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Abstract 25 

Meta-analyses are frequently used to quantify the difference in the average values of two 26 

groups (e.g., control and experimental treatment groups), but examine the difference in the 27 

variability (variance) of two groups. For such comparisons, the two relatively new effect size 28 

statistics, namely the log-transformed ‘variability ratio’ (the ratio of two standard deviations; 29 

lnVR) and the log-transformed ‘CV ratio’ (the ratio of two coefficients of variation; lnCVR) 30 

are useful. In practice, lnCVR may be of most use because a treatment may affect the mean 31 

and the variance simultaneously. We review current, and propose new, estimators for lnCVR 32 

and lnVR. We also present methods for use when the two groups are dependent (e.g., for 33 

cross-over and pre-test-post-test designs). A simulation study evaluated the performance of 34 

these estimators and we make recommendations about which estimators one should use to 35 

minimise bias. We also present two worked examples that illustrate the importance of 36 

accounting for the dependence of the two groups. We found that the degree to which 37 

dependence is accounted for in the sampling variance estimates can impact heterogeneity 38 

parameters such as �� (i.e., the between-study variance) and �� (i.e., the proportion of the 39 

total variability due to between-study variance), and even the overall effect, and in turn 40 

qualitative interpretations. Meta-analytic comparison of the variability between two groups 41 

enables us to ask completely new questions and to gain fresh insights from existing datasets. 42 

We encourage researchers to take advantage of these convenient new effect size measures for 43 

the meta-analysis of variation. 44 

 45 
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1. INTRODUCTION 46 

Meta-analysis is often used to evaluate studies comparing the average of two groups. These 47 

are usually treatment groups in an experiment/trial, one being a concurrent control, but may 48 

also represent naturally occurring groups (e.g., different sexes). The standardised mean 49 

difference (SMD; also known as Cohen’s d and its associated derivatives), which is the 50 

difference between group means divided by the within-study variability, is a commonly-used 51 

effect size measure for this purpose 1. SMD is popular because it is ‘unitless’, meaning it can 52 

be used to compare the results of studies that report outcomes in different units 2. A similar 53 

unitless effect size measure, which can also be used to compare the means of two groups, is 54 

the logarithm of the ratio of the means of the groups. This effect size measure is known as the 55 

ratio of means in medicine (ROM 3) and the log response ratio in ecology and evolution 56 

(lnRR 4). Throughout we follow the lnRR notation as this will help to draw parallels with 57 

other effect size measures as we progress, but the reader should not be confused with the 58 

(logarithm of) risk ratio, which is also sometimes denoted (ln)RR. Surveys have shown that 59 

lnRR is the most widely used effect size measure in ecology and evolution 5-7. Moreover, 60 

SMD and lnRR collectively account for over half of all meta-analyses in ecology 6,7, meaning 61 

comparisons between group means is the most widespread aim of meta-analysis in this field. 62 

SMD also seems to be among the most used standardised effect statistics in the medical and 63 

social sciences 8. 64 

 65 

Two groups may not only differ in terms of their means, but also their variances 9. At the 66 

most basic level, experimental treatments may directly increase or decrease the total amount 67 

of variance in a system due to inter-individual variability in response. Many biological 68 

systems also appear to display a mean-variance relationship 10-12; most commonly, increasing 69 

averages are associated with increasing variances. Perhaps the most well-known example of a 70 
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biological mean-variance relationship comes from ecology and is known as Taylor’s Law. 71 

This ‘law’ has been widely observed, and states that as mean population density increases, 72 

variance in population density also increases 13,14. Where mean-variance relationships are 73 

present, a treatment may indirectly cause groups to have differing variances by altering the 74 

mean. 75 

 76 

Nakagawa, Poulin, Mengersen, et al. 15 proposed a number of methods that allow the user to 77 

test for differences in the variance of groups meta-analytically. Among the methods 78 

proposed, the logarithm of the ratio of the standard deviations (SDs), named log ‘variability 79 

ratio’ (lnVR) and the logarithm of the ratio of the coefficients of variation (CV), termed the 80 

log ‘CV ratio’ (lnCVR), are most readily integrated into the standard meta-analytic paradigm; 81 

i.e. a contrast-based model using an effect size that corresponds to an effect relative to a 82 

concurrent control 16,17. Of the two, lnCVR is perhaps the more useful measure where a 83 

mean-variance relationship is likely to exist. Nakagawa, Poulin, Mengersen, et al. 15 highlight 84 

that meta-analysing variation may be used to answer completely novel questions, but it can 85 

also be used to provide fresh insights into the topics on which a meta-analysis of means was 86 

already conducted. Indeed, lnCVR has already been applied in such diverse fields as ecology 87 

18, evolution 19, agriculture 20, health 17, and the social sciences 21. It is important to note that 88 

lnCVR (and also lnVR) require the same data to calculate as is already needed for computing 89 

SMD or lnRR values. 90 

 91 

Our aims in this paper are threefold. First, we review existing and propose new estimators for 92 

lnCVR and its sampling error variance. These include, for the first time, estimators of the 93 

sampling variance when the two groups (treatment and control) are not independent (as may 94 

occur, for example, in cross-over trials or in paired, single-subject, or pre-test-post-test 95 
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designs). Second, we conduct a simulation study to investigate the performance of the 96 

different estimators. Finally, we present two case studies using these techniques, and 97 

illustrate the importance of accounting for dependence between the two treatment groups in 98 

the estimation of sampling variation and other heterogeneity parameters (e.g., ��, the 99 

between-study variance, and �� 22). 100 

 101 

2. METHODS 102 

2.1 Point estimators when groups are independent 103 

Let �� � ���� , 	�
 and �� � ���� , 	�
 denote normally distributed random variables with 104 

true means (i.e., expected values) given by �� and �� and true standard deviations 	�  and 	� . 105 

For independent random samples based on these variables (e.g., representing some outcome 106 

of interest measured in a treatment and control group) of size ��  and �� , let ��� and ��� denote 107 

the respective sample means and 
�  and 
�  the corresponding standard deviations for the two 108 

groups. Then comparisons between the means, variances and coefficients of variation for two 109 

groups can be made using the lnRR, lnVR and lnCVR effect size measures, respectively. 110 

“Naïve” estimators of these effect statistics are: 111 

lnRR� � ln ������, 
lnVR� � ln �
�
��, 

lnCVR� � ln �CV�CV��, 
where ln denotes the natural logarithm and CV� � 
�/��� and CV� � 
�/��� denote the 112 

coefficients of variation in the treatment and control group, respectively.  113 

 114 
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While these naïve estimators are consistent and asymptotically unbiased, we can add 115 

corrections for the sample size based on a second-order Taylor expansion (also known as, the 116 

second order delta method) for each statistic 15,23,24. For the lnRR, Lajeunesse 23 demonstrated 117 

such a correction is important to obtain unbiased estimation especially when sample size is 118 

small; 119 

lnRR� � ln ������ � 12 � 
������
�

� 
��������. 
Similarly, for the lnVR, Nakagawa, Poulin, Mengersen, et al. 15 proposed: 120 

lnVR� � ln �
�
�� � 12 � 1�� � 1 � 1�� � 1�. 
Combing lnRR2 and lnVR2, one obtains:  121 

lnCVR� � ln �CV�CV�� � 12 � 1�� � 1 � 1�� � 1� � 12 � 
������� � 
������
�

�. 
Note that Nakagawa, Poulin, Mengersen, et al. 15 originally suggested the an estimator of 122 

lnCVR that missed the bias correction pertaining to lnRR (i.e. 
�

�
� ��

�

����
� � ��

�

����
��
. We also note 123 

that an alternative estimator of lnCVR could also be obtained based on �1 � �

��
� CV, which it 124 

has been suggested acts as a ‘rough’ bias correction for the CV (e.g. 25). However, this 125 

estimator is not recommended here, and it does not perform well (see Supplementary 126 

Materials S1, Text S1). 127 

 128 

2.2 Dispersion estimators when the two groups are independent 129 

The original estimators of the sampling (error) variance for lnRR 4 and lnVR 15 are based on 130 

the first-order Taylor expansion; they are respectively: 131 


��lnRR�
 � 
������� � 
������
�

, 
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��lnVR�
 � 12 � 1�� � 1 � 1�� � 1�. 
Based on these, for lnCVR Nakagawa, Poulin, Mengersen, et al. 15 proposed: 132 


��lnCVR�
 � 
���	���� � 12��	 � 1
 � 2 ! 
���	����
12��	 � 1
 

� 
�������� � 12��� � 1
 � 2 ! 
��������
12��� � 1
 , 

where   is the correlation between the log mean and log SD. Nakagawa, Poulin, Mengersen, 133 

et al. 15 suggested that   can be estimated based on the correlation between the log sample 134 

mean and log sample SD across the studies included in a meta-analysis. However, in doing so 135 

one risks conflating within- and between-study correlation (i.e., the correlation in the 136 

bivariate sampling distribution of the sample mean and sample SD could be very different 137 

than the correlation of the true means and SDs across studies). In fact, for observations that 138 

come from an underlying population distribution that is symmetric (e.g. a normal 139 

distribution), the sample mean and variance are uncorrelated 26. Thus, for the case considered 140 

here where   = 0 the equation above simplifies to: 141 


��lnCVR�
 � 
������� � 12��� � 1
 � 
������
�

� 12��� � 1
. 
As a better estimator for the sampling variance of lnRR, Lajeunesse 23 derived and tested the 142 

following sampling variance based on the second-order Taylor expansion: 143 


��lnRR�
 � 
������� � 
��2��
���� � 
������

�
� 
��2��

���
�

. 
Similarly, we can derive the following sampling variance for lnVR based on the second-order 144 

Taylor expansion as: 145 


��lnVR�
 � 12 � 1�� � 1 � 1��� � 1
� � 1�� � 1 � 1��� � 1
��. 
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Accordingly, the complete estimator of the sampling variance for lnCVR, based on s2(lnRR2) 146 

and s2(lnVR2) is: 147 


��lnCVR�
 � 
������� � 
��2��
���� � 12��� � 1
 � 12��� � 1
� 

� 
������
� � 
��2��

���
� � 12��� � 1
 � 12��� � 1
� . 

In the supplementary materials, we propose estimators of the sampling covariance based on 148 

the above, which can be used when multiple treatment groups are contrasted with the same 149 

control 27 (see Supplementary Materials S1, Text S2) 150 

 151 

2.3 Point estimators when groups are dependent 152 

Due to experimental design, control and treatment groups are often not independent of one 153 

another. A clear example of this dependency is in the case of a cross-over design where the 154 

same individuals are subjected to both control and experimental treatments at two different 155 

time points. The point estimates given above will perform the same way regardless of 156 

whether we are dealing with independent or dependent groups. In cross-over studies, 157 

however, �� � �� " �, unless dropouts are included in a pre-post design, in which case we 158 

recommend that n = npost (i.e. the sample size in the post-treatment condition) is used. This is 159 

because the correlation between pre and post-treatment measurements can only be calculated 160 

based on n, which assumes �� � �� (see the next section). We can rewrite the dependent 161 

cases of lnRR1 and lnRR2 as: 162 

lnRR
 � ln ������, 
lnRR� � ln ������ � 12 � 
�����

�
� 
�������, 
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where subscripts 3 and 4 indicate the naïve estimator and estimator based the second-order 163 

Taylor expansion, respectively. Similarly, for lnVR and lnCVR, we have: 164 

lnVR
 � ln �
�
��, 
lnVR� � ln �
�
�� � 12 � 1�� � 1 � 1�� � 1� �  ln �
�
��, 

lnCVR
 � ln �CV�CV��,  
lnCVR� � ln �CV�CV�� � 12 � 
������ � 
�����

�
�. 

2.4 Dispersion estimators when the two groups are dependent 165 

In dependent cases estimates of the sampling variance need to account for the correlation 166 

between measurements from the same replicates on the two occasions (i.e. cross-correlation 167 

28). Based on the first-order Taylor expansion, the sampling variance for lnRR is: 168 


��lnRR

 � 
������� � 
������
� � 2$��! 
������� ! 
������

� , 
where rCT is a cross-context correlation value estimated from the two sets of measurements 169 

on the same replicate when they are under the control and treatment conditions 29. As 170 

discussed above for dependent studies �� � �� " � meaning 
��lnRR

 simplifies to: 171 


��lnRR

 � 
������ � 
�����
� � $�� 2
�
�������� . 

If based on the second-order Taylor expansion 23, the estimator of the sampling variance for 172 

lnRR is: 173 


��lnRR�
 � 
������ � 
�����
�

� $�� 2
�
�������� � 
��2����� � 
��2����
�

� $��� 
��
������� � ����

2�������

�
.  

We can also derive the sampling variance for dependent cases of lnVR based on the first-174 

order Taylor expansion as: 175 
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��lnVR

 � 12 � 1��� � 1
 � 1��� � 1
� � $��� ! 1��� � 1
 ! 1��� � 1
 , 
which, where �� � �� " �, simplifies to: 176 


��lnVR

 � 1 � $���� � 1 . 
Based on the second-order Taylor expansion, we have the sampling variance for dependent 177 

cases of lnVR as: 178 


��lnVR�
 � 1� � 1 � $��� 1� � 1 � 1�� � 1
� � $��� 
�� � 
��2�� � 1
�
��
��. 
From the sampling variances for lnRR and lnVR, we have the sampling variance for lnCVR 179 

with first- and second-order Taylor expansion as: 180 


��lnCVR

 �  
������ � 
�����
�

� $�� 2
�
�������� � 1� � 1 � $��� 1� � 1, 

��lnCVR�
 � 
������ � 
�����

�
� $�� 2
�
�������� � 
��2����� � 
��2����

�
� $��� 
��
������� � ����


2�������
�

 

� 1� � 1 � $��� 1� � 1 � 1�� � 1
� � $��� 
�� � 
��2�� � 1
�
��
�� . 
Note that, where r is positive the estimated sample variance for a dependent estimator will be 181 

smaller than its independent equivalent, but that as r shrinks to 0 the dependent case 182 

converges on the independent; e.g. assuming nc = nT, where r > 0, 
��lnCVR

 < 
��lnCVR�
, 183 

but where r = 0, 
��lnCVR

 = 
��lnCVR�
. 184 

 185 

3. SIMULATION 186 

3.1 Simulation study design 187 

We simulated a two-group experiment/trial, where a pair of groups is based on nT and nC 188 

random samples drawn from populations under an experimental treatment and control 189 

conditions. The treatment and control populations have means μT and μC and standard 190 
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deviations (SDs) σT and σC, respectively. The ith sample in each group, yTi (i = 1 … nT) and 191 

yCi (i = 1 … nC) was drawn from a bivariate normal distribution as follows: 192 

�%��%��� ~� �'����( , ) 	��  ��	�	� ��	�	� 	�� *� 

Where '����
( are the population means of the two groups, ) 	��  ��	�	� ��	�	� 	�� * is a variance 193 

co-variance matrix specifying the variances of the two groups with  �� giving the degree of 194 

correlation among the ith samples in the two groups and all other parameters are as above. 195 

When where  �� ≠ 0 the ith data in the two groups are correlated (i.e. dependent or paired 196 

samples as in a cross-over design). 197 

 198 

In all simulations, μC = 100 and σC = 20, which across the parameters tested ensures positive 199 

sample means (required for log transformation). We explored values of μT ranging between 200 

μC × e-0.5 and μC × e0.5 and values of σT ranging between σC × e-0.5 and σC × e0.5, meaning the 201 

ln(μT / μC) and ln(σT / σC) is between -0.5 and 0.5. All combinations were explored and 202 

where ln(μT / μC) = ln(σT / σC) the coefficient of variance (CV) of the two groups will be 203 

identical. We explored nC = 8, 16 and 42, with nC = nT and, with nC < nT (independent case). 204 

We also explored  �� = 0 and  �� = 0.8. For each set of parameters, we simulated 100,000 205 

experiments. 206 

 207 

Based on the sample means and SDs of each simulated experiment, we calculated lnCVR1 208 

and lnCVR2 for independent cases ( �� ≠ 0) and lnCVR3 and lnCVR4 for dependent cases 209 

( �� ≠ 0). We also calculated the sampling variance estimators s2(lnCVR1) and s2(lnCVR2) 210 

where  �� ≠ 0, and s2(lnCVR3) and s2(lnCVR4) where  �� ≠ 0. We calculated bias in the ith 211 

estimator as: 212 
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bias/lnCVR�0 � 11 2 lnCVR�
 ��


��

 ln �	�/��	�/���, 
where k is the kth value of K (here 100,000) simulated values of lnCVRi (k = 1…K). This bias 213 

can be interpreted as the mean deviation of the ith estimator of lnCVR from the true 214 

population value. We calculated bias in sampling variance estimator i as: 215 

bias/
��lnCVR�
0 � 
��lnCVR�
 � 3��3�� 4 100, 
where s2(lnCVRi) is the value of the ith sampling variance based on the simulated population 216 

statistics and sample sizes and θj is the SD among K simulated effect sizes estimated using 217 

estimator j. This bias can be interpreted as the percentage by which the sampling variance 218 

estimator deviates from the true value (i.e. 100 = the estimator is twice the true value). We 219 

calculated coverage as the proportion of 95% confidence intervals (CIs) that include 220 

ln ���/��
��/��

�. For a combination of the jth effect size estimator (lnCVRj) and ith sampling 221 

variance s2(lnCVRi), 95% CIs were constructed as: 222 

95% CI � lnCVR� : ;�.���
�lnCVR�
 

where lnCVRj is the estimated effect size for the simulated sample, s(lnCVRi) an estimate of 223 

the standard error (SE; the square root of the estimated sampling variance), and ;�.��� is the 224 

function of the 0.975th quantile of a z distribution (approx. 1.96). Simulations and analyses 225 

were performed in R v3.5.1; 30, and using the ‘mvrnorm’ function in the MASS package 31. 226 

All data and code presented in this manuscript can be found at 227 

(https://github.com/AlistairMcNairSenior/lnCVR_Estimators_Sim). 228 

 229 

3.2 Simulation results 230 

We begin with the case where the two groups are independent ( �� = 0). Figure 1 shows bias 231 

in the estimated effect as a function of sample size and the log the ratio of the means and SDs 232 
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in the two groups. Across the diagonal elements of each plot (black-dashed line) the 233 

underlying CV of the two populations is identical (even if the means and SDs differ; 234 

ln ���/��
��/��

� = 0), elements above the line correspond to the CV of the treatment population 235 

being greater than that of the control group (ln ���/��
��/��

� > 0), and elements below the line the 236 

opposite (ln ���/��
��/��

� < 0). lnCVR1 overestimates positive effects and slightly under-estimate 237 

negative effects, with bias being most profound where the sample size is small. lnCVR2, on 238 

the other hand, displays no systematic bias. Figure 2 shows the results where the sample size 239 

of the treatment group is ~25% greater than that of the control group. lnCVR1 showed severe 240 

upward bias, especially where the sample size was small, where as lnCVR2 performed with 241 

only very minor upward bias, which all but disappeared for larger sample sizes. Given that 242 

lnCVR2 was determined to be the most accurate estimator of the effect, we proceeded to 243 

explore how lnCVR2 performed in conjunction with different estimators of sampling 244 

variance. 245 

 246 

 247 

Bias of Effect Size Estimators

ln(μT μC)

ln
(σ

T
σ C

)
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Figure 1: Bias in effect size estimators of lnCVR as a function of the log ratio of population 248 

means (x-axis), SDs (y-axis) and sample size (balanced) for the case of independent treatment 249 

and control group data ( �� = 0). Black dashed line indicates no effect (i.e., lnCVR = 0). 250 

 251 

 252 

Figure 2: Bias in effect size estimators of lnCVR as a function of the log ratio of population 253 

means (x-axis), SDs (y-axis) and sample size (unbalanced) for the case of independent 254 

treatment and control group data ( �� = 0). Black dashed line indicates no effect (i.e., lnCVR 255 

= 0). 256 

 257 

The first sampling variance estimator s2(lnCVR1) underestimated the variance among 258 

simulated values of lnCVR2, particularly where the sample size was small (Figure 3). Biases 259 

for s2(lnCVR2) were minimal, although there was some very slight upward bias for small 260 

sample sizes and large positive effects (Figure 3). The coverage of 95% CIs for s2(lnCVR1) 261 

and s2(lnCVR2) (paired with lnCVR2) are shown in Figure 4. s2(lnCVR1) generated CIs that 262 

were too narrow at smaller sample sizes, whereas again s2(lnCVR2) performed with little 263 

bias. At larger sample sizes coverage was much closer to the nominal level (Figure 4), 264 
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although s2(lnCVR2) still performed more accurately. The same patterns of performance were 265 

observed for the case where nC < nT (Supplementary Figures S1 and S2). 266 

 267 

 268 

Figure 3: Bias in sampling variance estimators of lnCVR as a function of the log ratio of 269 

population means (x-axis), SDs (y-axis) and sample size (balanced) for the case of 270 

independent treatment and control group data ( �� = 0). Black dashed line indicates no effect 271 

(i.e., lnCVR = 0). 272 

 273 
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Figure 4: Coverage of 95% CIs based on estimators of the sampling variance of lnCVR as a 275 

function of the log ratio of population means (x-axis), SDs (y-axis) and sample size 276 

(balanced) for the case of independent treatment and control group data (��� = 0). Black 277 

dashed line indicates no effect (i.e., lnCVR = 0). 278 

 279 

For the case where treatment and control samples were dependent on one another (��� = 0.8) 280 

lnCVR4 out-performed lnCVR3, with a pattern identical to that in Figure 1 (Figure S3). With 281 

regards the two estimators for dependent sampling variances, s2(lnCVR3) underestimated the 282 

variance where as s2(lnCVR4) overestimated the variance (Figure 5). These biases were 283 

within a reasonable range for larger samples, but were severe for small samples, and 284 

s2(lnCVR4) in particular showed extreme upward bias (reaching 60% overestimate) when the 285 

SD of the treatment group differed from that of the control group (Figure 5). The CIs 286 

generated by s2(lnCVR3) had a tendency to be too narrow whereas those generated by 287 

s2(lnCVR4) were too wide (Figure 6).  288 

 289 
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 290 

Figure 5: Bias in sampling variance estimators of lnCVR as a function of the log ratio of 291 

population means (x-axis), SDs (y-axis) and sample size (balanced) for the case of dependent 292 

treatment and control group data (��� = 0.8). Black dashed line indicates no effect (i.e., 293 

lnCVR = 0). 294 
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296 
Figure 6: Coverage of 95% CIs based on estimators of the sampling variance of lnCVR as a 297 

function of the log ratio of population means (x-axis), SDs (y-axis) and sample size 298 

(balanced) for the case of dependent treatment and control group data (��� = 0.8). Black 299 

dashed line indicates no effect (i.e., lnCVR = 0). 300 

 301 

4. WORKED EXAMPLES 302 

We now provide two examples: one from the field of ecology and the other from the health 303 

sciences. All meta-analytic models (random-effects meta-analysis) were fitted using the ‘rma’ 304 

function (with default settings) in metafor 32. 305 

 306 

4.1 Example 1: Carbon dioxide levels and plant mass 307 

Curtis, Wang 33 performed a meta-analysis of experimental studies that tested for the effects 308 

of elevated carbon dioxide (CO2) levels on woody plant mass. Briefly, these studies 309 
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compared the total biomass (above and below ground) of plants grown under ambient and 310 

artificially elevated (~100% increase) CO2 levels. Studies were performed in a range of 311 

contexts, including highly controlled (e.g., green houses) and less controlled (e.g., field sites) 312 

environments, as well as across temperature, light, water, and soil-fertility levels. Replication 313 

was at the level of the locale (e.g., plot/site/greenhouse) at which a treatment was applied, 314 

and treatment/control groups may be correlated (i.e., non-independent) if, for example, 315 

locales experiencing different treatments are paired spatially or temporally. However, the 316 

degree to which such correlations are present was not stated. Aggregating 102 effect sizes 317 

(lnRR), Curtis, Wang 33 found that the mean biomass of woody plants at a site increases by, 318 

on average, 28.8% under elevated CO2 conditions. However, there was evidence that the 319 

effect is moderated by the presence of other stressors such as under nutrient- or light-limited 320 

conditions. 321 

 322 

Here we ask whether elevated CO2 levels also increase among-replicate variability in plant 323 

biomass using lnCVR. We tested the sensitivity of the analysis to the assumption that 324 

treatment and control groups are uncorrelated. Because we do not know precisely which 325 

effect size data come from paired designs, we calculated effect sizes and sampling variance 326 

assuming complete independence (0% of effect sizes have correlated groups), varying 327 

degrees of partial dependence (a random subset of 20%, 60%, or 80% effect sizes have 328 

correlated groups; rCT = 0.8), or complete dependence (100% of effect sizes have correlated 329 

groups; rCT = 0.8). For those effect sizes that were assumed to be uncorrelated we used 330 

lnCVR2 and s2(lnCVR2), and for those that are correlated lnCVR4 and s2(lnCVR3). 331 

 332 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896522doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896522
http://creativecommons.org/licenses/by-nc/4.0/


 20

 333 

Figure 7: Association between log sample mean (ln ��) and log sample standard deviation (ln 334 

s) for treatment (hollow points) and control (solid points) groups in the data from; A) Curtis, 335 

Wang 33, where the outcome is woody plant biomass under elevated (treatment) vs ambient 336 

(control) CO2 levels; and B) Brand-Miller et al. (2003) where the outcome is a measure of 337 

glycemia in diabetic individuals on low (treatment) vs high (control) glycemic index diets. 338 

Note in (B) measures of glycemia are either fructosamine (black points) or HbA1c (red points) 339 

levels, where lower levels indicate better gylcemic control. 340 

 341 

There was evidence for a mean-variance relationship under both elevated and ambient CO2 342 

levels (Figure 7A). The influence of increasing the percentage of effect sizes that are assumed 343 

to come from correlated groups on a random-effects meta-analysis is shown in Table 1. There 344 

are some qualitative differences in the interpretation of the overall effect, whereby the 345 

associated CI spans zero in some cases, but not others (Table 1). In all cases the sign of the 346 

overall effect is stable and suggests that elevating CO2 levels on average decreases the CV in 347 

biomass among replicates (possibly by somewhere between 100 × (1 - exp(-0.078) = 7.5 to 348 

100 × (1 - exp(-0.116) = 10.9 percent). The effect of increasing the number of studies with 349 

correlated groups on the estimated inter-effect size heterogeneity, is however, much more 350 
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dramatic. As less independence is assumed, the amount of heterogeneity (absolutely, in terms 351 

of �̂�, and relatively, in terms of ��) increases substantially (Table 1), such that when 40% or 352 

more of the studies are have used paired designs, Cochran’s Q test yields a significant result. 353 

 354 

4.2 Example 2: Low glycemic index diets and glycemic control in diabetic subjects 355 

Brand-Miller, Petocz, Hayne, Colagiuri 34 performed a meta-analysis of studies designed to 356 

test the effects of low glycemic index (GI) diets on bio-markers of glycemic control in 357 

diabetic (type 1 and 2) individuals. Individuals were given either low or high GI diets, after 358 

which glycemia was measured using HbA1c and/or fructosamine levels. These two markers 359 

quantify glycemia over longer vs shorter time periods respectively, where lower levels 360 

indicate better glycemic control. The studies differed somewhat in the overall GI of the diets 361 

used and the duration for which subjects were on the diets. The studies used a mixture of 362 

parallel designs where the individuals in each treatment group are completely independent, 363 

and cross-over designs where each individual was subject to both treatments. Brand-Miller, 364 

Petocz, Hayne, Colagiuri 34 acknowledged that for those studies with a cross-over design, 365 

there will be a degree of correlation among the treatment and control condition data. They 366 

tested the sensitivity of their results to any such correlation by repeating the analyses 367 

assuming complete independence (rCT = 0) and also assuming that groups are correlated (rCT 368 

= 0.34; based on one of the studies in their primary literature). Their analyses of 14 effect 369 

sizes (mean differences, expressed in terms of percent; 11 from studies with cross-over 370 

designs) suggested that measures of glycemia are decreased by 6.8 percentage points 371 

(improved glycemic control) on low GI diets irrespective of their assumptions about 372 

correlations among groups. The authors used a fixed-effect meta-analytic model, and did not 373 

present heterogeneity statistics. 374 

 375 
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We tested whether low GI diets affect inter-individual variability in glycemic control using 376 

lnCVR. Unlike example 1, here we do know which studies contain dependent groups (those 377 

with cross-over designs), although the strength of the dependence is not precisely known. For 378 

independent designs we calculated effect sizes and sampling variances via lnCVR2, and 379 

s2(lnCVR2). For those studies using a cross-over design we calculated lnCVR4 and 380 

s2(lnCVR3) assuming treatment and control data are correlated with rCT = 0, 0.3, 0.5, and 0.8. 381 

Where more than one measure of glycemia was presented from a single study, we primarily 382 

use fructosamine levels (this being the more widely reported measure). 383 

 384 

We observed a mean-variance relationship amongst both measures of glycemic control within 385 

the two treatment groups (Figure 7B). The results of random-effects meta-analyses fitted to 386 

the effect sizes are given in Table 2. The analyses estimated that on low-GI diets the CV in 387 

biomarkers of glycemic control is on average reduced by between 13% (100 × (1 - exp(-388 

0.135)) and 18% (100 × (1 - exp(-0.177)) compared to high-GI diets. However, as the degree 389 

of correlation among data from cross-over trials increased, there was a marginal reduction in 390 

the overall effect magnitude and an increase in the associated SE (Table 2); for rCT = 0.5, the 391 

overall effect was not statistically significant. With increasing correlation, heterogeneity also 392 

increased (Table 2). Where we assumed complete independence (rCT = 0), there was no 393 

evidence for heterogeneity, but for rCT = 0.8, we detected inter effect size heterogeneity 394 

(Table 2). 395 

 396 

5. DISCUSSION AND CONCLUSIONS 397 

We recommend that meta-analysts use the following estimator of the lnCVR for independent 398 

study designs: 399 
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lnCVR��� � ln 
CV�CV�� � 1
2 
 1

�� � 1 � 1
�� � 1� � 1

2 � ���
����� � ���

����
�

�. 
For dependent study designs we recommend the use of the following point estimator: 400 

lnCVR��� � ln 
CV�CV�� � 1
2 � ���

���� � ���
���

�
�. 

Under the simulated conditions explored, these estimators exhibited minimal bias, where 401 

‘naïve’ estimators displayed systematic biases, substantially overestimating large positive 402 

effects, especially when sample sizes were small. Compared to previous estimators 15, this 403 

revision contains an additional term, 
	

�

 
�

�

����
� � 
�

�

����
��, which has also been shown to reduce 404 

bias in mean effects estimated via lnRR 23. We also recommend that the following estimators 405 

for the sampling variance of lnCVR be used for independent and dependent study designs, 406 

respectively: 407 
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����� � ��


2��
���
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� 1

2��� � 1� � 1
2��� � 1�� , 

���lnCVR���� �  ���
���� � ���

���
�

� ��� 2����������� � 1
� � 1 � ���� 1

� � 1. 

Our simulations demonstrate that the estimator for independent designs performs very well 408 

and 95% CIs based on a z distribution give coverage at the nominal level. The estimator for 409 

dependent cases slightly underestimates the actual sampling variance in lnCVR, and will 410 

generate CIs (based on z or t distributions) that are slightly too narrow. This might be due to 411 

the substitution of ��� for the unknown true correlation in the equation for the sampling 412 

variance without further account of the additional source of uncertainty this introduces. CIs 413 

that are too narrow may be more troublesome in that they can lead to inflated type-1 error 414 

rates (a more conservative estimator, s2(lnCVR4), is given above, although this approach may 415 
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substantially overestimate the sampling variance for small samples). Note that these 416 

recommended estimators are now available in the ‘escalc’ function in the development 417 

version of metafor (https://github.com/wviechtb/metafor), and will eventually be 418 

implemented in the CRAN version. 419 

 420 

We used the recommended estimators to evaluate whether: 1) increased CO2 levels affect 421 

variation in woody plant biomass, and 2) low-GI diets alter between-individual variation in 422 

glycemic control in diabetics. In both cases, we found that the treatments have a tendency to 423 

decrease the CV. In both cases the analyses were sensitive to assumptions about the degree to 424 

which treatment and control data are correlated. Assuming higher degrees of correlation 425 

resulted in small changes in the overall effect (and its standard error). Although these 426 

parameters were relatively stable, for estimates with CIs close to zero, changing assumptions 427 

about group independence can affect inference. Increasing the degree of correlation 428 

dramatically increased the estimated between-effect size heterogeneity, which could change 429 

conclusions about the consistency of the reported effects. This trend can be explained by the 430 

fact that as more/stronger correlations are assumed the sampling variances associated with 431 

the individual effect sizes shrink, effects are assumed to be more precise, and sampling 432 

variability therefore becomes less able to explain the variation among the effects. Our results 433 

corroborate the points made by Becker 28, who introduced an estimator for the sampling 434 

variance of SMD for dependent groups. 435 

 436 

As is the case with any exercise in data analysis, the most appropriate technique to use will 437 

depend on the question being asked. Where the analyst is able to determine with a reasonable 438 

degree of certainty that a mean-variance relationship does not exist, lnVR may be a more 439 

useful measure of between-group differences in variability than lnCVR. This is because 440 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.896522doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.896522
http://creativecommons.org/licenses/by-nc/4.0/


 25

lnCVR risks conflating effects on the SD with effects on the mean. In other instances, the 441 

user may be more interested in ascertaining whether a treatment alters the SD irrespective of 442 

a mean-variance relationship (e.g., in questions related to power and study design), and again 443 

lnVR would be an appropriate choice. However, where mean-variance relationships are 444 

present, and the analyst is interested in whether the variation is greater/lower than expected 445 

given the mean, lnCVR is useful. For some matters, it may even be common practice for the 446 

primary literature to describe variation in terms of CV rather than SD. For instance, in 447 

ecology and evolution it is common to present CV when comparing variability amongst 448 

species/traits that exist on different scales because CV is a relative measure 35. We note that 449 

such a practice is not necessarily required for meta-analysis because lnVR is also a relative 450 

measure of variation, and as such should also do a good job of correcting for inter-system 451 

differences in scale. Nevertheless, where CV is the measure of variability commonly reported 452 

in the primary literature, the user may find it intuitive (or even necessary) to use lnCVR. 453 

 454 

Nakagawa, Poulin, Mengersen, et al. 15 also present alternative arm-based models (and 455 

discuss bivariate models) for meta-analysis of variation. The lnCVR metric assumes that 456 

changes in the mean are associated with proportional changes in the SD. Arm-based (and 457 

bivariate) models are an alternative for meta-analysis which allow the user to circumvent the 458 

assumption of proportionality. Arm-based models, however, are not without their critics who 459 

argue that these methods are radical departure from established meta-analytic thinking (see 460 

16). Like other (contrast-based) effect size measures that reflect the difference between two 461 

groups (e.g., the standardized mean difference, log response ratio, log risk/odds ratio or the 462 

risk difference), lnCVR readily integrates with our most widespread analytical paradigms, 463 

offering a convenient and intuitive method for meta-analysis of variability. 464 
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Finally, we finish by reiterating the point made by Nakagawa, Poulin, Mengersen, et al. 15, 466 

and echoed by subsequent papers using lnCVR in different fields of study 17-21. Meta-analysis 467 

of variation can tackle entirely new questions and open our eyes to insights that are hidden in 468 

datasets. The datasets required to gain these insights already exist because lnCVR is based on 469 

the same summary statistics as SMD and lnRR; means, SDs, and sample sizes. We suspect 470 

over 50,000 datasets of this sort have already been collected (c.f. 36). In this regard it is vital 471 

that meta-analytic ‘raw’ data are made available and reusable in the spirit of open and 472 

transparent science 37,38. 473 
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Table 1:  Estimates of the overall effect (lnCVR) and heterogeneity statistics from random-564 

effects meta-analyses of woody plant biomass under elevated vs ambient CO2 levels. 565 

Negative estimates indicate lower CV under elevated CO2. Models were refitted based on 566 

effect sizes assuming increasing % of the effect sizes contain correlated (dependent) 567 

treatment and control group data (rCT = 0.8). LCI and UCI indicate the lower and upper 95% 568 

confidence interval bounds. Data from Curtis, Wang 33. 569 

% Correlated  Estimate SE LCI UCI τ2 I2 Q p (Q) 

0 -0.078 0.044 -0.163 0.008 0.000 0.000 85.75 0.861 

20 -0.090 0.055 -0.198 0.017 0.082 35.02 141.0 0.005 

40 -0.093 0.057 -0.205 0.019 0.133 55.00 191.8 <0.001 

60 -0.095 0.057 -0.207 0.017 0.161 64.28 240.7 <0.001 

80 -0.118 0.054 -0.225 -0.011 0.165 68.31 267.0 <0.001 

100 -0.116 0.053 -0.219 -0.012 0.17 73.77 294.2 <0.001 
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Table 2:  Estimates of overall effect (lnCVR) and heterogeneity from random-effects meta-571 

analyses of glycemic control in diabetics on low- vs high-GI diets. Negative estimates 572 

indicate lower CV on a low-GI diet. Models were refitted from effect sizes assuming 573 

differing strength of correlation (rCT) among repeated measured from the same individuals in 574 

cross-over trials. LCI and UCI indicate the lower and upper 95% confidence interval bounds. 575 

Data from Brand-Miller, Petocz, Hayne, Colagiuri 34. 576 

rCT Estimate SE LCI UCI τ2 I2 Q p (Q) 

0 -0.177 0.070 -0.314 -0.039 <0.001 0.006 15.88 0.321 

0.3 -0.162 0.075 -0.308 -0.015 0.012 15.14 18.92 0.168 

0.5 -0.151 0.080 -0.307 0.006 0.030 32.73 22.33 0.072 

0.8 -0.135 0.091 -0.314 0.044 0.085 70.44 42.58 <0.001 
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