightness (Fig. 3I), supporting our hypothesis that larvae integrate brightness 313 

change over several seconds. Moreover, in the event-based regression analysis we found 314 

results to be in agreement with experimental data as well (compare Figs. S4 and S5). Finally, to 315 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.01.06.896142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896142
http://creativecommons.org/licenses/by/4.0/


Page 13 of 19 

verify that our model generalizes to other visual stimulus patterns, we simulated larvae exploring 316 

the “Ramp” stimulus and observed phototaxis performance comparable to that of real larvae 317 

(compare Figs. S3 and S6). 318 

In summary, after implementing our experimentally observed navigational rules in a simple 319 

computational model, we propose that the most critical element of larval temporal phototaxis is 320 

the ability to integrate brightness change over extended time periods. Modulating turn angle 321 

amplitude and run-length based on such measurement is sufficient to perform temporal 322 

phototaxis. 323 

  324 
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Discussion 325 

Using a closed-loop behavioral assay, we show that Drosophila larvae find the darker regions of 326 

a virtual brightness gradient that lacks any spatial contrast cues. Temporal phototaxis 327 

behavioral algorithms have already been dissected in open-loop configurations, where stimuli 328 

are decoupled from an animal’s actions. Following a global brightness increase, larvae are 329 

known to modify both their heading angle magnitude and their run-length (Gepner et al., 2015; 330 

Kane et al., 2013), which is in agreement with our findings. We were able to demonstrate that 331 

these navigational strategies are in fact sufficient for phototactic navigation. Given that 332 

brightness fluctuations in our assay are slow and negligibly small during head-casts, we suggest 333 

that animals integrate brightness change during runs to make decisions about the strength and 334 

timing of turns. Previous work has shown that larvae can navigate olfactory or thermal gradients 335 

using only temporal cues (Luo et al., 2010; Schulze et al., 2015). Together with our findings, this 336 

should enable future exploration of the shared computational principles and neural pathways 337 

across these sensory modalities.  338 

Closed-loop systems are powerful tools to dissect an animal's sensorimotor transformation. 339 

They have been employed in many models including adult Drosophila (Bahl et al., 2013), larval 340 

zebrafish (Bahl and Engert, 2020; Chen and Engert, 2014), and C. elegans (Kocabas et al., 341 

2012; Leifer et al., 2011). Recent work in Drosophila larvae used LED-based devices to study 342 

closed-loop temporal chemotaxis in virtual optogenetic environments (Tadres and Louis, 2020). 343 

Such systems are cheaper and have shorter stimulus refresh times but cannot easily be used to 344 

present animals with spatially differentiated landscapes. By utilizing a projector, our setup 345 

overcomes this limitation. With the drawback of slightly longer delays and higher component 346 

costs, the ability to present any type of visual stimulus adds important flexibility and versatility. 347 

Future studies could use our paradigm to study, for example, specific behavioral differences 348 

between animals navigating a true luminance gradient compared to when they navigate the 349 

exact same one virtually. Moreover, our system makes it possible to explicitly investigate 350 

navigational strategies exclusively using spatial information. This has already been achieved in 351 

zebrafish larvae (Chen et al., 2020; Huang et al., 2013) by always locking a sharp contrast edge 352 

to the center of the animal’s head. Testing such stimuli in Drosophila larvae will, however, 353 

require more precise real-time position, orientation, and posture measurements, improvements 354 

that can be added to our setup. The result from such experiments could be used to construct a 355 

spatial phototaxis model which could then be combined with our proposed temporal phototaxis 356 

model. 357 
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Figure legends 448 

 449 

Figure 1. Drosophila larvae can perform temporal phototaxis. (A) Setup for tracking freely-crawling 450 

Drosophila larvae. (B) Whole-field pixel brightness versus larval position for the “Valley” and “Control” 451 

stimulus. (C) Raw trajectories. Dashed circles delineate the “Bright” center, the “Dark” ring, and the 452 

“Bright” ring. (D) Fraction of time spent in regions (left to right: p = 0.045, p = 0.001, p < 0.001; two-sided 453 

t-tests). (E) Crawling speed in regions (left to right: p = 0.304, p = 0.891, p = 0.479; two-sided t-tests). 454 

Error bars represent mean ± SEM. Blue solid lines and dots indicate “Valley” stimulus larvae; gray solid 455 

lines and dots indicate “Constant” stimulus larvae. N = 27 larvae for both groups. Open small circles 456 

represent individual animals. 457 

 458 

Figure 2. Brightness and brightness history modulate navigational decisions. (A) Posture tracking 459 

for estimating larval body curvature (angle between solid and dashed blue lines). Turns (orange circles) 460 

are curvature peaks above a threshold (30°). (B) Example trajectory with detected turns for an inset view 461 

(top) and the entire arena (bottom). (C,D) Probability density distributions for turn angles and run-length 462 

(C) and respective brightness changes (D). (E,F) Turn angle and run-length as a function of light intensity 463 

(dark: < 29; bright: otherwise; see brightness profile, Fig. 1B) and as a function of brightness change 464 

since the previous turn (left to right: p = 0.004, p = 0.010, p < 0.001, p = 0.006 for the “Valley” stimulus 465 

and p = 0.289, p = 0.018, p = 0.066, p = 0.221 for the “Constant” stimulus; paired t-tests). (G) Turn event-466 

triggered brightness for the “Valley” and the “Constant” stimulus (mean ± SEM over all turns from all 467 

larvae, n = 3153 and n = 2981 turns, respectively). N = 27 larvae for both groups. Open small circles and 468 

thin solid lines in (E,F) represent median turn angle and run-length for individual larvae. 469 

 470 

Figure 3. Simulated larvae perform temporal phototaxis. (A) Characterization of combinations of four 471 

potential navigational rules, with a grid search for the parameters run-length and turn angle, quantified by 472 

a phototaxis performance index. (B–I) Simulations using only Rules 3 and 4, with turn angle and run-473 

length multiplier set to one. (B–D) Raw trajectories, fraction of time spent in regions, and crawling speed 474 

(as in Fig. 1C–E). Left to right: (C) p = 0.181, p < 0.001, p = 0.015; two-sided t-tests; (D) p = 0.531, p = 475 

0.651, p = 0.665; two-sided t-tests. (E–I) Analysis of turns and runs (as in Fig. 2C–G). (G,H) Left to right: 476 

p < 0.001, p = 0.001, p < 0.001, p < 0.001 for the “Valley” stimulus; p = 0.283, p = 0.165, p = 0.796, p = 477 

0.656 for the “Constant” stimulus; paired t-tests. Open circles and thin solid lines in (C–I) represent 478 

individual model larvae. N = 50 simulation runs for both groups using different random seeds. N = 5331 479 

and n = 5334 events in (I). 480 

 481 
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