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Abstract 35 

The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect 36 

consented biosamples from at least one million Veterans. Presently, blood samples have been collected 37 

from over 800,000 enrolled participants. The size and diversity of the MVP cohort, as well as the 38 

availability of extensive VA electronic health records make it a promising resource for precision 39 

medicine. MVP is conducting array-based genotyping to provide genome-wide scan of the entire cohort, 40 

in parallel with whole genome sequencing, methylation, and other omics assays. Here, we present the 41 

design and performance of MVP 1.0 custom Axiom® array, which was designed and developed as a 42 

single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality control analysis 43 

was developed and conducted on an initial tranche of 485,856 individuals leading to a high-quality 44 

dataset of 459,777 unique individuals. 668,418 genetic markers passed quality control and showed high 45 

quality genotypes not only on common variants but also on rare variants. We confirmed the substantial 46 

ancestral diversity of MVP with nearly 30% non-European individuals, surpassing other large biobanks. 47 

We also demonstrated the quality of the MVP dataset by replicating established genetic associations 48 

with height in European Americans and African Americans ancestries. This current data set has been 49 

made available to approved MVP researchers for genome-wide association studies and other 50 

downstream analyses. Further data releases will be available for analysis as recruitment at the VA 51 

continues and the cohort expands both in size and diversity. 52 

Introduction 53 

The Department of Veterans Affairs (VA) initiated the Million Veteran Program (MVP) in 2011 to 54 

create a mega-biobank of at least one million samples with genetic data linked to nationally 55 

consolidated longitudinal clinical records1. The initial and continuing goal of MVP is to create a national 56 
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resource for research to improve the health of United States Veterans and, more generally, to 57 

contribute to our understanding of human health. MVP has currently collected samples from over 58 

800,000 Veteran participants and with continued recruitment efforts expects to exceed a total of 1 59 

million participants in the next 2 to 3 years.  60 

While MVP is similar in some respects to other large biobank projects such as the UK Biobank, 61 

the Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH), the China 62 

Kadoorie Biobank (CKB), and the DiscovEHR initiative2–4, it is unique in several ways. MVP is one of the 63 

largest single biobanking efforts to date, satisfying the need for larger genetic datasets while also 64 

benefiting from a very rich, nationally integrated longitudinal clinical database housed in the largest 65 

consolidated healthcare network in the United States. This feature allows for enhanced clinical 66 

phenotyping capabilities. The availability of additional self-reported health and lifestyle survey 67 

information augments clinical data from the Veterans Information Systems and Technology Architecture 68 

(VistA) – the VA’s Electronic Health Record (EHR).  69 

Furthermore, with over 29% of participants self-reporting non-white ethnicity, MVP has 70 

substantial diversity in genetic ancestry, meeting a pressing need for greater diversity in genome-wide 71 

association analyses to discover novel associations, reduce false positives, and increase research equity5–72 

8. As such, the MVP cohort provides an unprecedented opportunity for increasing the power of genome-73 

wide association studies (GWAS) and will enable association discoveries for clinically important low 74 

frequency and rare variants possible only in larger sample sizes. Reliable typing of these variants may 75 

provide explanations of missing genetic susceptibility in complex or non-Mendelian diseases. However, 76 

the genetic diversity of MVP also poses challenges in genotype quality control. 77 

In this report, we introduce the first installment of MVP genotype data consisting of 459,777 78 

samples surveyed at 668,418 markers. In brief, we 1) describe the design of a research genotyping array 79 

with emphasis on clinically useful and/or rare variants applicable to multi-ethnic backgrounds; 2) 80 
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describe the generation and quality control of genotyping data; 3) highlight some of the unique features 81 

of the current MVP dataset, including exploratory analyses of genetic ancestry; and 4) replicate effect 82 

sizes of previously reported variants associated with height in European Americans and African 83 

Americans. Overall, we find that the MVP genetic dataset, linked to deep phenotypic data, is a high-84 

quality and diverse resource for performing genetic analyses. 85 

Materials and Methods 86 

Human subjects and data and sample collection 87 

The VA Central Institutional Review Board (IRB), as well as the local IRBs at the VA Boston 88 

Healthcare System and the VA Connecticut Healthcare System, approved this project. An overview of 89 

the recruitment strategies and protocols is given in a previous publication1. Briefly, participants were 90 

recruited from approximately 60 VA healthcare facilities across the United States on a rolling basis. 91 

Informed consent was obtained from all participants. Participants consented to a blood draw and to 92 

have their DNA analyzed, as well as to linking their genetic information with their full clinical, survey and 93 

other health data. Participants were also invited to answer two separate surveys about basic 94 

demographic information and lifestyle characteristics.  95 

Blood drawn from consenting participants was shipped to the central biorepository in Boston, 96 

Massachusetts where DNA was extracted and later shipped to two external vendors for genotyping on a 97 

custom Axiom® array designed specifically for MVP (MVP 1.0). A description of the MVP 1.0 array design 98 

features is detailed in Supplementary Materials.  99 

Thermo Fisher Scientific (formally Affymetrix) Axiom® Genotyping Platform  100 

The MVP 1.0 custom Axiom® array is based on the Axiom® Genotyping Platform. The Axiom 101 

genotyping platform utilizes a two-color, ligation-based assay using 30-mer oligonucleotide probes 102 
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synthesized in situ onto a microarray substrate. Each single nucleotide polymorphism (SNP) feature 103 

contains a unique oligomeric sequence complementary to the genomic sequence flanking the 104 

polymorphic site on either the forward or the reverse strand. Solution probes bearing attachment sites 105 

for one of two dyes depending on the 3' (SNP-site) base (A or T, versus C or G) are hybridized to the 106 

target complex, followed by ligation for specificity. Oligonucleotide sequences complementary to the 107 

forward or reverse strands are referred to as probesets. A marker (SNP or indel) can be interrogated by 108 

the forward and/or reverse strand probeset.  109 

For additional details of the Axiom® Genotyping Platform, see the Supplemental Materials and 110 

Methods. 111 

Genotype calling  112 

We received unprocessed Axiom® genotype data for 485,856 unique samples assayed by two 113 

vendors, referred to as Vendor 1 and Vendor 2, and performed genotype calling in batches grouped by 114 

vendor and sample processing date. Using data provided by the vendors and generated from our 115 

internal genotype calling process (see Supplemental Materials and Methods for details), we first 116 

analyzed the standard Axiom® genotype quality metrics and compared these metrics between the two 117 

vendors.  118 

After calling genotypes, we applied an advanced normalization procedure for mitigating plate-119 

to-plate variation developed in collaboration with ThermoFisher Scientific Inc. The procedure was 120 

applied selectively on a per-batch basis to probesets exhibiting high plate-to-plate variance. After plate 121 

normalization, we applied standard marker quality control procedures to clean and harmonize genotype 122 

calls across all the batches (Supplemental Materials and Methods), followed by advanced sample QC. 123 
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Advanced sample QC 124 

Sample contamination 125 

To detect and mitigate sample contamination, we assessed heterozygosity with PLINK, version 126 

1.9, by calculating the F coefficient and quarantining samples with an F coefficient of less than -0.1. We 127 

assessed excess relatedness by using the relatedness inference software KING, version 2.0, and 128 

quarantined samples having a kinship coefficient of at least 0.1 with 7 or more other samples within 129 

MVP. These samples had high dish QC (DQC) and low call rates and were outliers compared to the 130 

majority of samples in the MVP dataset (Figure S5D). Because a call rate below 98.5% correlated with 131 

excess sample heterozygosity or relatedness, we removed samples (15,436, or 3.00%) with call rates 132 

below this threshold9. All samples that were removed or quarantined from the current release of MVP 133 

data will be re-genotyped and included in the future data releases. 134 

Sample mislabeling 135 

We identified samples and plates demonstrating potential mislabeling issues by analyzing 136 

genotype concordance between intentional duplicate samples that were sent blinded to the vendors as 137 

new samples for genotyping. Of the 25,867 intentional duplicate pairs, only 211 (0.82%) pairs were 138 

highly discordant (greater than 1% discordance). Samples on plates with discordant intentional duplicate 139 

pairs were quarantined for further analysis and re-genotyping. We also removed both samples and 140 

plates if the duplicate pair had a relatedness coefficient of less than 0.45. These precautions were taken 141 

due to the concern of potential plate swaps and led to 9,975 samples being quarantined. 142 
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Sample misidentification 143 

To discriminate between misidentified intentional duplicates (same samples intentionally 144 

genotyped twice), technical duplicates (controls repeatedly genotyped by vendors), and monozygotic 145 

twins, we calculated sample relatedness with the KING software, version 2.110. Monozygotic twins were 146 

confirmed by cross-referencing EHR data. Pairs with birth dates differing by no more than one day and 147 

having unique participant identifiers and first names were considered verified monozygotic twin pairs. 148 

Unverified samples were quarantined as potentially mislabeled and will be re-genotyped. 149 

Sex check 150 

To confirm sample gender, we extracted markers genotyped on the X chromosome while 151 

excluding the pseudoautosomal region, used the sex-check command from PLINK, and compared the 152 

expected F coefficient on the X chromosome to the gender recorded in the sample’s EHR for all 153 

samples11. Participants whose reported gender differed from that inferred by PLINK were quarantined 154 

from subsequent analysis. We also removed remaining samples on plates with 4 or more gender 155 

mismatches to account for potential plate swaps. The threshold is relatively low because of the low 156 

percentage of females in our dataset.  157 

Advanced marker QC 158 

Advanced marker QC pipeline 159 

We implemented three main approaches to create the advanced marker QC pipeline: (1) 160 

exclude probeset calls from all batches for probesets that failed advanced QC tests; (2) exclude probeset 161 

calls in a given batch for which the probeset is not recommended; and (3) choose the best probeset per 162 

marker for markers interrogated by multiple probesets, and exclude probesets calls from all batches for 163 
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the “not-best” probesets. Details of each steps of the advanced marker QC are available in Supplemental 164 

Materials and Methods and in Figure S4, Figure S6A, and Figure S7A. 165 

The advanced marker QC pipeline produced an inclusion list of probesets that met quality 166 

standards across the entire MVP dataset. For each batch, we included a probeset in the dataset if it met 167 

all three criteria: 1) included in the inclusion list; 2) recommended in that batch; and 3) was the best 168 

probeset for a marker interrogated by multiple probesets. We then generated a list of probesets per 169 

batch, created PLINK marker list binary files for each batch, and then merged all batches together using 170 

the PLINK merge command. 171 

Reproducibility of genotype calling 172 

To assess the consistency of genotype calls across time and vendors, we analyzed the 173 

discordance between 25,867 intentional duplicate samples that were sent to the vendors blinded. After 174 

confirming these sample pairs were genetically identical through KING relatedness inference, we 175 

determined the number of minor allele pairs (MAPs) for each marker. A MAP is any pair of genotypes for 176 

a marker where both pairs are called and the pair contains at least one minor allele. We then calculated 177 

the number of discordant genotyping pairs per MAP for each marker. Normalizing by the number of 178 

MAPs renders different MAF bins comparable in the discordance calculation. Otherwise, rare markers 179 

will always have extremely low discordance rates, as most samples carry the homozygous major 180 

genotype. 181 

Additionally, within the 485,856 samples genotyped in the MVP cohort, we included 2,064 182 

positive control samples. We called the genotypes of the positive controls along with other MVP 183 

samples across 112 batches organized by genotyping scan date for 668,418 markers passing advanced 184 

marker quality control. These genotypes were compared to the consensus positive control genotype. 185 
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To construct the consensus genotype sequence, we calculated the frequency of each marker 186 

across the panel of 2,064 positive control samples. Markers with MAF of less than 1% were set to 187 

homozygous in the consensus sequence, and markers with MAF of greater than 49% were set to 188 

heterozygous in the consensus sequence. For markers with MAF greater than or equal to 1% and less 189 

than or equal to 49% (536, or 0.082% of markers) or that had no observed calls (18,158, or 2.76%), we 190 

set the consensus genotype to missing.  191 

We calculated concordance across all common (MAF ≥ 5%) and low frequency (MAF < 5%) 192 

markers, where MAFs were assessed over the entire MVP sample. We then calculated concordance 193 

between the consensus sequence and each positive control. Concordance was defined as the number of 194 

matching called genotypes over the total number of called genotypes. Uncalled markers in either the 195 

positive control or the consensus sequence were not included in either the numerator or the 196 

denominator of the concordance calculation.  We then plotted the concordance distribution for each 197 

batch’s positive controls across time. 198 

Comparing MVP allele frequencies to those from gnomAD and UK Biobank 199 

Genome Aggregation Database (gnomAD) version 2.1 data were downloaded from 200 

https://gnomad.broadinstitute.org/downloads. Markers in both gnomAD and MVP were matched on 201 

chromosome, start position, end position, reference allele, and alternative allele. For any mismatch, we 202 

checked strands and indel notations. Reference and alternative alleles were corrected and frequencies 203 

recomputed when strands were flipped. Indels had their genomic coordinates and alleles recoded and 204 

harmonized. 205 

UK Biobank summary data were downloaded from https://gbe.stanford.edu. Markers shared 206 

between the UK Biobank and MVP were matched using SNP rsIDs. Since information on marker 207 

chromosome, genomic positions, reference allele, and alternate allele were not provided in the 208 
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summary statistics, we were unable to check for swapped alleles. However, we expect variant 209 

annotation in MVP and the UK Biobank to be well harmonized as both were genotyped on Axiom® 210 

arrays and following the same standard Axiom® marker QC workflow. 211 

For this analysis, European Americans (EA) were defined as samples with greater than 0.9 GBR 212 

proportion based on ADMIXTURE results (described below), resulting in a sample size of 311,365. We 213 

used PLINK to compute allele frequencies by genetic ancestry subgroup via “--freq” using default filters 214 

and quality control parameters. 215 

Genetic relatedness 216 

We performed additional preprocessing of the MVP dataset before performing the genetic 217 

relatedness analysis. We applied standard PLINK 1.9 filters for genotype missingness (>5% removed), 218 

MAF (<1% removed), and sample missingness (>5% removed)11. We then conducted pairwise 219 

relatedness inference using KING 2.1 to identify related pairs10. KING explicitly accounts for population 220 

structure and is therefore an appropriate algorithm for our sample, which contains diverse genetic 221 

ancestry. However, KING is also known to overestimate relatedness in the presence of recent admixture. 222 

Therefore, we selected SNPs with low load in PCs 1-3 for a second round of KING as in the UK Biobank12. 223 

The first round of KING was run with the command “--related --degree 3” to identify all potential 224 

pair of individuals with closer than 3rd degree relatedness. From this result, we excluded all individuals 225 

with more than 200 3rd degree relatives and also families with more than 100 members as suspected 226 

sample processing artifacts such as low-level sample contamination. Then, a set of unrelated individuals 227 

was defined using the largest_independent_vertext_sets() function in the Python version of the igraph 228 

tool. Principal component analysis (PCA) was then conducted with the unrelated samples. Only SNPs 229 

with greater than 0.01 MAF and less than 0.015 missingness were considered for this PCA. 23 regions of 230 

high LD defined in the UK Biobank18 were also excluded, and then SNPs were pruned using an R2 231 

threshold of 0.1, window of 1000 markers, and step size of 80. In the end, 90,288 SNPs were selected for 232 
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PCA, which was conducted using PLINK v2.00a2LM with the command “--pca var-wts approx” to obtain 233 

variant weights and fast PCA approximation. Low weight SNPs in PC1, PC2, and PC3 were selected by 234 

adjusting the absolute weight threshold to keep at least two thirds of the input SNPs which led to 60,118 235 

SNPs being put forward for the next round of KING. 236 

The second round of KING was again conducted with the command “--related --degree 3”. The 237 

effect of using SNPs with low weights in PCs 1-3 on the distribution of number of relatives per individual 238 

is shown in Figure S10 A-B. We flagged 35 individuals with more than 200 3rd degree relatives (UK 239 

Biobank reported 9 individuals with more than 200 3rd degree relatives), as well as all members of two 240 

clusters that were tightly interconnected with each other (Supplemental Materials and Methods and 241 

Figure S10 C-D, Figure S11). 242 

We defined genetically identical pairs as those having a kinship coefficient of 0.45 or greater 243 

(the maximum kinship coefficient output by KING is 0.5). However, given the large number of intentional 244 

duplicates samples in our dataset, we only considered genetically identical pairs as monozygotic twin 245 

pairs after cross-referencing EHR data as above. Parent-child pairs were defined as those having a 246 

kinship coefficient of greater than or equal to 0.19 and less than 0.45 and having less than 0.0025 247 

percent of the genome held with zero alleles identical-by-state (IBS0). Sample pairs with a kinship 248 

coefficient greater than or equal to 0.19 and less than 0.45 and IBS0 greater than or equal to 0.0025 249 

were designated full siblings. Any pairs of participants with a kinship coefficient between 0.0884 and 250 

0.19 were inferred to be second-degree or third-degree relatives. To identify potential trios in our 251 

sample, we extracted parent-child pairs in which a sample appears twice. We then assessed the kinship 252 

coefficient between the other two participants. If the other two participants were not a related pair and 253 

consisted of one male and one female, we identified these three samples as a trio. 254 
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Genetic ancestry 255 

For genetic ancestry analysis, we used the same set of markers used for relatedness analysis and 256 

applied LD pruning with PLINK (--indep-pairwise 1000 50 0.05), which left us with 50,000 markers.  257 

Principal component analysis 258 

For 1000 Genomes Project projection PCA, we merged the MVP dataset with the 1000 Genomes 259 

Project Phase 3 reference panel13. The 1000 Genomes Project dataset was first filtered to ensure 260 

scalable merging with the MVP dataset. Markers with MAF less than 1% and any samples constituting 261 

related pairs were removed prior to LD pruning with PLINK using the same parameters as above. We 262 

then calculated PCs using the 1000 Genomes Project dataset and projected the MVP samples onto them 263 

using EIGENSOFT, version 6.0.114.  264 

We also calculated the PCs on the filtered MVP dataset alone using the FastPCA method from 265 

the EIGENSOFT package for within-cohort PCA. For this PCA, we excluded all related individuals, whereas 266 

we kept all related individuals in the 1000 Genomes project PCA.  267 

ADMIXTURE analysis 268 

In order to quantify ancestry proportions in MVP, we ran the program ADMIXTURE, version 1.3, 269 

on the MVP samples in supervised mode using five reference populations from the 1000 Genomes 270 

Project dataset as training data15. We chose the five reference populations based on their global 271 

geographic location to ensure global representativeness. The Yoruba in Ibadan, Nigeria (YRI) samples 272 

serve as a proxy for West African ancestry, the Luhya in Webuye, Kenya (LWK) for East African ancestry, 273 

the British in England and Scotland (GBR) for European ancestry, the Han Chinese in Beijing, China (CHB) 274 

for East Asian ancestry, and the Peruvians from Lima, Peru (PEL) for Native American ancestry (Figure 275 

S8C). Participants with more than 80% of their genetic ancestry attributed to one reference population 276 
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were assigned to that reference. Remaining participants who had greater than 90% of their genetic 277 

ancestry derived from two reference populations were assigned to that pair of populations. Any 278 

participants not meeting the above two criteria were assigned to a separate subgroup (MVP_OTHER) 279 

and were assumed to contain admixture from three or more reference populations. 280 

UMAP analysis 281 

 We used Uniform Manifold Approximation Projection (UMAP), a dimensionality reduction 282 

method that is useful for visualizing both global and local structure in data, to further visualize the 283 

genetic ancestry of the MVP cohort. A UMAP embedding was calculated based on the first 10 principal 284 

components of unrelated samples using hyperparameters n_neighbors of 15 and min_distance of 0.1, 285 

which were suggested by a previous study on UK Biobank data16. We then visualized the population 286 

structure by projecting subpopulations identified by our ADMIXTURE analysis onto the UMAP 287 

embedding.  288 

GWAS of Height 289 

Height measurements, dates of measurement, dates of birth for each participant were extracted 290 

from the VA healthcare system’s EHR. Any height measurement outside the range of 48 to 84 inches was 291 

excluded17, and inches were converted to meters. Age at measurement was calculated by subtracting 292 

the date of birth from the date of height measurement. Individuals younger than 18 or older than 120 293 

years old were excluded. Sex was genetically determined sex by PLINK. 294 

Markers whose genotype missingness was greater than 1%, as well as non-autosomal markers, 295 

were removed. Samples whose missingness was over 5% were also excluded. Using the results of the 296 

relatedness analysis described below, we also removed all closely related pairs. 297 

After marker and sample filtering, we ran association tests using BOLT-LMM18 with sex, age, age-298 

squared and the first 10 PCs as covariates. LD scores were calculated from the 1000 Genomes Project 299 
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population subsets using ldsc 1.019. Model SNPs were generated using PLINK 2.0 by pruning unrelated 300 

samples with an R-squared threshold of 0.2 (--pairwise-indep 1000 50 0.2). Principal components (PCs) 301 

were also generated using PLINK 2.0 (--pca approx) on the cohorts that had model SNPs extracted. 302 

We extracted the effect size, direction of effect, and allele for each previously associated marker 303 

from the GWAS catalog on March 21, 2019 and then extracted the effects for the markers present in the 304 

MVP association analysis. We then scaled the effect values within each study to between 0 and 1 to 305 

account for different height units and plotted the previously derived effects against those inferred in 306 

MVP.  307 

Results 308 

The MVP 1.0 Array 309 

Array design and content 310 

The MVP 1.0 array was based on the Applied Biosystems™ Axiom® Biobank Genotyping Array 311 

with additional custom content further developed for MVP (Figure 1). The Axiom® Biobank Genotyping 312 

Array incorporates multiple content categories that are important for translational medicine research 313 

and discovery,20 including modules for genome-wide coverage of common European variants, rare 314 

coding SNPs and indels, pharmacogenomics markers, expression quantitative trait loci (eQTLs), and loss-315 

of-function markers (further described in Supplemental Materials and Methods). The MVP 1.0-specific 316 

modules were mainly SNPs and indels known to be associated with diseases and traits of interest to 317 

MVP (especially psychiatric disorders and rheumatoid arthritis), as well as a set of SNPs selected to 318 

improve African American imputation performance (Supplemental Materials). In total, 723,305 319 

probesets interrogating 686,682 unique bi-allelic markers (SNPs and indels) based on the GRCh37 320 

genome build were tiled onto the MVP 1.0 array. Among these, 270 are mitochondrial markers, 142 are 321 
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in the non-pseudoautosomal regions of the Y chromosome, 1,139 are in the pseudoautosomal regions 322 

(PAR1 and PAR2) of the X and Y chromosomes, 18,026 are in the non-pseudoautosomal regions of the X 323 

chromosome, and the remaining 667,105 markers are autosomal markers (Table S1).   324 

MVP 1.0 Genotyping Quality Control and Assessment 325 

Assessment of overall genotyping performance   326 

Figure S3 is an overview of the steps taken to ensure high quality genotype data for the MVP 327 

cohort. Advanced genotype and sample QC were conducted in addition to the standard Affymetrix good 328 

practice guidelines and are described in Materials and Methods and Supplemental Materials and 329 

Methods. In addition, we further devised a batch variation correction step to apply to markers that 330 

showed significant allele frequency differences between releases (Supplemental Methods and Figure S4, 331 

Figure S6A).  332 

We investigated multiple quality control metrics for across and within the two assay vendors. 333 

Median Axiom® DQC values for all genotyping batches were greater than 95 for either vendor (Figure 334 

S5A). Median QC call rate was also high, exceeding 99% for each genotyping batch (Figure S5 B-C). 335 

Overall, sample call rates and other genotype quality control metrics demonstrated high-quality 336 

genotype calls for MVP regardless of genotyping vendor (more detail in Supplemental Materials and 337 

Methods).  338 

Marker and sample QC and selection 339 

The MVP 1.0 array contains a large amount of novel, custom marker content that has not been 340 

validated on other arrays. These markers were assayed with more than one probeset, requiring 341 

advanced marker QC to determine which probesets for a given marker performed best across all 342 

genotyped batches and to remove systematically poor quality probesets. Ultimately, we retained 343 

668,418 markers representing 97.34% of the original markers and included 459,777 samples from a total 344 
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of 485,856 unique genotyped samples in this data release. As expected, almost 98% of the markers that 345 

were previously tested on the Axiom biobank array were associated with a probeset that passed quality 346 

control, whereas 77% of the markers in the MVP 1.0 custom modules were associated with a probeset 347 

that remained after quality control. Additionally, although sample missingness (the fraction of missing 348 

genotype calls per individual; see Supplemental Materials and Methods) was slightly higher for Vendor 1 349 

than for Vendor 2, almost all genotyped samples from both vendors exhibit missingness of less than 5% 350 

(Figure S6A). 351 

  We also either excluded or quarantined samples that did not meet sample QC criteria. Excluded 352 

samples include those expected to be removed by design or for known logistical or data errors. These 353 

samples include positive controls, samples with no or multiple unique participant identifiers, and 354 

samples in intentional duplicate pairs with the lower call rate. Quarantined samples are those that are 355 

temporarily removed from the dataset due to quality concerns. For instance, we investigated 1,149 pairs 356 

of samples with high relatedness to discriminate between misidentified intentional duplicates, technical 357 

duplicates (controls repeatedly genotyped by vendors), and monozygotic twins. While we confirmed 49 358 

monozygotic twins by cross-referencing with EHR data, the remaining 1,100 unintentional duplicate 359 

pairs could not be verified through independent means and were quarantined from data release as 360 

potentially mislabeled and will be re-genotyped. We also cross-checked genetically determined sample 361 

sex with EHR-reported gender information. Among the 485,856 unique genotyped samples, 2,000 362 

(0.41%) did not have any reported gender information from either the EHR or self-report, and 2,073 363 

(0.43%) of the remaining samples had a genetic sex that was opposite of the reported gender. We 364 

quarantined these samples for further analysis and potential re-genotyping (Table S2). The total number 365 

of samples that were excluded or quarantined from the current release of MVP genotype data and the 366 

reasons for doing so are summarized in Table 1. All quarantined samples removed from the current data 367 
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release will undergo further quality control validation, be sent back to the vendors for re-genotyping, or 368 

will be otherwise verified before being included in subsequent data releases.  369 

Marker missingness and discordance by MAF  370 

We assessed marker missingness in correlation with MAF. Overall, the MAF distribution of MVP 371 

1.0 is highly skewed toward rare variants with 42.89% of markers below 1% MAF and 33.89% below 372 

0.1% (Figure 2A). This result is by design, as the content of the MVP array focuses on markers associated 373 

with potential disease phenotypes. We find that MAF is correlated with marker missingness, as shown in 374 

Figure 2C and Figure S6B, with lower frequency variants missing in a larger fraction of samples. Despite 375 

this trend, missingness among low frequency markers is still relatively low. For example, 87.29% of rare 376 

markers (MAF < 0.1%) are missing in less than 5% of genotype calls. 377 

Additionally, we examined marker genotype discordance rates across intentional duplicate 378 

sample pairs with respect to MAF. Discordance is calculated per minor allele pair (MAP) for each marker, 379 

and markers are binned by MAF.  We find a correlation between MAF and discordance rate, with lower 380 

frequency variants having a higher rate of minor allele discordance (Figure 2B and Figure S6C). 381 

Duplicate and positive control samples for continuous quality assessment 382 

Importantly, because we employed two separate vendors for genotyping, we intentionally 383 

included 25,291 duplicate samples that were blinded to the vendors for independent assessment of 384 

genotype quality. This amounts to a target of 5% of all genotyped samples and is an effort to accurately 385 

assess genotyping quality on a continuous basis. Sample concordance among intentional duplicates or 386 

positive controls was very high with a median concordance rate greater than 99.8% across all 387 

comparisons (Figure S7A).   388 

 Assessing concordance in positive control samples also provides valuable information about the 389 

consistency and reproducibility of the MVP 1.0 array’s genotypes over time. Along with the MVP 390 

samples, 2,064 positive control samples were genotyped on the MVP 1.0 array. As discussed in the 391 
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Materials and Methods section, we constructed a consensus genotype sequence across 657,459 392 

markers using this panel of positive controls. For markers in the consensus sequence, 543,691 (82.70%) 393 

were homozygous, 95,079 (14.46%) were heterozygous, and 18,689 (2.84%) were uncalled. 394 

Concordance for each of the 2,064 positive controls samples is defined as the number of markers that 395 

agree with the consensus sequence divided by the number of called markers in the consensus sequence.  396 

Overall positive control concordance is shown in Figure S7A, and the distributions by batch of 397 

concordance values across all positive controls are shown in Figure S7 B-D. The median concordance 398 

rate between each positive control sample and the consensus sequence was 99.93% for all markers, 399 

99.89% for common (MAF ≥5%) markers, and 100.00% for low frequency (MAF < 5%) markers. The 400 

minimum observed concordance rate between a positive control and the consensus occurs when 401 

analyzing common markers, but this concordance rate is still high at 99.05%. 402 

Concordance with HapMap samples 403 

To further test concordance and genotyping quality, we genotyped 96 HapMap samples (from 404 

Coriell cell lines) on the MVP 1.0 array. 210,630 markers are present in both the MVP 1.0 array and 405 

HapMap release 27, and among these markers, 205,647 (97.20%) are classified as recommended (see 406 

Supplemental Materials and Methods, Standard marker quality control). When these 205,647 markers 407 

were analyzed over the 96 HapMap samples, and when HapMap and Axiom® uncalled genotypes were 408 

removed from the numerator and denominator, the sample concordance across all population groups is 409 

99.70% (Table 2). Axiom® sample call rate for recommended markers is 99.85%.  410 

Assessing rare allele genotyping quality  411 

Given the importance of rare markers in clinically-related studies, we evaluated the analytical 412 

validity of MVP 1.0 rare markers by observing the concordance of MAFs for rare markers with overlap 413 

between MVP 1.0 and either the gnomAD or the UK Biobank (Figure 2 D-E). These databases are large 414 

enough for detection of very low MAFs, and agreement of MVP 1.0 marker MAFs with MAFs from these 415 
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databases provides evidence for the accuracy of MVP 1.0 calls. MAFs were considered to agree when 416 

the lower bound of the regression slope’s 95% confidence interval was ≥ 0.9. This value leaves some 417 

margin of error for expected differences between the databases in population structure (non-Finnish 418 

Europeans vs. European Americans [EA]), technology (genotype arrays vs. exome sequencing), technical 419 

processes (batch, user, etc.), and sample size. We used the MVP EA subgroup to benchmark 420 

performance because it has a larger sample size which provides better confidence in assessing 421 

frequency of rare markers, and has large complementary subgroups in gnomAD and the UK Biobank. We 422 

classified markers into three subgroups by MAF: rare variants (< 1%), low frequency variants (1-5%), and 423 

common variants (>5%). The EA subgroup yielded 321,290 (48.1%) rare markers, 46,626 (6.97%) low 424 

frequency markers, and 300,375 (44.9%) common markers. 425 

From the gnomAD database, we compared the allele frequencies derived from the non-Finnish 426 

European subgroup (N = 55,860) of the exome call set. This subgroup provided the largest cohort that 427 

was comparable in population structure. In total, a majority of MVP rare variants were found in gnomAD 428 

(69%, or 221,374 of 321,290 markers), and we found MAF agreement between MVP and gnomAD with a 429 

slope of 0.9290 (95% CI: 0.9002, 0.9578).  430 

From the UK Biobank, we compared allele frequencies derived from the self-reported white 431 

British ancestry group (N > 330k). We found MAF agreement as supported by the strong coefficient of 432 

determination (R2) of 0.9864 and slope of 0.9536 (95%CI: 0.9841, 0.9887) between 46,872 overlapping 433 

markers. 434 

While comparison against both sources met the ≥ 0.9 agreement threshold, we observed a small 435 

set of about 6000 extremely discrepant markers (defined as having MAF > 0.001 in one database but 436 

MAF < 0.001 in the other) between MVP and gnomAD. About 53% of these markers were also present in 437 

the UK Biobank. For these discrepant markers, MAFs in the UK Biobank were much closer to MVP MAFs 438 

than those in gnomAD, and only one quarter of the overlapping UK Biobank markers retained the 439 
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“extremely discrepant” label. This is expected and consistent with previous observations that MAFs of 440 

MVP and the UK Biobank are in close agreement. The extremely discrepant markers between MVP and 441 

gnomAD may be attributed to the gnomAD-exome database having a smaller sample size than the UK 442 

Biobank. The lowest MAF limit for MVP’s EA subgroup is 1.6x10-6 (1 of 622,730 total alleles), 8.9x10-6 (1 443 

of 111,720) for gnomAD’s non-Finnish subgroup, and 1.4x10-6 (1 of 674,398) for UK Biobank. At very low 444 

frequencies, the absolute difference between rare variants, but not necessarily the relative difference, 445 

will be small. A given marker with a MAF of 0.001 in MVP and 0.01 in gnomAD will have an absolute 446 

difference of 0.009, but a relative difference of 10-fold. This is a common situation in our pairwise 447 

marker comparisons since overlapping marker MAFs are heavily clustered near zero (Figure 2 D-E). This 448 

could also explain the relatively higher variance observed in the lower extremes when comparing MVP 449 

against gnomAD versus against the UK Biobank. Overall, our results nonetheless show that our rare 450 

variant calls are highly consistent and within a reasonable range of agreement with overlapping markers 451 

in gnomAD and the UK Biobank. However, it is important to note that precision of very rare variants 452 

assayed using SNP chips have been reported to show variable quality21. Thus, visual inspection of calls 453 

underlying initial association results are always required. 454 

Population analysis of MVP samples and a test GWAS on height 455 

The MVP Cohort 456 

In addition to quality assessment of MVP 1.0 genotyping results, we also performed exploratory 457 

analysis of the current population represented in the MVP samples. Based on data from the VistA EHR, 458 

the genotyped participants in the MVP cohort have a median age of 65 years at time of enrollment, and 459 

8.33% are female. Although the percentage of female participants is low, reflecting the demographics of 460 

the Veteran population, this percentage corresponds to 46,924 female participants in the current 461 

release.  462 
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Considering the samples that have already been genotyped, the MVP cohort is relatively more 463 

diverse than other large biobanks on which data is available. For example, more than 94% of UK Biobank 464 

participants self-report as British, Irish, or “any other white background”4,12, and the Kaiser RPGEH 465 

biobank has 81% of samples reporting as “white, non-Hispanic”. The MVP cohort on the other hand, has 466 

70.9% of participants self-reporting as “white” and “non-Hispanic or Latino” and agrees with United 467 

States 2010 census information indicating 63.7% of respondents self-reporting as “White alone” and 468 

“Not Hispanic or Latino”22.  469 

Analysis of relatedness 470 

We examined the degree to which samples in the MVP population are related. Of the 471 

approximately 105.70 billion possible MVP sample pairings, 15,384 pairs appeared to be third degree 472 

relatives or closer. The number of pairs for each type of relative pair, including trios, is shown in Table 473 

S8. Compared with the UK Biobank, this installment of MVP samples has a reduced fraction of related 474 

pairs.  475 

Analysis of genetic ancestry 476 

Assessing genetic ancestry for genotyped samples is an important tool for many applications, 477 

such as correcting for biases caused by population structure, constructing tests for natural selection, and 478 

determining disease risk by genetic ancestry, among other tasks23. To assess genetic ancestry in our 479 

sample, we visualized and then quantitatively assessed genetic ancestry of MVP samples relative to 480 

external reference populations. 481 

Runs of homozygosity (ROH) were measured using PLINK with a minimum ROH length of 1,000 482 

Kb. The median total length of ROH is approximately 15.65 Mb, and the median number of blocks per 483 

sample is 10. In Figure 3A, we plotted the total length of ROH per individual by genetic ancestry 484 

subgroup for the five most common subgroups as defined in the Materials and Methods. MVP_GBR_PEL 485 
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samples have a wide distribution of total ROH length but also some of the longest total lengths of all 486 

samples. Samples with African ancestry or admixed between three or more reference populations 487 

(MVP_OTHER) have the shortest total length of ROH per sample. Samples of mainly European ancestry 488 

have intermediate total ROH length. The total length of ROH per sample varies depending on the genetic 489 

ancestry subgroup. 490 

We also compared MVP samples to those in the 1000 Genomes Project. We first ran a PCA on 491 

the 1000 Genomes Project phase 3 samples and then projected the MVP samples onto these PCs. We 492 

find that most MVP samples lie close to reference populations of European origin. In addition, when we 493 

performed PCA on MVP samples alone, we found that genetic ancestry subgroups contain more 494 

complex intercontinental population structure, with a sizeable fraction of MVP samples exhibiting 495 

admixture with respect to African and Asian references samples (Figure 3B, Figure S9).  496 

To assess ancestry proportion for each sample in MVP, we ran the program ADMIXTURE in 497 

supervised mode using five 1000 Genomes Project Phase 3 reference populations: Han Chinese in 498 

Beijing, China (CHB); British in England and Scotland (GBR); Luhya in Webuye, Kenya (LWK); Peruvians 499 

from Lima, Peru (PEL);  and Yoruba in Ibadan, Nigeria (YRI)15. Most participants have the largest 500 

percentage of their genome aligning with the GBR population (Figure S8C). However, a substantial 501 

fraction of samples contains a moderate amount of genetic ancestry similar to the YRI reference 502 

population. Examples were also found of participants who have almost 100% of their genetic ancestry 503 

aligning to each of the five reference populations except for LWK. Using ADMIXTURE analysis results, we 504 

grouped the MVP samples into sixteen subgroups and determined the proportion of MVP samples 505 

belonging to each (Figure 3C). For example, 326,777 samples have over 80% of their genome aligning 506 

with the GBR reference population (MVP_GBR) whereas 58,267 samples have 80% or more of their 507 

genome aligning with YRI (MVP_YRI). Excluding samples with more than 80% of their genome aligning to 508 

one reference population, 25,295 of the samples have 90% or more of their genome aligning with a 509 
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combination of GBR and YRI reference populations (MVP_GBR_YRI). Approximately 16,351 samples 510 

(MVP_OTHER) have neither 80% of their genome aligning with one reference population nor 90% 511 

aligning with a combined pair, indicating substantial admixture between three or more reference 512 

populations.  513 

Finally, we visualized the diverse ancestry composition of MVP using a non-parametric 514 

dimensionality reduction method called UMAP (Figure 3D). As shown through PCA and ADMIXTURE, the 515 

largest cluster corresponds to samples with largely European ancestry. In this visualization, the distance 516 

between samples and clusters is not to be directly interpreted as genetic distance. Although there are 517 

distinct clusters (such as individuals with Asian ancestry forming a tight cluster within themselves on the 518 

top left corner, and another small cluster of likely Polynesians in the middle of the plot), most MVP 519 

samples of different ancestries form a large single cluster rather than clusters with distinct breaks. This 520 

large cluster shows a continuum of ancestry proportion that transitions from GBR on the top right to 521 

different levels of admixture with YRI and PEL proportions. This is in line with a previous report based on 522 

32,000 US individuals in the National Geographic Genographic Project cohort24. 523 

GWAS of height 524 

To further validate the quality of our genotype data and the utility of MVP 1.0 array, we 525 

conducted a GWAS of height in both the EA and African American (AA) MVP subpopulations. EAs were 526 

defined as individuals with greater than 90% GBR proportion, and AA were defined as individuals with 527 

greater than 60% YRI and less than 40% GBR based on ADMIXTURE results (Figure S8 A-B). Our GWAS of 528 

height within EA and AA cohorts showed moderate inflation of λGC=1.12 and  λGC=1.13, with pseudo-529 

heritability of 0.396 and 0.378, respectively19,25,26, a level comparable to previous association studies in 530 

height without genotype imputation27. 531 

Of the 822 reported associations with height listed in the GWAS catalog28, 230 were present in 532 

the MVP EA GWAS, and 209 were present in the MVP AA GWAS. We assessed whether we could 533 
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replicate effect sizes and direction of effects for markers present in MVP EA and AA GWAS by plotting 534 

these against the GWAS catalog effect sizes and direction of effects (Figure 4). For the two 535 

subpopulations, the MVP associations perfectly replicated the directions of effect in most markers (two 536 

SNPs had near 0 effect size in EA). However, as most GWAS catalog associations are derived from 537 

Europeans, the overall correlation across all markers was lower for the AA cohort (r=0.69) compared to 538 

the EA cohort (r=0.85).  539 

Overall, we show that the performance of MVP 1.0 and the quality of its genotyping across 540 

459,777 individuals of diverse ethnic background is very consistent and accurate by a variety of metrics.  541 

Discussion 542 

In this report, we provide an overview of the design of the MVP 1.0 genotyping array, the 543 

development of accompanying quality control analyses, and of our initial data exploration of an interim 544 

MVP genotyping dataset that consists of nearly 460,000 Veterans. Our results demonstrate that the 545 

MVP 1.0 chip and the subsequent QC procedures have addressed notable challenges characteristic of 546 

large projects with individuals of diverse genetic background, and that the resulting genotype calls is of 547 

high-quality akin to other projects similar in scope. By using a single chip and unified quality control 548 

across the diverse cohort, we aimed to minimize batch effects between different ancestries and provide 549 

an initial genome-wide scan before whole genome sequenced samples become available.  550 

Addressing the challenges of MVP 551 

MVP’s large, diverse and still-growing cohort poses numerous challenges for designing 552 

genotyping procedures and their subsequent quality assessment/quality control protocols. Genotyping 553 

large and ethnically diverse cohorts along with clinically relevant markers is even more challenging due 554 

to the finite number of probesets that can fit on a single array. However, using different arrays for 555 
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different ethnic groups can also exacerbate the differences between these groups and lead to batch 556 

effects. 557 

To address the limitations of array-based genotyping in diverse cohorts, we carefully selected 558 

array content to maximize clinical utility while at the same time ensuring both broad coverage of 559 

variants and robust imputation capabilities across different ethnic groups. We also developed 560 

comprehensive quality controls for markers and samples both before and after genotyping, including: 561 

intentional duplication of ~5% randomly selected samples over time, blinded to assay technicians, to 562 

detect and mitigate batch variation; assessment of genotyping concordance using positive control 563 

samples and HapMap samples (Figure S7A, Table 2); comparing MVP 1.0 MAFs to those in gnomAD and 564 

the UK Biobank (Figure 2); and conducting a GWAS of height to replicate previously reported results 565 

(Figure 4). Overall, we retained and released 459,777 samples and 668,418 markers after QC for the 566 

initial release of data. Although QC metrics vary slightly over time and genotyping vendors, the final 567 

genotyped sample set show consistently high call rates (98.5%) and genotype concordance over 568 

intentional duplicates (99.8%) both within and between vendors and over time. Furthermore, marker 569 

concordance is also high even for rare markers. Additionally, genotype concordance, MAF, and GWAS 570 

association results are generally in strong agreement with external or previously reported results. These 571 

results indicate that the design of the MVP 1.0 array and the associated quality control and assessment 572 

procedures provide a robust, reliable method for both genotyping common, low-frequency, and rare 573 

variants in a large, ethnically diverse cohorts.  574 

Challenges remain, however, and the MVP 1.0 array has several limitations. Notably, although 575 

concordance rates were high, our results demonstrate that low-frequency and rare variants are still 576 

more difficult than common variants to genotype accurately using the MVP 1.0 array. Additionally, while 577 

we added markers to MVP 1.0 to increase coverage for African Americans, we lack boosters for other 578 
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ethnic groups, such as Asian and Native American populations, which currently comprise smaller but 579 

growing proportions in the MVP population.  580 

The MVP dataset is ethnically and genetically diverse 581 

Our exploratory analysis indicates that the MVP dataset and samples offer unique value for 582 

disease research. One particularly valuable aspect of the MVP dataset is the ethnic diversity it 583 

encompasses. Genetic ancestry analysis suggests that the MVP dataset contains sub-populations with 584 

both homogeneous and admixed genetic ancestry from multiple global populations. The largest sub-585 

population corresponds to 71% samples of mostly European descent, with the remaining samples 586 

showing substantial African, East Asian, and Native American ancestry. 587 

Since MVP recruits participants from United States Veterans who receive care at VA hospitals, 588 

the demographics of the MVP dataset diverge from those of the United States population. 589 

Approximately 8.5% of MVP samples are female, which is similar to the fraction of women in the 590 

Veteran population29. MVP participants are also substantially older than the United States population 591 

with a median age of 68 as opposed to 37.9 years30. However, the demographics of MVP may change 592 

with increasing use of the VA by more recent Veterans who have completed their service. The 593 

proportion of female Veterans is projected to continuously grow and nearly double to 16.5% by 204329. 594 

Meanwhile, the proportion of Veterans from minority populations is expected to increase by 595 

approximately 50% over the same time period29. Thus, the VA and MVP is in a unique position for 596 

further inclusion of participants from diverse backgrounds. 597 

The MVP dataset is an invaluable disease research resource 598 

 MVP has several unique features that make it an invaluable resource for human disease 599 

research. As evidence of the general utility of this resource, initial reports using an earlier tranche of 600 

~300,000 genotyped participants have reported substantial new findings regarding the genetics of blood 601 
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lipids, a major cardiovascular risk factor31. Not only is MVP ideal for studying the burden of chronic 602 

disease, which increases with age, many of the clinical records in its EHR span several decades, allowing 603 

for robust longitudinal analysis. This is possible as patients using the VA health services do not lose 604 

coverage even after changing employers or residence. Additionally, MVP provides an opportunity to 605 

study diseases disproportionately affecting US veterans, such as PTSD32, alcohol and substance abuse 606 

disorders33, as well as other deployment-related conditions and their impact on human health. 607 

In conclusion, the high-quality genotype data generated using the MVP 1.0 array provides a 608 

valuable resource for researchers investigating the effect of both rare and common genetic variants 609 

within MVP. This quality-controlled genotype data as well as the results from genetic ancestry and 610 

relatedness analyses are made available to all approved researchers. The genotype data can be linked to 611 

the full EHR of participants, often covering decades of care provided by the VA. MVP is a continuously 612 

expanding research cohort made available by participants with diverse backgrounds and altruistic 613 

intentions to support research that will benefit their fellow Veterans and others.  614 

Supplemental Data 615 

Supplemental Data include 11 Figures and 6 Tables. 616 
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UK Biobank: https://github.com/rivas-lab/public-693 

resources/blob/master/uk_biobank/variant_filter_table.tsv 694 

695 
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Figures 696 

 697 

Figure 1. Key MVP 1.0 genotyping array modules. The modules are divided into those shared with the 698 

Axiom® Biobank Genotyping Array and those unique to the MVP 1.0 array, along with descriptions and 699 

counts of unique markers in each module.  Counts represent the number of markers in the module, and 700 

markers can be in more than one module. 701 

702 
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 703 

Figure 2. Quality control assessments on the MVP dataset after performing the Advanced Marker 704 

Quality Control procedures. (A)  MAF distribution after sample QC filtering. The inset diagram shows the 705 

distribution for markers with a MAF below 1%.  (B) Cumulative fraction of markers for intentional 706 

duplicate discordance rates per MAP, separated by MAF bin. (C) Proportion of markers with fraction of 707 

missing calls, separated into MAF bins as represented by grayscale color, after sample QC filtering. (D) 708 

Comparison of MAFs between the EA subset of MVP (MVP-EUR) and the UK Biobank European subset 709 

(UKB-EUR). (D) Comparison of MAFs between MVP-EUR and the non-Finnish European subset of 710 

gnomAD (gnomAD-NFE).   711 
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 712 

Figure 3. Analysis of genetic ancestry in the MVP dataset. (A) Density plots of the total length of runs of 713 

homozygosity (ROH) per individual in each genetic ancestry subgroup. Only the top five most common 714 

subgroups are shown. (B) Principal component analysis of the 1000 Genomes Project Phase 3 dataset 715 

with MVP samples projected onto principal components 1 and 2. (C) The number of MVP samples in 716 

each genetic ancestry subgroup as inferred by ADMIXTURE percentages and our thresholds. Subgroups 717 

with no samples are not shown. (D) Visualization of ancestry subgroups using Uniform Manifold 718 

Approximation Projection.  719 

720 
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721 

Figure 4. GWAS of height with MVP cohort. (A) Replication of the direction of effect for markers 722 

previously associated with height as annotated in the NHGRI-EBI GWAS Catalog in the MVP cohort of 723 

non-related European Americans (N=291,609). Color coding denotes the genetic ancestry of the original 724 

cohort in which the markers were associated with height. (B) Same as (A) except using the MVP cohort 725 

of non-related African Americans (N=73,190). 726 
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Tables 727 

Table 1. Quarantine and exclusion criteria for MVP samples, and sample count per category. 728 

Category Number of 
samples 

Percentage of 
samples 

Starting MVP sample set for analysis  514,383  

Intentional duplicate samples 25,291  

Uniquely genotyped individuals 485,856 100.00% 

Samples with call rates below 98.5% 15,436 3.18% 

Positive control samples 3,236 0.66% 

Samples with sex misclassification 1,450 0.29% 

Samples on plates containing 4 or more sex misclassifications 2,619 0.53% 

Unintentional duplicate samples 1,149 0.23% 

Samples on plates containing an intentional duplicate with 
high discordance 9,975 2.05% 

Samples with high heterozygosity 248 0.05% 

Samples with no or multiple unique participant identifiers 71 0.01% 

Intentional duplicate samples with high discordance 413 0.08% 

Samples with 7 or more “relatives” 466 0.09% 

Samples excluded from the dataset 28,527    5.87%   

Samples quarantined from the dataset 31,836 6.55% 

Final sample set in current data Release  459,777  

Percentages are calculated from the total number of genotyped samples, including positive controls and 729 

duplicate samples (514,383). Categories are not mutually exclusive (i.e., a sample can be removed due 730 

to more than one category and is counted in each applicable category in the table).  731 

732 
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Table 2. Concordance rates across 96 HapMap samples genotyped on the MVP 1.0 array. 733 

  
Metrics over recommendeda 

markers 
Metrics over all markers 

Population 
Number of 

samples 

Average sample 
concordance 

(%) 

Average 
sample call 

rate (%) 

Average 
sample 

concordance 
(%) 

Average 
sample call 

rate (%) 

ALL 96 99.70 99.85 99.35 99.49 

CEU 28 99.70 99.85 99.34 99.47 

CHB 20 99.70 99.86 99.37 99.51 

JPT 20 99.68 99.84 99.35 99.51 

YRI 28 99.71 99.86 99.34 99.49 
a Recommended markers are those that were classified into one of the recommended SNP classes 734 

following execution of the Axiom® Best Practices Genotyping workflow for the 96 co-clustered samples. 735 

736 
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