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Abstract

The mammalian visual system has been the focus of countless experimental and theoretical studies designed

to elucidate principles of sensory coding. Most theoretical work has focused on networks intended to reflect

developing or mature neural circuitry, in both health and disease. Few computational studies have attempted

to model changes that occur in neural circuitry as an organism ages non-pathologically. In this work we

contribute to closing this gap, studying how physiological changes correlated with advanced age impact

the computational performance of a spiking network model of primary visual cortex (V1). Our results

demonstrate that deterioration of homeostatic regulation of excitatory firing, coupled with long-term synaptic

plasticity, is a sufficient mechanism to reproduce features of observed physiological and functional changes in

neural activity data, specifically declines in inhibition and in selectivity to oriented stimuli. This suggests a

potential causality between dysregulation of neuron firing and age-induced changes in brain physiology and

performance. While this does not rule out deeper underlying causes or other mechanisms that could give

rise to these changes, our approach opens new avenues for exploring these underlying mechanisms in greater

depth and making predictions for future experiments.

1 Introduction

Despite affecting approximately 100% of the human population, healthy aging, and in particular its impact

on neurological performance, has been the focus of few theoretical and computational studies in neuroscience,
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compared to diseases such as Alzheimer’s [1–12] or Parkinson’s [13–20], which often manifest in advanced age

in humans [21]. Only recently has theoretical and computational work on aging in non-pathological networks

begun to emerge [22]. Because advanced age is one of the most important risk factors for developing such

neurological disorders [21,23], to fully understand the progression of these diseases we ought to have a baseline

understanding of how the brain’s circuitry changes under healthy aging, both in terms of physiological

properties and functional performance. This would help dissociate disease-related changes from those caused

during normal aging, and thereby allow researchers to focus their attention on treating potential causes of

the disease progression not directly related to aging. On the other hand, understanding how the healthy

brain ages may enable us to treat declines in performance caused solely by aging, in both healthy subjects

and those with neurological disorders or diseases.

In this work we seek to advance our understanding of potential mechanisms and consequences of age-

induced changes in physiology and performance in visual cortex. We do so by adapting a previously-

developed spiking network model of V1 activity, E-I Net [24]. The network structure of E-I Net is learned by

training it on pixel images of natural scenes, to which it develops Gabor-like receptive fields. The synaptic

and homeostatic learning rules are local, and therefore biologically possible. The training period of E-I

Net’s predecessor, SAILnet [25], has been used to model the experiential development of visual cortex in

growing mammals [26]. Here, we take a similar approach to the aging process, modifying the synaptic and

homeostatic learning rules to reflect changes that occur after the network has reached a mature steady state,

which subsequently drive age-induced changes in the network. The changes we implement are motivated by

experimental work that has found that senescent brain tissue shows increased excitability [27], decreased

GABAergic inhibition [28], and decreased selectivity to the orientation of grating stimuli [27]. In particular,

we show that dysregulation of the network’s target firing rate in the learning rules not only leads to increased

excitability, but also decreases in synaptic strength and declines in orientation selectivity, mimicking the

experimentally observed changes. Although there may be other mechanisms that could also replicate these

experimental findings, our model makes several predictions for other yet-to-be-observed changes in physiology

and functional performance that could be used to further test our model and its interpretation.

2 Results

Network model

We use E-I Net [24], a spiking network model, as our model of visual cortex. As shown schematically in Fig. 1,

E-I Net comprises a population of excitatory and inhibitory leaky integrate-and-fire spiking neurons, which

receive visual input in the form of patches from pixel images of natural scenes. E-I Net learns the lateral

weights Wij between neurons, inputs weights Qik from input pixels to neurons, and the firing thresholds

θi, over repeated exposure to patches of visual pixel input Xk. These parameters develop according to the
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Figure 1: Schematic of the network model: We use E-I Net [24] as our model of visual cortex. E-I Net
comprises a network of leaky integrate-and-fire neurons that receive visual input in the form of patches from
pixel images, communicated to the neurons through input weights Q. Each neuron belongs to either the
excitatory (E) or inhibitory (I) population. Neurons are synaptically connected by lateral weights W that
obey Dale’s law, such that excitatory-to-inhibitory weights WIE are positive, while inhibitory-to-excitatory
(WEI) and inhibitory-to-inhibitory (WII) weights are negative. We assume excitatory-to-excitatory connec-
tions may be omitted. The input weights Q, lateral weights W , and firing thresholds of each neuron θ, are
learned by training the network on natural pixel images.
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biologically-plausible learning rules

∆Qik ∝ niXk − n2iQik (1)

∆Wij ∝ ninj − 〈ni〉〈nj〉(1 +Wij) (2)

∆θi ∝ ni − p; (3)

where ni is the spike count of neuron i in response to the presented image patch over a duration T and

p = pE or pI is the desired mean number of spikes emitted over this window, with separate rates for

excitatory neurons (pE) and inhibitory neurons (pI). The quantities 〈ni〉 are moving-averages over time,

weighted by an exponential decay factor. As in the original work using E-I Net [24] and its predecessor

SAILnet [25], these learning rules were designed to enforce linear decoding of the image patches from the

spike counts (giving Eq. (1)), minimal correlation in spike counts (giving Eq. (2)), and sparseness in firing

(giving Eq. (3)) due to the fact that p� 1. Notably, these rules are local—changes to a synapse only involve

parameters local to that synapse.

Training E-I Net on image patches from natural scenes results in a steady-state network structure in

which the pixel-space arrangement of input weights Q resemble Gabor-like receptive fields typical of networks

trained on natural scenes [25]. The learned lateral weights are organized such that excitatory neurons with

similar RFs effectively inhibit one another [25,29]. For our simulations reported in this work, we follow [24] in

using NE = 400 excitatory neurons and NI = 49 inhibitory neurons. We similarly do not include excitatory-

excitatory lateral connections (i.e., WEE = 0). See this reference for details of this choice and other aspects

of training the model.

To study the effect of aging, we first allow our network model to reach a steady state, taking 30 training

loops, and then modify the learning rates to mimic the aging process. This is similar to work which interprets

the initial training phases of neural networks as a model for development of the visual system or other brain

areas [26], and is an example of recently-advocated strategies for using machine learning methods to better

understand neural systems [30]. In order to study how the performance of the network changes with age we

pause the training every 5 loops to test the neural responses on a set of images of oriented gratings.

To guide our change to the training procedure, we considered several physiological changes observed

in the literature. We identified two candidate changes that we hypothesized could be related: a decrease

in GABA in senescent brain tissue [28], which we interpret in the context of our model as a decrease in

inhibitory coupling strength, and an increase in excitability of neurons in elderly animals [27]. While one

might anticipate that a drop in inhibition would result in increased excitability of a network, in the context

of network development, increasing the excitatory target spike rate (ETSR) might also cause the network

to reorganize and decrease inhibitory synaptic strengths in order to allow for increased excitability. In early

versions of this work we tested both ideas, and ultimately chose to focus on the latter implementation, as

it naturally suited making a simple and interpretable change to the learning rules of the network model,

changing the ETSR parameter pE , whereas producing a network with weaker inhibitory connections either
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demands making by-hand changes to the weights and shutting off the lateral weight learning so that these

changes are not counteracted by the normal learning process, or would require introducing new terms to the

learning rules of inhibitory weights that may not be interpretable in terms of previously established learning

rules such as the Hebbian-Oja or Földiák learning rules [24,25].

Therefore, to mimic aging in our model, we modify the excitatory target spike rate (ETSR) pE by

allowing it to begin increasing with further training loops pE → pE(t) beyond the initial maturation age of

30 training loops. Prior to age 30, both pE and pI are kept constant at a steady value of 0.01. At subsequent

ages, we increase pE by 0.01 every 5 training loops. This may be interpreted as potentially arising from a

breakdown in a homeostatic mechanism that regulates this target firing rate, which we do not model explicitly

(see Discussion). As the ETSR increases, the network parameters will begin to depart from the previously

stabilized values, and we can track their evolution with training time, or “age.” Moreover, at each of these

ages we can test the functional performance of the network in response to different tasks. We choose to

focus on selectivity to the orientation of edges in the visual scene, tested using oriented grating stimuli. This

task mimics the experimental work of [27], to test whether we observe similar changes in selectivity. Finally,

because our network model gives us full access to the network parameters at every stage of “aging,” we test

how much features of the different parameter sets contribute to the degradation of functional performance.

Physiological parameter changes

In Fig. 2, we show the distributions of the learned physiological parameters in “mature youth” (30 training

loops) compared to “old age” (80 training loops). We find the range of magnitudes of the synaptic and

input weights decreases with age, while the firing thresholds expand by orders of magnitude. (Note that the

network model is formulated in dimensionless units, so the parameter ranges will not correspond directly to

dimensionful quantities measured in experiments).

In addition to changes in magnitude, the input weights also undergo a change in their spatial organization

in pixel space—i.e., the receptive field of the neuron is not preserved with aging. Fig. 3A shows the receptive

field of a particular neuron with a Gabor-like receptive field (RF) at age 30 (top) and random-looking RF

at age 80 (bottom). We can quantify just how different young and old receptive fields become by computing

the angular separation ϕi between the vectorized young and old receptive fields Qyoung and Qold for each

neuron i:

ϕi = cos−1

 ∑
kQ

young
ik Qold

ik√∑
k(Qyoung

ik )2
∑

k(Qold
ik )2

 . (4)

This angle is 0 if the old RF is identical to the young and π/2 if the young and old RFs are orthogonal. We

find that the mean angle steadily increases with age, to the point that in the oldest age of our network the

mean angle between a neuron’s young and old receptive fields tends to π/2, i.e., on average the old-age RFs

of a population of neurons becomes orthogonal to their RFs in youth. However, as seen in Fig. 3, the spread

of angles around the mean also increases with age, indicating that while on average the RFs are orthogonal

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896324
http://creativecommons.org/licenses/by/4.0/


Figure 2: Histograms of physiological network parameters in youth vs. old age: Histograms of the
magnitudes of network parameters learned during training on natural images: the input weights Q, lateral
weights W , and firing thresholds θ. Yellow histograms correspond to the distributions of these parameters
in the mature young network, the steady state of network development (reached by 30 training loops). After
this age, the excitatory target firing rate begins to increase, “aging” the network. The blue histograms are
the distributions of network parameters after 80 training loops. Aging tends to decrease input and lateral
weights, while it increases the distribution of firing thresholds. A decrease in inhibitory weights is consistent
with experimental work of [28]. All quantities are expressed in arbitrary dimensionless units.

in old age, there is significant variance in the mean distance between young and old RFs.

The fact that an individual neuron’s RF changes drastically with age does not necessarily indicate the

performance of the network as a whole changes—perhaps RFs are redistributed throughout the network,

preserving the overall distribution of RFs but not each individual neuron’s RF. To show that this is not the

case, we categorized the receptive fields of excitatory neurons into either “Gabor-like,” showing characteristics

of Gabor edge detectors, and “not-Gabor,” and quantified how membership in these categories changed with

age in Table 1. As some RFs categorized as not-Gabor in youth became Gabor-like with age, we also

recorded transitions between types (bottom table in Table 1). We assessed Gabor-ness by fitting a spatial

Gabor profile to each neuron’s receptive field and reject as Gabor if the goodness-of-fit relative to the RF

magnitude is too large; see Methods and [25]. We used a conservative goodness-of-fit criterion; nonetheless,

under this criterion close to a third of the excitatory RFs were classified as Gabor-like, while this fraction

dropped to nearly 1-in-20 in our oldest network, demonstrating that the aged networks undergo a net loss

in neurons with Gabor-like RFs. Given the edge-detecting properties of Gabor-like receptive fields, we thus

anticipate this loss plays a prominent role in the degradation of the sensitivity of the network to oriented

grating stimuli, discussed in the next section.

Performance changes

As a first basic check of network performance, we analyzed the distribution of spike counts over image

presentations. The single change we made to the network—increasing the ETSR pE with training—is

intended to produce increased excitability with age, as observed in experiments [27]. Indeed, as shown in

Fig. 4A, we find that not only do the mean excitatory spike counts increase with age, but the spread of the

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896324
http://creativecommons.org/licenses/by/4.0/


Figure 3: Angle between receptive fields in the input weight parameter space: A: A particular
neuron’s receptive field (RF) in youth (top, yellow border) versus old age (bottom, blue border), demon-
strating that features of a neuron’s RF may not be preserved in our model’s aging process. B: Violin plot of
the distribution of angles between each individual excitatory neuron’s young and older vectorized receptive
fields (RFs) (Eq. 4). As our network ages a neuron’s RF becomes increasingly orthogonal to its mature
young RF, on average, indicated by the median of the RF distributions tending to approximately π/2.
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Table 1: Quantification of Gabor-like receptive fields: We quantify whether each excitatory neuron in
our network model has Gabor-like receptive fields or not, in both our mature young network (30 loops) and
old age (80 loops). We assess Gabor-ness by fitting a spatial Gabor profile to each neuron’s receptive field
and reject as Gabor if the goodness-of-fit relative to the RF magnitude is too large; see Methods and [25]

Gabor-like in youth (30 loops) Gabor-like in age (80 loops)
123/400 26/400

Gabor-like in age not-Gabor in age
Gabor-like in youth 6/123 117/123
not-Gabor in youth 20/277 257/277

distribution does as well, confirming that our network becomes more excitable with age. We did not increase

the target firing rate pI of the inhibitory neurons, and as a result neither the mean spike counts nor variance

of the spike count distribution increase with age (Fig. 4B).
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Figure 4: Excitability of the network with age: Left: Violin plot of the excitatory spike count dis-
tributions with age. Markers indicate the median. Both median and variance of the distributions increase
with age, indicating increased excitability of the network with age, as expected. Right: Violin plot of the
inhibitory spike count distributions. The inhibitory target rate does not increase with age, and thus the
distributions do not change systematically during aging.

To test functional performance, every 5 training loops we paused training and tested the network on

patches drawn from pixel images of oriented gratings of spatial frequency 0.1 cycles per pixel, such that one

8× 8 patch contains approximately 1 cycle. We quantify a neuron’s selectivity to each orientation using the

same orientation selectivity index employed by Hua et al. [27]. As seen in Fig. 5, the cumulative distribution

plots of the orientation indices (the fraction of cells with indices less than a particular value) qualitatively

agree with the experimental observations of [27]: selectivity decreases with age, demonstrated by the shift of

the cumulative plots toward lower orientation indices. However, our model results also suggest this process
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may not be a straightforward monotonic degradation of selectivity with age. In the first several epochs of

aging our network we find that the mean selectivity of the network does not actually change appreciably,

but rather that changes in weakly- and strongly-selective neurons initially balance out (ages 30-50, Fig. 5C),

and only later in age does the network begin to lose strongly-selective neurons, a prediction that could be

tested experimentally in future studies.
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Figure 5: Selectivity of cells to oriented gratings: Left: schematic of oriented gratings presented to
the network. Middle: Cumulative distribution plot of orientation selectivity indices of real neurons from
Hua et al. [27] in young (yellow) and elderly (blue) animals. Right: Cumulative distributions of orientation
selectivities at several different “ages” of our network model. Orientation selectivity decreases in old age in
both. Additionally, our network model predicts that mean selectivity initially does not change much in the
early stages of aging.

The quantitative differences between our simulation results and the data may be traced to some of the

simplified features of the network model we use. For example, the selectivities of neurons in our model

network are much more polarized, having many neurons with vanishing orientation selectivity index (due

to not firing to any stimulus in our testing phase) and many with nearly maximal selectivity, which also

leads to our cumulative plots having the opposite convexity to that of the data. These more polarized

orientation selectivities in our simulated network are produced in part because the learning rules of E-I Net

promote sparse firing yet demand decodability of inputs, resulting in highly selective neurons that are active

essentially only when the feature they are selective for is presented, and are silent otherwise. Combined with

the fact that the network is deterministic (no noisy current inputs), the resulting activity levels tend to be

highly polarized. Intermediate selectivities are likely generated by lateral coupling between neurons with

similar but distinct receptive fields [29], leading to imperfect selectivity. Another factor that allows for these

more polarized selectivities is the fact that every neuron in the network responds to the same visual patch at

a given time. Potentially, a very large network in which different clusters of neurons respond to many inputs
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from different locations in the visual field would generate enough recurrent activity for recorded neurons to

appear spontaneously active, which might smooth out the distributions of orientation selectivity. We leave

training and simulating aging in such a network for future work.

Numerical experiments to test contribution of different physiological parameters

to declines in performance

Given the variety of changes our model network undergoes during aging, can we distinguish which physiologi-

cal changes contribute most to the observed changes in performance? We certainly expect the degradation of

the Gabor-like structure of the receptive fields to play a strong role, at least later in the aging process when

the RFs are no longer Gabor-like, as in the absence of these edge-detector filters the network we naturally

expect selectivity to drop. However, before the RF structure has completely degraded, we may also expect

lateral weights to play a role, as several theoretical and experimental studies suggest that neurons with sim-

ilar response properties will effectively mutually inhibit one another and thereby sharpen the selectivity of

their responses [31–37]. Thus, a loss of inhibition could also contribute significantly to decreased orientation

selectivity at intermediate old ages. To probe which parameter set dominates the contribution to the loss of

orientation selectivity as a function of age, we performed several numerical experiments on our networks.

In our first set of simulation experiments, we created several young-old hybrid networks by mixing

together different combinations of the young (age 30) and old (age 80) learned parameters and tested these

networks on our oriented grating stimuli to measure the resulting orientation selectivity. As shown in Fig. 6,

the mean selectivity appears impacted most when input weights are old and thresholds are young. This

makes sense: the magnitude of the old-age input weights is smaller than in youth, and therefore the current

inputs to each model
∑

kQikXk are comparatively smaller, whereas the young threshold values are adapted

to correspondingly higher current inputs and are therefore typically set higher in order to achieve the target

spike rates during development (p = 0.01). Thus, typical current inputs drive the neurons to fire less. We

see that replacing the young thresholds with the old-age thresholds improves the mean selectivity back to

the pure old-age values. Moreover, we see that replacing the young lateral weights with old lateral weights

does not appear to have a substantial impact on the mean selectivities at all, as simulations differing only in

young/old lateral weights have nearly identical selectivities. Taken all together, this suggests that the input

weights are by far the primary contributors to the decline in orientation selectivity, and any sharpening of

selectivity that lateral weights might contribute is a second order effect.

This conclusion is further supported by tests in which we age our network while shutting off the learning

rules for one or more of the physiological parameters, freezing these parameters to their young values. We

perform three such tests: i) freeze the input weight matrices Q, ii) freeze the lateral weight matrices W ,

and iii) freeze both Q and W . Note that we do not freeze the thresholds to their young values because our

network aging process is driven by the increasing excitatory target spike rate pE , which only appears in the

threshold learning rule. Freezing this learning rule would therefore preclude aging in our network.

The results of these tests appear in Fig. 7, in which we plot the average selectivity as a function of age
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Figure 6: Mean selectivity in networks with swapped parameter sets: The mean orientation selec-
tivity of neurons in network simulations in which we mix-and-match the parameter sets of young (30 loops)
and old (80 loops) networks. Horizontal axis labels correspond to young (Y) or old (O) to input weights
(Q), lateral weights (W ), and thresholds (θ). For example, the “OOY” result corresponds to a simulation
using the old-age input weights and lateral weights but the young thresholds.

for each case. We see that both cases in which the input weights Q are frozen retain a high mean orientation

selectivity across ages, comparable to the mean selectivity in youth. When only the lateral weights are

frozen and the input weights are allowed to adapt to the increasing ETSR, the mean selectivity maintains its

youthful value for most of the aging process before suddenly dropping at the oldest ages we simulated, though

not quite as low as the case in which both input and lateral weights are reorganized by ongoing plasticity.

Taken together with the results of Fig. 6, these results support the conclusion that changes in input weights

during aging are more important than lateral weights for maintaining the functional performance of the

network. However, the fact that it is only in advanced age that selectivity falls off when lateral weights are

frozen suggests that it is the coordinated reorganization of both input weights and lateral weights that leads

to large degradation in functional performance.

These tests so far have only demonstrated that input weights changes are the dominant contributor to the

decline in selectivity, but do not disambiguate the contribution of changes in input weight magnitude from

changes in the spatial organization (the receptive field structure). As observed in Figs. 2 and 3, we know both

the receptive field structure and the distribution of input weight magnitudes are altered during our aging

process. With our network model we can separate the effects of input weight magnitude versus structure to

test whether one of these features contributes more to the changes in neural selectivity. We might expect, for

instance, that the loss of Gabor receptive field structure is primarily responsible for the loss in orientation

selectivity. We test sensitivity to input weight structure and strength in two ways: i) we preserved each
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Figure 7: Selectivity of cells when connection weights are frozen during training: We test how
network parameters contribute to orientation selectivity by shutting off learning of the input weights or
lateral weights during the aging process. When input weights are frozen to their young values, the selectivity
is barely impacted. However, when lateral weights are frozen to their young values, the selectivity remains
high for most ages until it suddenly begins to drop off near the oldest ages in our simulations. When both
Q and W are frozen the weights remain near the young selectivity values.
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individual neuron’s young receptive field structure while remapping the input weight magnitudes such that

the distribution matches that of the old-age input weights; ii) we preserved each individual neuron’s old

receptive field structure while remapping the input weight magnitudes to match the young input weight

distribution. We find, as seen in Fig. 8, that restoring the young RF structure gives an overall boost to the

mean orientation selectivity at all ages, as might have been expected. However, we also see that at the oldest

ages (70 to 80 training loops) restoring the young magnitudes yields a greater improvement in selectivity

than that obtained by restoring young structure.

30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Figure 8: Selectivity of cells with remapped receptive fields: To disambiguate the impact of aging
receptive field (RF) magnitudes versus spatial structure, we remap the magnitudes of each neuron’s RF
to create two types RFs: RFs with the original spatial structure they had in the young network but a
magnitude distribution matching the old-age distribution, and RFs with the old-age spatial structure but
young magnitude distribution. (See Methods for details). We create these hybrid RFs for each age and
simulate the network model to measure the orientation selectivity of the population. We find that the young
RF spatial structure improves selectivity in the early stages of aging, out-performing the baseline network
(no remapping) as aging progresses, but the old RF spatial structure with young RF magnitudes maintains
an overall higher level of selectivity in the latest stage of aging simulated.
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3 Discussion

We have demonstrated that relatively simple changes to the homeostatic dynamics of a network can reor-

ganize the physiological properties of a network in ways that qualitatively replicate experimentally observed

changes in network properties and performance in old age: increased excitability (Fig. 4), weakened in-

hibitory weights (Fig. 2), and declines in orientation selectivity (Fig. 5). We also find decreases in excitatory

weights (Fig. 2), despite the fact that overall excitation increases, potentially due to the drastic broadening

of the firing threshold distribution. Moreover, with access to all our model parameters we can show that

declines in selectivity are primarily due to the changes in input weight structure and strength (the receptive

fields), rather than changes in lateral inhibition (Figs. 6, 7, and 8).

Because these physiological changes develop as the consequence of a modification to the network learning

rules—interpreted here as a breakdown in the homeostatic mechanisms regulating target firing—our model

allows us to test the potential causal mechanisms during aging, in contrast to an approach that simply

alters network parameters to test the effects on function. Thus, this work suggests that dysregulation of

excitability in a network may be one of the causal mechanisms that leads to physiological and functional

changes in networks and their dynamics as an organism ages. Below, we discuss the comparison to the

experimental results in detail, along with predictions for future experiments that could lend more evidence

toward or against this hypothesized mechanism. To that end, we also discuss the limitations of the model—

what features we expect to be reasonably realistic, albeit simplified, and which features of experimental

observations we were not able to replicate with the current model.

Comparison to experimental results and implications for future experiments

Our investigation was motivated by several experimental results: i) neural excitability increases with age [27],

ii) the proportion of GABAergic neurons in senescent brain tissue decreases with age (but total neuron density

does not) [28], and iii) aged neurons exhibit decreased orientation and direction selectivity.

It is not clear a priori what the causal relationships are between these observations; most likely, there is an

underlying common cause, rather than several (approximately) independent causes leading to these changes.

Intuitively, we might expect that decreases in GABAergic inhibition could lead to increased excitability. In

an early version of this work, we indeed explored this hypothesis by training the network model to maturity

and then turning off learning and decreasing the magnitude of inhibitory connections in the network by a

global fraction. We were able to reproduce loss in performance only when we added a tonic current to drive

the neurons, and only for particular ranges of this tonic current and global reduction in the inhibitory weights.

However, as the changes to the inhibitory weights in this early version of the model were implemented by

hand, and not by changing the learning rules, they provided no plausible mechanisms for explaining how the

network aged, and as learning was turned off in this approach it did not allow for the possibility that other

network parameters might adjust to compensate.

We ultimately developed the hypothesis pursued in this work, that the causal relationship could be that
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a breakdown in homeostatic regulation of excitability, coupled with long-term synaptic plasticity, would

lead to changes in inhibition and other physiological features, as well as changes in functional performance.

Therefore, the fundamental change we made to the healthy mature network was intended to produce increased

excitability in it by allowing the excitatory target spike rate (ETSR) to steadily increase as training progressed

past the phase at which the network parameters had reached a steady state. All other results follow from

the coupling between this change and the learning dynamics of the model parameters. As expected, the

excitability of excitatory neurons indeed increased with network age, as demonstrated by the increasing

mean firing rate and variance of firing shown in Fig. 4.

Our interpretation that the observed decrease in inhibitory synaptic weights in our model (Fig. 2) agrees

with observations is more subtle and open to interpretation. The direct experimental observation in [28]

is that the density of GABAergic neurons measured by GABA-immunoreactive staining decreased in older

subjects compared to younger subjects; however, the total density of neurons (measured by Nissl staining)

did not decrease. This interpretation is supported by other work [38], which finds minimal neuron loss with

age and notes that during aging genes involved with GABA-mediated neurotransmission are strongly down-

regulated in human and macaque pre-frontal cortex. Thus, observed age-related changes are not caused by

a loss of GABAergic neurons through cell death, but more likely a drop in GABA expression itself. In a

conductance-based leaky-integrate-and-fire model this could be interpreted as a decrease in the maximum

fraction of GABAergic receptors being activated by a pre-synaptic spike; as E-I Net is a current-based leaky-

integrate-and-fire model, the closest equivalent effect is a change in synaptic weight. Because the reversal

potential of GABAergic synapses is typically much larger in magnitude than the membrane potential, it

is often valid to approximate the inhibitory conductance-based synapses as current-based synapses [39].

Therefore, we interpret the observed decrease in the range of inhibitory input and lateral synaptic weights

in our model to be consistent with the experimental observations. This said, our model also predicts a

decrease in the range of excitatory input and lateral weights. To our knowledge, a similar measurement has

not been performed to measure changes in density of excitatory neurotransmitters. Thus, this result serves

as a prediction for future experiments, with the caveat that such a measurement could be complicated by

the fact that there are several principal excitatory neurotransmitters to consider, as well as the fact that the

true conductance-based nature of excitatory synapses may become relevant due to the fact that excitatory

reversal potentials are not significantly larger than membrane potentials, so a current-based approximation

may not fully capture changes in excitatory synapses with age.

Several studies have found decreased sensitivity to oriented and directed grating stimuli in older neurons

and subjects [27]. Our aged network model replicates this loss of orientation selectivity to grated stimuli

compared to the mature young network; our model did not develop significant direction selectivity, as we

discuss further in Limitations of the model, below. As our model gives us full access to network parameters,

we were able to demonstrate that this loss in orientation selectivity is primarily caused by the deterioration

of Gabor-like receptive fields of the model neurons as the runaway target excitability causes the network

to reorganize, rather than, say, changes in lateral weights that might also have been predicted to impact
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sensitivity [31–37]. In particular, we found both that the net proportion of Gabor-like receptive fields

decreased as the network aged (Table 1) as well as the fact that the receptive field of a neuron was not

preserved with age (Fig. 3). The net loss of Gabor-like receptive fields impacting orientation selectivity

makes intuitive sense, as such receptive fields are typically interpreted to be edge-detectors [40]. This is also

a new prediction that could potentially be tested experimentally in longitudinal experiments on the same

individuals, measuring the receptive fields of a population of neurons in visual cortex in both youth and old

age, inferring the receptive fields using, for example, generalized linear model fits [41–46], and comparing

the distributions of the receptive fields at these different ages. It would likely be difficult to track a single

neuron across ages to test our model’s prediction that individual receptive fields change with age.

Other experimental work has also found that contrast sensitivity is diminished with age [47]. We did not

perform a detailed investigation of whether our model could qualitatively replicate this result, for technical

reasons: images on which the network model is trained are first “whitened” to remove the mean intensity of

the images and normalize the variance across pixels in an image—operations interpreted within the context

of E-I Net to be performed by the retina and lateral geniculate nucleus (LGN) en route to V1. However,

this pre-processing step will also normalize the contrast of an image. To properly test contrast sensitivity

would thus require a model of the aging retina and LGN, which is beyond the scope of this work, but could

potentially be developed and studied with a similar setup, using, for instance, recent deep network models

of retina [48,49].

Limitations of the model

Although our model successfully replicated several experimental observations and makes predictions for

new experiments, there are of course some results the model as currently implemented could not replicate.

Moreover, as a simplified model of network development and dynamics, there could be features of the model

that are considered biologically implausible or oversimplified, and bear discussion here.

As mentioned above, one of Ref. [27]’s results that our model did not successfully reproduce is the loss

of direction selectivity. We trained our network on sequential patches from the Catcam database [50, 51]

for the purpose of testing direction selectivity, but found that our network was not complex enough to

learn direction selectivity from training on these natural movies alone. Our network was able to learn

some direction selectivity when trained on moving grating stimuli, but this begins to overwrite the network

structure learned from the natural scenes, and therefore we considered it invalid to induce direction selectivity

by training on the types of stimuli on which we would later test network responses.

The difficulty of learning direction selectivity could be because directed motion is not represented fre-

quently enough in our training movies, but could also be due to the fact that our network neurons exponen-

tially filter inputs, all with the same single timescale. Potentially, a modified network model that allowed

for different spatiotemporal history filters or even multiple membrane timescales might be better suited to

learn direction selectivity from natural movies.

The biological plausibility of training neural networks has been debated extensively in the literature [52,
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53], casting doubt on whether training such networks can be an appropriate model for network development.

Many, if not most of these criticisms, focus on training algorithms that employ non-local learning rules

(i.e., rules which require global information about the network in order to update an individual neuron’s

synaptic connections), such as backpropagation [54]. However, the learning rules employed by E-I Net and

its predecessor SAILnet [24,25] are local (Eqs. (1)-(3)), such that updating a particular neuron’s parameters

only requires information about its own incoming connections and firing threshold. Therefore, the learning

rules used in our model may be considered a reasonable simplification of biologically plausible learning

mechanisms, and thus can capture the essential minimal features of network development.

One subtle and potentially unintuitive feature of our model is the fact that the time-course of training

need not be straightforwardly mapped onto the time-course of development. For instance, we use the same

learning rates for the entire duration of our training procedure, including both the development phase (loops

1 − 30) and our aging phase (loops 30 − 80). However, experimental evidence indicates that there is a

“critical period” in which long-term synaptic plasticity is high early in development, after which plasticity

drops, allowing the nervous system to approximately lock-in learned structure and prevent sudden drastic

changes in sensory experience from overwriting these structures [55]. At first, this seems at odds with our

training procedure, which has no such critical period, but that is true only if one assumes a linear relationship

between training time and true organism age. A nonlinear relationship would allow for our results to be

consistent with a critical period. In particular, we could assume that training time and organism age are

approximately linearly related during development (loops 1 − 30) but undergo a shift to a different linear

relationship after maturation tht holds during the old-age phase. We have checked that decreasing all learning

rates by a factor of 10 and extending stimulus presentation time by a factor of 10 after 30 training loops

indeed give results qualitatively similar to the baseline model; see Fig. 9 in Methods.

Finally, our results do not rule out other possible mechanisms for generating the observed changes in

networks with age, nor do they explain what physiological mechanisms might cause a drift in target firing

rate to begin with. Possible causes could be related, for example, to changes in calcium dynamics controlling

synaptic plasticity [56], but a detailed study of such possible breakdowns of this firing rate regulation

are beyond the scope of the current work. Nevertheless, starting from the hypothesis that there is some

breakdown of homeostatic regulation of neural firing in the presence of ongoing long-term synaptic plasticity

has allowed us to replicate several experimental results and make predictions for effects not yet observed

experimentally, which would enable future validation or refutation of this hypothetical mechanism.

Conclusions and implications for disease

We have shown that dysregulation of neural excitability in the presence of ongoing long-term synaptic

plasticity is a potential mechanism that could explain several experimentally observed changes in both

physiology and functional performance in healthy aging brain networks, in addition to making predictions for

future studies in aging neural tissue. Should further experimental evidence lend support to this mechanism,

our results also suggest possible ways some of these performance changes could be partly mitigated, at
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least in terms of visual acuity. For instance, our numerical experiment altering the structure and strength

of receptive field input into visual cortex (Fig. 8) suggests that in advanced age boosting the strength of

sensory inputs by increasing the gain of those neurons could be more effective for improving orientation

selectivity than resorting the spatial structure of inputs, which would be a more complex and potentially

invasive treatment, as it would involve a coordinated adjustment of synaptic strengths.

Beyond replicating previous experimental observations and making predictions for new experiments,

modeling how neural circuitry changes with age will play an important role in understanding the progression

of neurological disorders whose onset correlates with age, such as Alzheimer’s, Parkinson’s disease, and

general age-related cognitive decline. In particular, having a baseline model for predicting changes in healthy

neural circuitry is important for disambiguating which effects are symptomatic of disease from those likely

to be present in a healthy aging individual, and thereby determining which aspects of the disease progression

to focus on and develop treatments for.
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A Methods

A.1 Network Model

We use E-I Net, a spiking network model of V1 trained on natural images, as the basis for our investigations.

E-I Net is written in MATLAB, and all modifications and subsequent analysis code are also in MATLAB. We

will give a brief overview of the model here, and then focus on modifications of the model we implemented

for use in this study. Some of these modifications were non-default options already available in the code,

while others are modifications we developed ourselves. For full details on E-I Net we direct readers to [24].

E-I Net is a network of leaky integrate-and-fire neurons that spike in response to pixel-image inputs Xk.

The network, partitioned into excitatory and inhibitory subpopulations, learns input weights Qik, synaptic

weights Wij , and firing thresholds θi according to learning rules that impose linear decoding of the image

inputs (Eq. 5), minimize redundancy in spiking (Eq. 6), and promote sparsity in firing (Eq. 7):
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∆Qik = α(niXk − n2iQik) (5)

∆Wij = β (ninj − 〈ni〉〈nj〉(1 +Wij)) (6)

∆θi = γ(ni − p), (7)

where, as in the main text, ni is the spike count in response to the pixel intensity Xk, 〈ni〉 is an exponentially-

weighted moving average during the training loop, and p is the target spike count, which may be different

for excitatory and inhibitory neurons. The learning rates α, β, and γ are chosen as in the original E-I Net

model, except for the numerical experiments discussed in Section 2. The global learning rate, a multiplier

factor applied to all of the learning rates, is set to 0.4, the value used for accelerated training provided in

examples in the E-I Net code repository. The network learning rules are entirely local [24, 25] (i.e., changes

to a neuron’s parameters depend only on inputs that neuron receives), and hence admit a straightforward

biological interpretation as plastic or homeostatic mechanisms that shape network wiring or firing. When

trained on natural image inputs the network has been shown to learn realistic Gabor-like receptive fields and

produce activity that can be used to accurately reconstruct input [24,25].

A.2 Training the network

Training our network model consists of two phases: the initial development phase, during which the network

forms, and the aging phase during which we implement modifications to the learning rules to cause changes

in network structure that mimic the effects of old age. The first phase of training is largely the same as the

original E-I Net training procedure, while the aging phase is a novel modification that we implement after

the first phase reaches a steady state.

We train our network on scenes from the CatCam database [50,51]. Our original intent was to investigate

whether the network would learn direction selectivity in addition to orientation selectivity, as noted in the

Discussion, though we ultimately only focused on the orientation selectivity of the network. Nonetheless,

to accommodate the continuous nature of the CatCam movies and gratings used for training and testing,

respectively, we draw input data from frames in sequence, rather than randomly, and we switch on a built-

in E-I Net toggle to make neuron membrane potential continuous across training epochs. Thus, for each

epoch, we randomly select 100 starting frames from the input movie, excluding the final 50 frames. For each

starting frame, we create a copy of the network and randomly choose a square patch. Each parallel network

receives this patch from the associated starting frame as stimulus and then, in series, the patch at the same

coordinates from each of the next 49 frames. At the end of the epoch, the parameters of the main network

evolve based on the results from all one hundred network copies taken in combination.

In our model we take the fully trained network to represent our mature “young” network, trained for

30 loops at the baseline excitatory target spike rate of pE = 0.01 expected spikes per image presentation

and pI = 0.05 expected spikes per image presentation for inhibitory neurons, comparable to the values used

in [24]. The goal of this work is to modify this model to reflect observed age-related physiological changes,

such as increased excitability and decreased inhibition, and thereby produce “aged” networks in which we
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can test how functional performance and coding have changed. Rather than implement the physiological

changes by several independent by-hand adjustments, a much more parsimonious modification is to alter

only the excitatory target spiking rate (ETSR) pE . If we increase pE with training time past the mature

young stage of the network, the network will reorganize to achieve a higher mean firing rate close to this

target. We increase pE by 0.02 every subsequent loop, culminating in the “old” network after 80 total loops.

This not only results in increased excitability (both in mean firing and variance of firing), but also naturally

gives rise to a decrease in inhibition (Fig. 2). The changes in selectivity to oriented grating stimuli also

emerge from this single by-hand change. To check how sensitive the aging procedure is to the initial starting

value of the ETSR, we also ran two additional network simulations starting from higher values, pE(0) = 0.05

and pE(0) = 0.07 spikes per image; see Supplementary Figure 25.

Because our method produces a sequence of aged networks that are gradual evolutions of earlier “ages,”

we loosely interpret the training process as the “aging” process in our network. (As noted in the Discussion,

a concrete relationship between training loops and organism age is not well-defined). This is similar in spirit

to previous work interpreting the initial training phase of the network as a model for the developmental

period of visual cortex [26].

A.3 Testing network responses to oriented gratings

To measure orientation selectivity, every 5 loops we pause training and test the network on moving grating

stimuli (see Fig. 5) of 4 possible orientations in order to measure the selectivity of model neurons, during

which we set the global network learning rate to zero so that network parameters do not adapt to the

statistics of the gratings. We generate the gratings at spatial and temporal frequencies of 0.1 cycles/pixel

and 0.1 cycles/frame, respectively, using the GratingStim module of VisualStimulusToolbox [57]. As in

the training phase, we use 8 × 8 pixel patches of these grating images as visual input to our network. For

this patch size there is approximately one cycle of the grating per patch.

For each testing session we record the spiking activity of all neuron in response to grating patches of

each orientation and use these responses to compute the orientation selectivity of each neuron. While there

are various methods of determining orientation selectivity [58,59], we choose to follow [27] and quantify the

overall selectivity of each neuron to grating orientation as

OSi =

∣∣∑
trials rtriali

∣∣∑
trials

∣∣rtriali

∣∣ ,
where rtriali is a vector of neuron i’s responses to each orientation on a given trial.

A.4 “Gabor-ness” analysis

The receptive fields (RFs) of the neurons in the network are observed to evolve over the aging process

(Fig. 3). We quantify this change by fitting a Gabor wavelet profile G to each RF in both youth and old age
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and rejecting those fits for which the normalized goodness-of-fit ||G−RF ||2/||RF || > 0.8. This is the same

procedure as performed in [25], except that we use a less strict rejection condition (0.8 vs. 0.5). The Gabor

profile takes the following form:

G = A cos (2πfxp + ψ) exp

(
−

x2p

(2
√

2σx)2
−

y2p

(2
√

2σy)2

)
,

xp = (x− x0) cos θ + (y − y0) sin θ,

yp = −(x− x0) sin θ + (y − y0) cos θ,

where A is the amplitude of the Gabor wavelet, f is the frequency of amplitude oscillation, ψ is the phase,

σx and σy are the spreads of the Gabor profile in the x and y directions. The Gabor wavelet is taken to be

a function of the pixel-space positions xp and yp, related to the raw positions x and y by a rotation angle

θ and offsets x0 and y0. In addition to rejecting fits that do not meet our goodness-of-fit criterion, we also

reject fits that are centered outside the frame of the receptive field, and wholly exclude receptive fields for

which fits cannot be computed from the statistics in Table 1.

A.5 Numerical experiments

A.5.1 Learning rate freezing

To examine the contribution of each network property to the observed decline in neural orientation selectivity

as a result of increase in pE , we conduct the following series of tests. We train several instances of the network

to maturity (30 loops) under normal conditions. Upon the completion of the 30th loop, we set the learning

rate to zero for different sets of connection weights: in one instance, we zero out the learning rates for only

the input connections to the excitatory and inhibitory neurons; in another, we zero out the learning rates

for only the lateral connections between neurons; and in the last instance, we zero out the learning rates

for both input weights and lateral weights. There is no case in which we zero out the learning rates of the

thresholds, as it is this learning rule through which our network ages. After zeroing out the learning rates,

we continue training these variants until old age (80 loops), probing selectivity every five loops.

A.5.2 Receptive field remapping

To decouple the effects of the changing RF structure and magnitude on network selectivity, we examine,

independent of the training procedure, the selectivity after remapping the young input weights onto a later

distribution of input weight magnitudes, for the networks after 35, 40, 45...80 loops:

Qremapped = Φ−1
old(Φyoung(Qyoung)), (8)

where Φyoung(·) and Φold(·) are the cumulative distribution functions (CDFs) for the young and old input

weight distributions. Eq. (8) modifies the value of every input weight such that the distribution of remapped
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young input weight values matches the distribution of old input weight values, but the spatial pixel organiza-

tion of the RF is not altered. We empirically estimate the CDFs from the data and use interpolating splines

to obtain smooth estimates (simply swapping the x- and y-values for inverse CDF estimation). Thus, we can

insert these remapped weights into our old networks to test how RF structure contributes to selectivity. We

find that networks with these remapped input weights exhibit consistently higher selectivity than their coun-

terparts with the original aged input weights. We can also test the inverted remapping, Φ−1
young(Φold(Qold)),

in which aged input weights are remapped onto the young distribution of magnitudes, retaining the old spa-

tial pixel structure but with younger magnitudes. Networks with these remapped weights are comparable

in selectivity to their corresponding original networks during maturation and the early stages of the aging

process, and increasingly more selective late in aging.

A.6 Supporting analyses

A.6.1 Critical learning periods and time rescaling

The critical learning period hypothesis posits that there is a window early in development in which learning

rates are high, but eventually taper off to lower levels of plasticity [55]. This is unlike our network model,

in which the learning rates are the same throughout the training period. To demonstrate that our training

procedure does not preclude interpretation in terms of a critical learning period, we run a training case in

which, after 30 loops, we reduce the learning rate by a factor of 10 and extend the length of natural image

stimulus presentation by a factor of 10, and then train the network for 50 more loops under these conditions.

We find that average neural selectivity follows largely the same trend as in the case of normal aging. This

suggests that networks with time-varying learning rates can be mapped to networks with constant learning

rates by adjusting the length of training loops during these periods. The implication for our results is that

we can interpret the development phase of our network as a critical learning period with higher rates and a

shorter learning interval compared to the aging phase.

A.6.2 Excitatory neurons with similar receptive fields effectively mutually inhibit each other

To gauge the extent to which excitatory neurons with similar receptive fields inhibit one another, we take

element (i, j) of the product of the lateral connection matrices WEI and WIE to approximate the net charge

transfer capacity from pre-synaptic excitatory neuron i to post-synaptic excitatory neuron j, by way of

all disynaptic pathways through inhibitory neurons. (Recall that in E-I Net there are no direct E-to-E

connections; i.e., WEE = 0). The greater the magnitude of (WEIWIE)ij , the greater the inhibition of E

neuron i by E neuron j. As in Fig. 6B of [25], we plot the RF overlap, computed as the cosine similarity of

the vectorized input weight matrices, against the elements of WEIWIE for all pairs of excitatory neurons.

In Fig. 10 below we see, similar to [25], that a larger overlap is generally associated with a larger WEIWIE

value and thus, per our interpretation, stronger inhibition of one excitatory neuron in the pair by the other.
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Figure 9: Testing critical period learning: To show that one could in principle implement a critical
learning period in the training phase of our network model, we show that if the learning rates are reduced
by a factor of 10 and the duration of training is increased by 10 the results are qualitatively similar. Thus,
the training procedure employed in our model is expected to produce approximately the same results as a
model with a critical period during which learning rates vary nonlinearly during training, so long as those
changes are compensated by reciprocal changes in the duration of training during the critical period.
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Figure 10: Excitatory neurons with similar receptive fields effectively inhibit one another: As a
proxy for the total amount of charge excitatory neurons trasmit between each other, we use the elements of
the matrix WEIWIE , which correspond to the weight of disynaptic connections between excitatory neurons,
through a single inhibitory interneuron. (There are no direct E-to-E connections in our network). We plot
the magnitude of (WEIWIE)ij for each pair of neurons i 6= j against the overlap of the receptive fields of
those same two neurons. As seen in the plot, neurons with largest magnitude of inhibitory charge transfer
tend to have relatively large receptive field overlaps; i.e., a large fraction of neurons with similar RFs tend
to effectively inhibit one another.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896324
http://creativecommons.org/licenses/by/4.0/


A.7 Figures

Figures created in MATLAB were saved using the export_fig script, available on GitHub [60].

B Supplementary Information

We check the robustness of our results by training the model on three different movies from the CatCam

repository (movie01.tar, movie07.tar, and movie16.tar) and resetting all random number generation

before each run. We find no appreciable differences across the results on the three image sets. See Supple-

mentary Figures 11-24.

movie07.tar

Figure 11: Supplementary Figure: Physiological parameter changes, initial seed 2: Same as Fig. 2
for a different initial seed and selection of training frames from movie07 in the CatCam database.
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Figure 12: Angle between receptive fields in the input weight parameter space, initial seed 2:
Same as Fig. 3B for a different initial seed and selection of training frames from movie07 in the CatCam
database.
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Figure 13: Excitability of the network with age, initial seed 2: Same as Fig. 4 for a different initial
seed and selection of training frames from movie07 in the CatCam database.
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Figure 14: Supplementary Figure: Orientation selectivity changes, initial seed 2: Same as the
model CDFs in Fig. 5 for a different initial seed and selection of training frames from movie07 in the
CatCam database.
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Figure 15: Supplementary Figure: Parameter swap tests, initial seed 2: Same as Fig. 6 for a
different initial seed and selection of training frames from movie07 in the CatCam database.
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Figure 16: Supplementary Figure: Parameter swap tests, initial seed 2: Same as Fig. 7 for a
different initial seed and selection of training frames from movie07 in the CatCam database.

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896324
http://creativecommons.org/licenses/by/4.0/


30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Figure 17: Supplementary Figure: Parameter swap tests, initial seed 2: Same as Fig. 8 for a
different initial seed and selection of training frames from movie07 in the CatCam database.
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movie16.tar

Figure 18: Supplementary Figure: Physiological parameter changes, initial seed 3: Same as Fig. 2
for a different initial seed and selection of training frames from movie16 in the CatCam database.
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Figure 19: Angle between receptive fields in the input weight parameter space, initial seed 3:
Same as Fig. 3B for a different initial seed and selection of training frames from movie16 in the CatCam
database.
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Figure 20: Excitability of the network with age, initial seed 3: Same as Fig. 4 for a different initial
seed and selection of training frames from movie16 in the CatCam database. In these particular simulations
there were some outlier spike counts (e.g., the largest excitatory spike count was 243 at loop 65), so we have
restricted the vertical axis to match the range observed in Figs. 4 and 13.
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Figure 21: Supplementary Figure: Orientation selectivity changes, initial seed 3: Same as the
model CDFs in Fig. 5 for a different initial seed and selection of training frames from movie16 in the
CatCam database.
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Figure 22: Supplementary Figure: Parameter swap tests, initial seed 3: Same as Fig. 6 for a
different initial seed and selection of training frames from movie16 in the CatCam database.
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Figure 23: Supplementary Figure: Parameter swap tests, initial seed 3: Same as Fig. 7 for a
different initial seed and selection of training frames from movie16 in the CatCam database.
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Figure 24: Supplementary Figure: Parameter swap tests, initial seed 3: Same as Fig. 8 for a
different initial seed and selection of training frames from movie16 in the CatCam database.
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Figure 25: Mean selectivity for larger initial target firing rates: If the initial excitatory target spike
rate is increased from the value of pE(0) = 0.01 used in the main text, the mean selectivity that develops in
maturity is comparable or diminished compared to the baseline results. We still observe an overall decreasing
trend, although there is some increased variability and non-monotonicity evident at the later age for the less
sparse case of pE(0) = 0.07.
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