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Abstract 52 

Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial 53 

transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and 54 

Venezuela revealed four populations (Clades I, II, III, and IV) corresponding to these geographic 55 

regions. Since this description, C. auris has been reported in over 30 additional countries. To trace this 56 

global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six 57 

continents. We found that four predominant clades persist across wide geographic locations. We 58 

observed phylogeographic mixing in most clades; Clade IV, with isolates mainly from South America, 59 

demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with 60 

opposite mating types were detected contemporaneously in a single healthcare facility in Kenya. We 61 

estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 339 62 

years; outbreak-causing clusters from Clades I, III, and IV originated 34-35 years ago. We observed 63 

high rates of antifungal resistance in Clade I, including four isolates resistant to all three major classes of 64 

antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as 65 

the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin 66 

resistance. Copy number variants in ERG11 predominantly appeared in Clade III and were associated 67 

with fluconazole resistance. These results provide a global context for the phylogeography, population 68 

structure, and mechanisms associated with antifungal resistance in C. auris.  69 

  70 
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Importance  71 

In less than a decade, C. auris has emerged in healthcare settings worldwide; this species is 72 

capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida 73 

species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug 74 

resistance. As part of the public health response, whole-genome sequencing has played a major role in 75 

characterizing transmission dynamics and detecting new C. auris introductions. Through a global 76 

collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we 77 

described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, 78 

characterized discrete phylogeographic population structure of each clade, and compared genome data to 79 

sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. 80 

These efforts are critical for a sustained, robust public health response that effectively utilizes molecular 81 

epidemiology.   82 

  83 
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Introduction  84 
In the last decade, Candida auris has emerged in healthcare settings as a multidrug-resistant 85 

organism in over 30 countries worldwide (1). Primarily a skin colonizer, this pathogenic yeast can cause 86 

bloodstream infections and other infections (2), is often resistant to multiple classes of antifungal drugs 87 

(3, 4), and can spread via nosocomial transmission causing outbreaks of invasive infections (5-12).  88 

Initial studies suggested that C. auris emerged simultaneously and independently in four global 89 

regions, as phylogenetic analyses revealed four major clades of C. auris wherein isolates clustered 90 

geographically (13). These clades are referred to as the South Asian, East Asian, African, and South 91 

American clades or clades I, II, III, and IV, respectively (14). The isolates from these clades are 92 

genetically distinct, differing by tens to hundreds of thousands of single nucleotide polymorphisms 93 

(SNPs), with nucleotide diversity nearly 17-fold higher between clades compared to within clades (14). 94 

All the clades, except Clade II, have been linked to outbreaks of invasive infections; uniquely, Clade II 95 

appears to have a propensity for ear infections (15). The need for increased global efforts to understand 96 

the population structure of C. auris was recently highlighted by the discovery of the first Iranian C. auris 97 

case that yielded a single isolate representing a fifth major clade (16). 98 

Molecular epidemiologic investigations of C. auris outbreaks generally show clusters of highly 99 

related isolates, supporting local and ongoing transmission (7, 17, 18). The analysis of outbreaks and 100 

individual cases has also revealed genetic complexity, with isolates from different clades detected in 101 

Germany (19), United Kingdom (20) and United States (21), suggesting multiple introductions into the 102 

countries, followed by local transmission. To date, each of the clades appears to have undergone clonal 103 

expansion; while C. auris genomes have conserved mating and meiosis genes, only one of the two 104 

fungal mating types are present in a given clade. Specifically, MTLa is present in Clades I and IV and 105 

the other mating type, MTLα, is found in Clades II and III (14). Understanding whether mating and 106 

recombination between clades is occurring is critical,  especially in those countries, where isolates from 107 
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different clades and opposing mating types overlap in time and space. This information could help 108 

contextualize complex epidemiologic findings or transmission dynamics. 109 

In addition to its transmissibility, C. auris is concerning because of its high rates of drug 110 

resistance.  Three major classes of antifungal drugs are currently approved for systemic use – azoles, 111 

polyenes, and echinocandins. Most C. auris isolates are resistant to fluconazole (azole) (22). Elevated 112 

minimal inhibitory concentrations (MICs) to amphotericin B (polyene) have been reported in several 113 

studies and resistance to echinocandins is emerging in some countries (22). Numerous mechanisms of 114 

antifungal resistance have been described for C. auris. Echinocandin resistance has been linked to a 115 

single mutation at S639P/F in FKS1, the gene that encodes the echinocandin target 1,3-beta-D-glucan 116 

synthase (23). Most isolates display a mutation linked to fluconazole resistance in C. albicans; three 117 

mutations, Y132F, K143R, and F126L, have been identified in ERG11, the gene that encodes the azole 118 

target lanosterol 14-α-demethylase. These mutations have been shown to associate by clade where 119 

Y132F and K143R are predominately found in Clades I and IV and F126L is exclusively in Clade III 120 

(13, 24). Additionally, there have been suggestions that increased copy number of ERG11 may be a 121 

mechanism for fluconazole resistance in C. auris (14).  122 

To better understand C. auris emergence and population structure, we engaged in a global 123 

collaboration involving 19 countries to produce a large dataset of C. auris whole-genome sequences 124 

from hundreds of cases and associated environmental samples from healthcare surfaces. Our goal was to 125 

generate a comprehensive genomic description of a global C. auris population to provide a population 126 

genetic framework for the molecular epidemiologic investigations.  127 

 128 

Results  129 

Geographic distribution of C. auris major clades   130 

 We first performed a phylogenetic analysis to characterize the global distribution of C. auris 131 
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clades.  By including isolates from previous studies (13, 18), we observed that all 304 isolates in this 132 

sample collection clustered in one of the four major C. auris clades (Figure 1A). In this collection, 126 133 

(41%) were classified as Clade I, seven (2%) as Clade II, 51 (17%) as Clade III, and 120 (39%) as Clade 134 

IV. Globally, Clade I was the most widespread and found in ten countries (Canada, France, Germany, 135 

India, Kenya, Pakistan, Saudi Arabia, United Kingdom, United Arab Emirates, and United States); 136 

Clade II was found in Canada, Japan, South Korea, and United States; Clade III in Australia, Canada, 137 

Kenya, South Africa, Spain, and United States; and Clade IV in Colombia, Israel, Panama, United 138 

States, and Venezuela (Figure 1B). Multiple clades were found in Canada, Kenya, and United States.  139 

 In contrast to an initial report (13), we observed a weaker phylogeographic substructure as 140 

isolates from countries of most global regions appeared interspersed in phylogenies, although there was 141 

notable clustering by country within Clade IV (Figure 1C). Within Clade I, there were three 142 

predominant subclades, each including isolates from India and Pakistan. The smallest subclade included 143 

the B8441 reference genome and three other isolates. The other two subclades were more closely related 144 

to each other and included groups of highly related isolates from outbreaks in Kenya, United Kingdom, 145 

and United States. Additionally, Clade I isolates from countries in Europe (Germany, France) and the 146 

Middle East (Saudi Arabia, United Arab Emirates) appeared interspersed in the phylogeny, suggesting 147 

multiple introductions of C. auris into these countries. Clade II was rarely observed and consisted of 148 

seven diverse isolates from Japan, South Korea, United States, or Canada, where six were from cases 149 

involving ear infections. Other examples of phylogeographic mixing included isolates from Australia 150 

and Spain clustered with Clade III and isolates from Israel clustered with Clade IV, clades originally 151 

described as the African and South American clades, respectively.  152 

Evolutionary rate and molecular dating  153 

 To better understand the emergence of this species, we next estimated the divergence times of 154 

the four major clades. We utilized collection dates for clinical isolates and associated environmental 155 
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samples, such as swabs from healthcare facilities, which ranged from 2004 to 2018; most (98%) were 156 

collected from 2012 to 2018 (Figure 2A). By analyzing Clade III isolates from a single healthcare 157 

facility in Kenya experiencing an outbreak of ongoing transmission (25), we confirmed that the 158 

divergence level of these isolates are temporally corelated, supporting use of molecular clock analyses, 159 

and calculated a mutation rate of 1.8695e-5 substitutions per site per year (Supplementary Figure 1). 160 

This rate was used for a Bayesian approach for molecular dating of a phylogeny for all four clades. 161 

Using a strict clock coalescent model, we estimated that the time to most recent common ancestor 162 

(TMRCA) for each clade occurred within the last 339 years (Figure 2B, C). Clade IV emerged most 163 

recently with a TMRCA of 1984 (95% HPD 31.5 - 37.1 years ago), while Clade II was the oldest with a 164 

TMRCA of 1679 (95% HPD 321.2 - 356.4 years ago). Lastly, we observed the divergence within the 165 

19th century for the two most closely related clades, Clades I and III, 1878 (95% HPD 132.8 - 149.0 166 

years ago) and 1844 (95% HPD, 164.2 - 187.3 years ago), respectively (Figure 2B, C). These dates are 167 

impacted by the inclusion of divergent isolates in both clades, which notably do not have ERG11 168 

resistant mutations and are often drug susceptible, one isolate from Canada in Clade III and two isolates 169 

from Pakistan and one from United States in Clade I (Figures 1C and 2B). Excluding these drug 170 

susceptible outliers for Clades I and III, TMRCA estimates are for Clade I in 1984 (95% HPD, 17.5 – 171 

21.74 years ago) and for Clade III in 1985 (95% HPD, 16.0 – 21.5 years ago); these more recent 172 

estimates are more similar to that estimated for Clade IV. The estimated dates of TMRCA for each 173 

individual clade supports the recent expansion during the ongoing outbreak. Together this suggests an 174 

older separation of the four clades and the recent diversification of each clade in the years before the 175 

detected outbreaks.  176 

 177 

C. auris population structure  178 

We next examined the global genomic data set for evidence of population substructure and 179 

recent admixture. Principal Component Analysis (PCA) identified four well separated populations 180 
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corresponding to Clades I, II, III, and IV, and the tight clustering of isolates within each clade suggests 181 

there is no recent admixture in any isolates (Figure 3A). To assess genetic diversity at the clade level, 182 

we compared population genetic statistics, including nucleotide diversity (π), Tajima’s D (TD), fixation 183 

index (FST) and pairwise nucleotide diversity (DXY) (Figure 3B to E). Overall, Clade I and III showed 184 

the lowest genetic diversity (π = 1.51e-5 and π = 1.42e-5, respectively); Clade IV exhibited nearly three 185 

times these levels (π = 4.23e-5) and Clade II presented the highest genetic diversity (π = 1.29e-4), nearly 186 

nine times higher than Clades I and III (Figure 3B). Clade II was also the only clade that exhibited 187 

positive TD (td = 1.153; Figure 3B and C), suggesting balancing selection as expected from the long 188 

branches observed in Clade II phylogeny (Figure 1C). In Clades I, III, and IV we observed negative TD 189 

values consistent with recent population expansions and the shorter phylogenetic branches (Figure 3B 190 

and C, Figure 1C); however, Clade IV exhibited a highly variable distribution of TD relative to Clade I 191 

and III (Figure 3C; Supplementary Figure 2), which suggests that these clades have experienced 192 

distinct evolutionary processes, such as different degrees of population bottlenecks.  193 

Genome-wide FST analysis highlighted substantial interspecific divergence and reproductive 194 

isolation between C. auris clades (average genome-wide FST > 0.94 in all inter-clade comparisons; 195 

Figure 3D; Supplementary Figure 2). Comparison of the two most closely related clades (Clades I and 196 

III) revealed small regions with FST values close to zero; these regions of identity were distributed across 197 

the genome (5.86% of the genome; Figure 3E; Supplementary Figure 2, 3). Phylogenetic analysis 198 

revealed that these regions in isolates from Clades I and III are intermixed in a monophyletic clade 199 

(Supplementary Figure 3). Comparison of DXY values across the genome highlighted regions of 200 

population divergence between C. auris clades. Even between these clades with substantial interspecific 201 

divergence, we detected large genomic tracts that exhibit either high or low DXY values. For DXY, we 202 

observed that all chromosomes exhibited a bimodal distribution of regions of both high and low levels of 203 

DXY; scaffolds 8 and 10, which correspond to chromosomes 1 and 3, respectively (14), show only low 204 
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DXY values (Figure 3E; Supplementary Figure 2). DXY is expected to be elevated in regions of limited 205 

gene flow, which could have arisen in C. auris due to chromosomal rearrangements between the clades 206 

(26, 27), whereas DXY is unchanged or decreased in regions under recurrent background selection or 207 

selective sweeps.  208 

We observed a single C. auris mating type in each clade. Isolates in Clades I and IV had MTLa 209 

and those in Clades II and III had MTLα (Supplementary Figure 4); this confirms prior findings from a 210 

smaller data set (14) in this larger global survey. Countries with multiple clades (i.e., Canada, Kenya, 211 

and United States) had isolates of opposite mating types; however, there is no evidence of hybridization 212 

between clades within these countries or even between isolates of opposite mating types that were 213 

observed contemporaneously in a single healthcare facility in Kenya based on the PCA analysis. 214 

Together, these findings suggest that the C. auris clades have been genetically isolated and that variation 215 

across the genome was likely impacted by karyotype variation that prevented equal chromosome 216 

mixing. 217 

 218 

Antifungal drug resistance and mechanisms of resistance 219 
To examine resistance levels, we performed antifungal susceptibility testing (AFST) to 220 

fluconazole, amphotericin B, and micafungin – drugs representing each of the major classes. Of the 294 221 

isolates tested, 80% were resistant to fluconazole, 23% to amphotericin B, and 7% to micafungin (Table 222 

1, Figure 4). Clade II had the greatest percentage (86%) of susceptible isolates, including only one 223 

isolate resistant to fluconazole, and Clade I had the greatest percentage of resistant isolates to 224 

fluconazole (97%) and amphotericin B (54%). Additionally, Clade I had the highest rates of multidrug-225 

resistance (two antifungal classes; 49%) and was the only clade to have extensive drug-resistance (3%) 226 

to all three major classes of antifungals, including isolates from two geographic regions (United Arab 227 

Emirates and Kenya) that cluster together (Table 1; Figure 4). Amphotericin B resistance only appeared 228 

in Clades I and IV, and was dispersed across the phylogeny in Clade I and detected in a Clade IV cluster 229 
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of isolates from Colombia. Clade IV also had the highest percentage (9%) resistant to micafungin, all 230 

isolates from Venezuela. Micafungin resistance appeared sporadically in the phylogenies of Clades I and 231 

III. 232 

We next determined the genotype of specific drug mutations in the ERG11 gene that have been 233 

associated with azole resistance (Y132F, K143R and F126L). The most widespread mutation was 234 

Y132F spanning 11 countries in 53% of isolates from Clade I and 40% of isolates from Clade IV 235 

(Figure 4). ERG11 K143R was predominately found in a subclade within Clade I (43%) and one isolate 236 

from Clade IV. F126L was found only in Clade III, in nearly all isolates (96%) (Figure 4); all isolates 237 

with F126L also carried the adjacent mutation V125A. Nearly all of the isolates with these changes in 238 

ERG11 were resistant to fluconazole; 99% of the isolates with Y132F or K143R and 100% of the 239 

isolates with F126L/V125A appeared resistant to fluconazole (MIC ≥32 µg/mL). We also identified 240 

polymorphisms in S639 in the hotspot1 of the FKS1 gene in 90% of the isolates with decreased 241 

susceptibility to micafungin. The most frequent mutation was S639P in 13 isolates from Clade IV (11 242 

resistant to micafungin), and S639F and S639Y were found in micafungin-resistant isolates from Clade I 243 

and III (Figure 4).   244 

Analysis of the distribution of ERG11 copy number variation (CNV) revealed that of 304 245 

isolates, 18 (6%) had either two or three copies. Of those 18 isolates, all were resistant to fluconazole 246 

and 17 (94%) were from Clade III (Supplementary Figure 5). Isolates within Clade III with 2 and 3 247 

copies of ERG11 had significantly higher MICs (P ≤ 0.05; Mann-Whitney test) to fluconazole than 248 

isolates with one copy (Supplementary Figure 5). Along with CNVs in ERG11, we found a total of six 249 

long regions (>40 kb) that showed increased copy number. Unlike CNVs in ERG11, these CNVs 250 

appeared in single isolates even in highly clonal clusters, with two isolates in each of Clades I, II, and IV 251 

(Supplementary Figure 6). While genes in these regions (between 23 and 125 genes in each region) 252 

have no direct relation with antifungal resistance, they might play a role in microevolution and C. auris 253 
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adaptation to host stress. This includes genes associated with response to oxidative stress (AOX2, 254 

HSP12), iron assimilation (FET33, FTR1, CHA1, FLC1), cell wall and membrane integrity (MNN2, 255 

ERG5, ERG24), a transcription factor (ZCF16) and oligopeptide transporters associated with metabolic 256 

and morphologic adaptation and adherence (Supplementary Table 2). These data provide insight into 257 

the underlying molecular mechanisms of antifungal resistance and suggest that CNV could be a 258 

mechanism of strain variation in C. auris. Further exploration and monitoring of these traits are crucial 259 

to improve our understanding of C. auris diversity and control the expanding outbreak.  260 

 261 

Discussion  262 

In this study, we used whole-genome sequencing to describe a global collection of C. auris 263 

isolates collected from patients and healthcare facilities between 2004 and 2018. We found that the four 264 

predominant clades are genetically distinct with strong geographic substructure in Clade IV. Using 265 

collection dates to estimate a molecular clock, we dated the origins of the four clades and confirmed the 266 

recent emergence of C. auris.  Furthermore, we characterized mutations associated with antifungal 267 

resistance by clade, which varied between clades and country of isolation. While the clades appear 268 

largely clonal in species phylogenies and represent a single mating type, we found that they have distinct 269 

evolutionary histories and genome-wide patterns of variation. We provided a browsable version for C. 270 

auris genomic epidemiology through Microreact (28) to explore phylogeny, geographic distribution, 271 

timeline and drug resistance mutations (https://microreact.org/project/wfwXVjf9G).  272 

In contrast to previous reports, we observed more phylogeographic mixing for C. auris (13). 273 

While we found that isolates from additional global regions can be clearly assigned to one of the four 274 

previously reported clades, we observed that three countries – Canada, Kenya, and United States – had 275 

isolates corresponding to multiple C. auris clades (Figure 1B). Additionally, isolates from multiple 276 

clades have been previously reported in Germany (19) and the United Kingdom (20). As travel has been 277 
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previously shown to play a major role in the spread of C. auris (21), global travel of persons with prior 278 

healthcare exposures to C. auris has likely contributed to the observed phylogeographic mixing. Our 279 

analysis of the likely geographic origin of infections observed in new geographic regions is limited by 280 

incomplete travel history for most patients in this study set. We noted that the strongest geographic 281 

substructure was observed in Clade IV for isolates from Colombia, Panama and Venezuela, with 282 

additional distinct clades of isolates from Israel and United States (Figure 1C). This finding further 283 

supports evidence of rapid localized transmission in some of these countries (18, 21). 284 

 These results have confirmed prior findings from the analysis of a smaller data set where isolates 285 

in Clades I and IV had MTLa and those in Clades II and III had MTLα (14). Although mating between 286 

C. auris clades has not been reported, it is concerning that the majority of countries reporting multiple C. 287 

auris clades have clades of opposite mating types. This is especially concerning in Kenya, where 288 

opposite mating types were observed in single healthcare facility experiencing ongoing transmission. In 289 

such a situation, it could be possible to have mixed infections of opposite mating types. If mating 290 

occurred, this would lead to increased genetic diversity and the possibility for enhanced virulence and 291 

exchange of drug resistance alleles. Continued efforts to characterize C. auris infections at the genomic 292 

level are essential for the rapid detection of potential C. auris hybrids.  293 

 Assessment of C. auris population structure by PCA and genome-wide FST analysis yielded no 294 

evidence for admixture between the major clades. The close relationship of Clades I and III is 295 

highlighted by the detection of regions with very low FST values, which suggest recent divergence or 296 

genetic exchange between these clades. Given that these regions were short and spread across the 297 

genome, we hypothesized that they are a result of incomplete lineage sorting rather than recent 298 

introgression events. We also observed variation in the average divergence between clades (DXY) along 299 

each chromosome. This may be due to genome rearrangements between the clades, whereby genomic 300 

areas exhibiting high DXY levels, or low gene flow, arose in C. auris due to chromosomal 301 
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rearrangements, which prevents recombination and supports high rates of genetic differentiation. 302 

Variation in chromosome number and size as measured by electrophoretic karyotyping as well as 303 

deletions, inversions and translocations detected by comparing genome assemblies of different C. auris 304 

clade isolates have been described in C. auris (14, 26, 27). 305 

This global survey has provided a wider perspective of the mechanisms and the frequency of 306 

mutations associated with resistance to antifungal drugs. The presence of both resistant and susceptible 307 

isolates in the same populations along with the presence of genetically related isolates with different 308 

alleles of resistance genes indicate that the resistance in C. auris is not intrinsic and has been recently 309 

acquired. The most common mutation associated with azole resistance in Clades I and IV was ERG11 310 

Y132F; however, both clades also included genetically related isolates with ERG11 K143R. In contrast, 311 

all fluconazole resistant isolates in Clade III carried ERG11 F126L substitution. In addition to mutations 312 

in genes associated with drug resistance, we found that increase in copy number of ERG11 is 313 

predominantly observed in Clade III again suggesting clade specific variation in mechanisms of azole 314 

resistance. All but three isolates with micafungin resistance had FKS1 S639Y/P/F mutations. Taken 315 

together, these observations suggest recent emergence of antifungal resistance in C. auris populations, 316 

most likely in response to some unknown environmental change, such as increased use of azole 317 

antifungals in clinical practice, agriculture, or both.  318 

 By using a molecular clock, we estimated ages of the four clades by calculating time to the most 319 

recent common ancestor (TMRCA) of each clade.  Our estimates demonstrated that Clade II was the 320 

oldest clade with TMRCA of 339 years, while Clade IV was the youngest with TMRCA of 34 years. 321 

Clade I and III isolates coalesce 140 and 175 years ago, respectively; however, in both Clade I or Clade 322 

III the clusters of isolates associated with ongoing drug resistant outbreaks worldwide, which display 323 

increased resistance to fluconazole and harbor mutations in ERG11 associated with drug resistance, have 324 

emerged within the last 35 years. These results are consistent with the other population characteristics: 325 
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even with the smallest sample set, Clade II had the highest genetic diversity compared to the three other 326 

clades and a positive TD indicative of the balancing selection, characteristics of an older population.  327 

Conversely, three other clades had low genetic diversity and negative TD consistent with the rapid 328 

emergence. Notably, the oldest C. auris isolate was collected from a patient in South Korea in 1996 (2) 329 

and no other strains were identified by searching the historic Candida culture collections. The absence 330 

of C. auris in culture collections prior to 1996 and a rapid emergence after 2012 suggest that this 331 

organism only recently emerged as a human pathogen and likely occupied a different ecological niche.   332 

Other notable fungal outbreaks also have been estimated to be of recent origin. For example, the 333 

BdGPL lineage of the amphibian pathogen Batrachochytrium dendrobatidis was estimated to have 334 

arisen only ~100 years ago (29). While our reported mutation rate of 1.8695e-5 substitutions per site is 335 

consistent with that (5.7e-5; R2 = 0.37) reported in a previous study (17), the mutation rate over longer 336 

time spans than we sampled is likely slower. We used collection dates spanning from 2004 to 2018 to 337 

inform our estimate, and rates of molecular evolution measured over short time-scales tend to be 338 

overestimated, as some sites will be removed over time by natural selection (30). Therefore, the rate is 339 

more similar to a spontaneous mutation rather than an evolutionary substitution rate. If our mutation rate 340 

is substantially overestimated, the exact times of C. auris emergence and clade divergence would be 341 

older than we have estimated. We also acknowledge that utilizing only currently known isolates, which 342 

are highly similar within clades, provides a limited sampling of a larger source population, which may 343 

be also be undergoing sexual recombination. The identification and characterization of a wider 344 

population sample of C. auris will provide a higher resolution view of the nodes separating these major 345 

clades. However, as there is only speculation to date about potential associations or locations of such a 346 

source population, we suggest that the dates reported be used as a rough estimate that will need further 347 

evaluation when sources of additional diversity are identified.  348 
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Our molecular clock estimates demonstrate that nearly all outbreak-causing clusters from Clades 349 

I, III and IV originated 34-35 years ago in 1984-85. Such recent origin and nearly simultaneous 350 

detection of genetically distinct clades suggest that anthropogenic factors might have contributed to its 351 

emergence. Specifically: 1) In the 1980s, azole drugs first became widely used in clinical practice. The 352 

first azole topical antifungal drug, miconazole, was approved in 1971 followed by clotrimazole in 1972; 353 

both became widely used for treatment of superficial fungal infections in the late 1970s. In 1981, the 354 

first oral azole drug, ketoconazole, was released for treatment of systemic fungal infections (31). 2) In 355 

agriculture, the first azole fungicides, triadimefon and imazalil, were introduced in 1973, and by the 356 

early 1980s, ten different azole pesticide formulations were available. It has been demonstrated that 357 

azoles from the agricultural use can penetrate ground water and accumulate in soils. 3) Also noteworthy, 358 

our predicated emergence of C. auris as a human pathogen coincided with the early stages of AIDS 359 

epidemics; however, the wide use of antifungal drugs, such as fluconazole, for treatment of secondary 360 

fungal infections, had not started until the 1990s (32-34).  Other anthropogenic factors might also have 361 

brought C. auris into contact with humans (35).  Although the emergence of C. auris may be due to 362 

multiple factors, the coincidence between the introduction of azoles and C. auris emergence is intriguing 363 

and requires further investigation. Understanding processes that led to the emergence of C. auris in 364 

humans is important to prevent emergence of other drug resistant fungi and pathogens.  365 

Although a recent study reported an isolate from a fifth clade isolated from a patient in Iran (16), 366 

all isolates in our collection were assigned to the previously described Clades I, II, III, and IV. This is 367 

noteworthy because isolates from neighboring Pakistan, Saudi Arabia, and United Arab Emirates were 368 

represented in the analysis. Indeed, this highlights the unique nature of the divergent Iranian C. auris 369 

case and advocates for increasing diagnostic capacity worldwide and continued phylogenetic studies to 370 

understand C. auris diversity.  371 
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While we have included a set of diverse isolates, they likely differ from a random sample of the 372 

C. auris population. The isolates were obtained by conventional sampling, and, therefore, our findings 373 

do not represent country-specific characteristics of C. auris molecular epidemiology. Wider sampling 374 

may also change the population structure and antifungal susceptibility profiles. Notably, at the time of 375 

this analysis, Clade V had not yet been discovered, highlighting the importance of further sampling and 376 

genomic characterization. Finally, since the environmental reservoir of C. auris remains unknown, our 377 

analysis is based solely on the analysis of clinical isolates; higher genetic diversity, deeper divergence 378 

times and different population structure is likely to occur in the natural populations of this fungus.  379 

In conclusion, we have provided a comprehensive genomic description of a global C. auris 380 

survey representing 19 countries on six continents. Given that C. auris is a transmissible multidrug-381 

resistant organism causing outbreaks of invasive infections in healthcare studies, an understanding of 382 

how C. auris is spreading, evolving, and acquiring resistance to antifungal drugs is essential for robust 383 

public health responses. Continued efforts to characterize the C. auris population, additional 384 

mechanisms of antifungal resistance, and environments conducive for mating between clades is critical.  385 

 386 

Methods  387 

Sample collection 388 

We performed genomic analyses on sequences from 304 C. auris isolates. This collection 389 

included C. auris from 19 countries on six continents and were sampled from both C. auris cases and 390 

environmental surfaces from healthcare facilities where ongoing transmission was occurring 391 

(Supplementary Table 1). Samples from C. auris cases were derived from a variety of specimen source 392 

sites including sterile sites, such as blood, and non-invasive sites, such as respiratory tract or urine. All 393 

samples were a result of convenience sampling. For four countries (Colombia, Kenya, United States, and 394 

Venezuela) where more than 50 samples were available, 50 representative samples were selected by 395 
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proportional random sampling: samples from each country were stratified by city, and then a subset was 396 

randomly selected proportionally from each strata.  397 

 398 

Sample preparation and whole-genome sequencing (WGS) 399 

The sample collection comprised both publicly available sequences generated from previous 400 

studies and newly sequenced isolates (Supplementary Table 1). For newly sequenced isolates, except 401 

those from France, DNA was extracted using the ZR Fungal/Bacterial DNA MiniPrep kit (Zymo 402 

Research, Irvine, CA, USA). For isolates from France, DNA was extracted using NucleoMag plant kit 403 

extraction (Macherey-Nagel, Germany) in a KingFisherTM Flex system (Thermo Fisher Scientific). 404 

Genomic libraries were constructed and barcoded using the NEBNext Ultra DNA Library Prep kit for 405 

Illumina (New England Biolabs, Ipswich, MA, USA) and were sequenced on either the Illumina HiSeq 406 

2500 platform (Illumina, San Diego, CA, USA) using the HiSeq Rapid SBS Kit v2 500-cycles or the 407 

MiSeq platform using the MiSeq Reagent Kit v2 500-cycles. For the two isolates from France, libraries 408 

were constructed using the Illumina Nextera Flex protocol and sequenced on an iSeq 100 to generate 409 

paired 150 bp reads. 410 

 411 

Variant identification  412 

We used FastQC v0.11.5 and PRINSEQ v0.20.3 (36) to assess read quality and perform filtering 413 

for low quality sequences using "-trim_left 15 -trim_qual_left 20 -trim_qual_right 20 -min_len 100 -414 

min_qual_mean 25 -derep 14". Paired-end reads were aligned to the C. auris assembly strain B8441 415 

(GenBank accession PEKT00000000.2; (14)) using BWA mem v0.7.12 (37). Variants were then 416 

identified using GATK v3.7 (38) using the haploid mode and GATK tools RealignerTargetCreator, 417 

IndelRealigner, HaplotypeCaller for both SNPs and indels, CombineGVCFs, GenotypeGVCFs, 418 

GatherVCFs, SelectVariants, and Variant Filtration. Sites were filtered with Variant Filtration using 419 
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"QD < 2.0 || FS > 60.0 || MQ < 40.0". Genotypes were filtered if the minimum genotype quality < 50, 420 

percent alternate allele < 0.8, or depth < 10 (https://github.com/broadinstitute/broad-421 

fungalgroup/blob/master/scripts/SNPs/filterGatkGenotypes.py). Genomic variants were annotated and 422 

the functional effect was predicted using SnpEff v4.3T (39). The annotated VCF file was used to 423 

determine the genotype of known mutation sites in ERG11 and FKS1. To determine the mating type 424 

locus (MTLa and MTLα) in each isolate, the average read depth at the locus was computed from the 425 

aligned bam file and normalized by the total coverage depth.  426 

 427 

Phylogenetic and phylodynamic analysis 428 

For phylogenetic analysis, sites with an unambiguous SNP in at least 10% of the isolates (n = 429 

222,619) were concatenated. Maximum likelihood phylogenies were constructed using RAxML v8.2.4 430 

(40) using the GTRCAT nucleotide substitution model and bootstrap analysis based on 1,000 replicates. 431 

Phylogenetic analysis was also performed for each clade using subsets of the entire VCF and visualized 432 

using iTOL (41).  433 

For phylodynamic analysis, we assessed for a temporal signal using a set of isolates from Kenya 434 

Clade III using TempEst v1.5.3 (42) to quantify and to estimate an initial mutation rate from the R-435 

squared value. Bayesian phylogenies were generated using BEAST v1.8.4 (43) under strict molecular 436 

clock (both lognormal and exponential priors). In addition, we applied both Bayesian Skyline coalescent 437 

and Coalescent Exponential, and a GTR nucleotide substitution model. We obtained similar results 438 

using the molecular rate estimated for a C. auris outbreak un United Kingdom (17). Specimen collection 439 

dates (month and year) were used as sampling dates; the month of June (year midpoint) was assigned for 440 

samples where month was unknown. Bayesian Markov chain Monte Carlo (MCMC) analyses were run 441 

for 20 million steps using an unweighted pair-group method with arithmetic mean (UPGMA) tree as a 442 

starting tree and MCMC convergence was explored using Tracer v.1.7.1 (44). We generated a maximum 443 
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clade credibility tree with TreeAnnotator v1.8.4 after discarding 47% as burn-in, and we visualized 444 

phylogenies using FigTree v1.4.4.  445 

 446 

Population genomic analyses 447 

Population genomic analysis was performed using gdsfmt v1.14.1 (34), SNPRelate v1.12.2 (45), 448 

and the PopGenome v2.6.1 (46) R packages. Genome-wide nucleotide diversity (π), Tajima’s D (TD), 449 

fixation index (FST) and pairwise nucleotide diversity (DXY) were calculated and plotted per scaffold in 5 450 

kb sliding windows. Genome-wide calculations are the average of all 5 kb windows for each metric. 451 

Genomic regions that exhibit copy number variation (CNV; deletions and duplications) were identified 452 

using CNVnator v0.3 (47) (genomic windows > 1 kb showing significant variation P-value < 0.01).  453 

 454 

Antifungal susceptibility testing (AFST) 455 

AFST was performed on 294/304 (97%) isolates. The majority (N=270, 90%) of isolates were 456 

tested at the U.S. Centers for Disease Control and Prevention (CDC) as outlined by Clinical and 457 

Laboratory Standards Institute guidelines. Custom prepared microdilution plates (Trek Diagnostics, 458 

Oakwood Village, OH, USA) were used for fluconazole and the echinocandin micafungin. Interpretive 459 

breakpoints for C. auris were defined based on a combination of those breakpoints which have been 460 

established for other closely related Candida species, epidemiologic cutoff values, and the biphasic 461 

distribution of minimum inhibitory concentrations (MICs) between the isolates with and without known 462 

mutations for antifungal resistance. Resistance to fluconazole was set at ≥32 µg/mL and at ≥4 µg/mL for 463 

micafungin. Amphotericin B was assessed by Etests (BioMerieux), and resistance was set at ≥2 µg/mL. 464 

For isolates not tested at the CDC, similar methods were employed and described previously (17, 19, 465 

48). As there are no currently approved breakpoints for C. auris, for this manuscript breakpoints were 466 

set at ≥32 µg/mL for fluconazole, >1 µg/mL for amphotericin B, and ≥4 for micafungin.  These MIC 467 
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values were based on a combination of the wild type distribution (those isolates with no mutations) and 468 

PK/PD analysis in a mouse model of infection (49).  469 

 470 
Data and resource availability 471 

All Illumina sequence generated by this project is available in the NCBI SRA under BioProjects  472 

PRJNA328792, PRJNA470683, PRJNA493622, and PRJNA595978. The phylogenetic tree has been 473 

deposited in Microreact (https://microreact.org/project/wfwXVjf9G). A set of isolates are available from 474 

the CDC and FDA Antimicrobial Resistance (AR) Isolate Bank 475 

(https://www.cdc.gov/drugresistance/resistance-bank/index.html). 476 

Ethics 477 

 This project was reviewed by CDC IRB as part of the broader human subjects protocol for the 478 

Mycotic Diseases Branch, CDC.  479 
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Table 1. Frequency of antifungal drug resistance among Candida auris isolates by clade.  500 

 501 

 
 

Clade I 
N=116a 

Clade II 
N=7 

Clade III 
N=51 

Clade IV 
N=120 

Total 
N=294 

 % (n) % (n) % (n) % (n) % (n) 

Susceptible 6 (7) 86 (6) 2 (1) 30 (36) 17 (50) 

Fluconazole 
resistant 97 (112) 14 (1) 98 (50) 59 (71) 80 (234) 

Amphotericin B 
resistant 47 (54) 0 (0) 0 (0) 11 (13) 23 (67) 

Micafungin 
resistant 6 (7) 0 (0) 8 (4) 9 (11) 7 (22) 

MDRb 49 (57) 0 (0) 8 (4) 10 (12) 24 (72) 
XDRc 3 (4) 0 (0) 0 (0) 0 (0) 1 (4) 

a Complete AFST data for 10 of the 126 (3%) Clade I isolates was missing  502 
b MDR indicates multidrug-resistance to two major antifungal classes 503 
c XDR indicates extensive drug-resistance to three major antifungal classes  504 

  505 
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 506 

 507 

Figure 1. Global distribution of Candida auris clades. (a) Phylogenetic tree of 304 C. auris whole-508 

genome sequences clustering into four major clades. Maximum likelihood phylogeny using 222,619 509 

SNPs based on 1,000 bootstrap replicates. (b) Map detailing C. auris clade distribution by country (n = 510 

19). (c) Phylogenetic tree of Clades I to IV; colors represent country. 511 

  512 
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 513 

Figure 2. Dating the emergence of Candida auris. (a) Distribution of collection dates for source 514 

specimens by clade. (b) Maximum clade-credibility phylogenetic tree of C. auris estimated using 515 

BEAST (strict clock and coalescent model). Purple bars indicate 95% highest probability density around 516 

a node. (c) Marginal posterior distributions for the date of the most recent common ancestor (TMRCA) 517 

of Candida auris Clades I, II, III and IV. The Bayesian coalescent analysis was performed with BEAST. 518 

 519 

  520 
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 521 

 522 
Figure 3. Population structure and genetic differentiation in Candida auris. (a) PCA analysis and 523 

(b) phylogenetic tree of 304 C. auris depicting genome-wide population genetic metrics of nucleotide 524 

diversity (π) and Tajima’s D (TD) for each clade. (c) Genome-wide distribution of TD for each clade. 525 

(d) Average of genome-wide (5-kb windows) variation in fixation index (FST), for pairwise comparisons 526 

in each clade as designated in the first vertical and horizontal row. (e) Genome-wide (5-kb windows) 527 

pairwise FST and pairwise nucleotide diversity (DXY) between Clade I and Clade III and Clade I and 528 

Clade II are show across the ten largest scaffolds of the B8441 reference genome. All pairwise 529 

comparisons of π, TD, FST and DXY are shown in Supplementary Figure 2.   530 

 531 
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 532 
Figure 4. Antifungal susceptibility and point mutations in drug targets in Candida auris. (a) 533 

Phylogenetic tree detailing clade, susceptibility to fluconazole, amphotericin B, micafungin, and point 534 

mutations in ERG11 (Y132F, K143R, F126L) and FKS1 (S639Y/P/F) associated with resistance. (b) Bar 535 

plot describing frequency (%, y-axis) of Y132F, K143R, F126L point mutations in ERG11 for each 536 

clade. 537 
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