1 2	Detection of phylogenetic core groups in diverse microbial ecosystems
3	Marcos Parras-Moltó ¹ , Daniel Aguirre de Cárcer ^{1*}
4	¹ Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
5	
6	Correspondence:
7	Dr. Daniel Aguirre de Cárcer
8	daniel.aguirre@uam.es
9	
10	Keywords:
11	Community assembly, microbiome, Phylogenetic clustering, 16S rRNA gene
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29 ABSTRACT

The detection and subsequent analysis of phylogenetic core groups (PCGs) in a microbial ecosystem has been recently proposed as a potentially important analytical framework with which to increase our understanding of its structure and function. However, it was still unclear whether PCGs represented an infrequent phenomenon in nature. Here we provide evidence of PCGs in a large and diverse array of environments, which seems to indicate that their existence is indeed a predominant feature of microbial ecosystems. Moreover, we offer dedicated scripts to examine the presence and characteristics of PCGs in other microbial community datasets.

60 Background. It is nowadays commonly believed that microbial communities assemble on the basis of function alone. This idea is supported by the predominant observation 61 that different community compositions can translate into functionally-equivalent 62 microbial ecosystems. In this model, multiple unrelated populations would be 63 functionally redundant [1] in a particular microbial ecosystem type. However, this idea 64 is somewhat challenged by the extended phenomenon of phylogenetic clustering in 65 microbial communities; the tendency of bacteria to co-occur with phylogenetically 66 67 related populations more often than expected by chance alone [2, 3].

Phylogenetic clustering in a microbial ecosystem can be studied in terms of 68 69 phylogenetic core groups (PCGs), representing discrete portions of the bacterial phylogeny present in all instances of a given ecosystem type. PCGs have been detected 70 so far in the rice rhizosphere [4] and human gut (fecal) [5] environments. The existence 71 of a PCG in a particular microbial ecosystem type has been theorized to be linked to 72 73 selection based on a combination of biotic and abiotic factors characteristic of that ecosystem, and the existence in populations belonging to that PCG of a 74 phylogenetically-conserved set of traits allowing them to surpass such selection [4]. 75 76 Thus, the study of PCGs in a given ecosystem could help understand the selection 77 forces at play in the ecosystem, and thus illuminate overall community assembly and 78 function.

It is still unclear whether PCGs are a predominant feature of microbial ecosystems or a 79 rare phenomenon. Thus, to test these possibilities we evaluate here the existence of 80 PCGs in a wide array of diverse microbial ecosystems. Also, so far PCGs had been 81 detected in terms of 16S sequence clusters of varying depth, which represents a 82 reasonable proxy. However, sequence clustering lacks true transitivity, which, jointly 83 84 with differential initial seeding between clustering runs, may translate into slightly different clusters for the same input dataset generated by different runs or clustering 85 algorithms. Thus, here we analyze PCGs also on the basis of nodes in a phylogenetic 86 87 tree detected in all instances of the ecosystem type, an approach that also provides increased phylogenetic resolution. 88

Methods. Here we analyze the existence of PCGs in nine different datasets from the 89 90 literature presenting a comparatively high number of ecosystem replicates and sequencing depth (Table 1); The human microbiome is represented by datasets 91 FlemishGut [6] (fecal), TwinsUK [7] (fecal), Illeum [8] (mucosa), Rectum [8] (mucosa), 92 and Vagina [9] (mucosa). Plant-associated environments are represented by Rice (root 93 samples) [10] and Leaf [11], animal microbiomes by Sponge (Carteriospongia 94 foliascens) [12] and Mice [13], and environmental communities by Wastewater [14]. 95 96 *Rice* was further subdivided by root environment (rhizosphere, rhizoplane, and 97 endosphere), *Mice* by origin (wild or lab), and *Vagina* in terms of previously reported 98 community types [9].

For each dataset, samples presenting very low sequence depths were removed, then all samples were subsampled to a (minimum) common depth. Finally, the normalized datasets were analyzed with *BacterialCore.py* (https://git.io/Je5V3). The script uses various QIIME processes [15] and *R* libraries to detect PCGs and produce associated analyses and statistics. It employs the clustering-based core detection approach previously described [5], and a new approach based on a 16S rRNA gene phylogeny. Here, the algorithm traverses the tree from leaves to root; if a leaf/node is present in a (selected) percentage of samples it is flagged as "core", and its abundance values
removed from all parental nodes before continuing, so that reported core groups are
non-overlapping. Additionally, *BacterialCore.py* provides per core-group information,
statistics, and consensus taxonomies.

Results and discussion. The microbial ecosystems analyzed presented a considerable 110 number of PCGs detected at different phylogenetic depths along the bacterial phylogeny 111 (Table 1, Figure 1, Suppl. Mat. 1, Suppl. Mat. 2). The exceptions to this pattern were 112 the mucosa environments analyzed (Illeum, Rectum, and Vagina) as well as the Leaf 113 ecosystem, featuring the presence of very few PCGs. This phenomenon could be 114 hypothesized to relate to the more homogeneous abiotic conditions of these 115 116 environments translating to less diverse communities. However, the Rice rhizoplane and endosphere ecosystems, which could also be a priori considered as presenting more 117 118 homogeneous abiotic conditions, presented a large number of PCGs. The low number of PCGs detected in the mucosal ecosystems could be related to their comparatively low 119 120 sequencing depth. Nevertheless, the leaf environment presents a substantial sequencing depth, but only two PCGs. 121

Overall, the detected PCGs represented a preeminent fraction of the total community 122 123 (Table 1), with the lowest pooled abundance values being 18.5% (Leaf) and 34.9% (Illeum), and the largest 77.6% (Sponge) and 93.4% (Vagina). In general, there was a 124 125 good correspondence between the clustering and tree-based approaches (Figure 1, Supplementary Material 2), both of which produced correlated results in terms of 126 number of PCGs and their phylogenetic depth. Commonly, results for the clustering 127 approach represented a subset of those from the tree-based approach (Supplementary 128 Material 1; Venn diagrams) 129

In this brief report we have detected PCGs in terms of 16S sequence clusters and nodes in a phylogenetic tree of different depths present in all samples from the same ecosystem type. While this is a useful heuristic, other criteria such as a Poisson distribution [16], a competitive lottery schema [17], invariance metrics [18], or the use of neutral models [19, 20], could be employed and implemented within *BacterialCore.py*.

136 **Conclusion.** The use of observed phylogenetic clustering patterns of community 137 assembly may represent an important clue to understand the assembly and function of a 138 microbial ecosystem. Here we provide evidence of PCGs in a large and diverse array of 139 environments, which seems to indicate that their existence is indeed a predominant 140 feature of microbial ecosystems. Moreover, we offer dedicated scripts to examine the 141 presence and characteristics of PCGs in other microbial community datasets.

142

143 Availability of data:

The datasets analyzed during the current study are available from their original sources.
Additional result files and scripts are available from the corresponding author upon request.

147

148 Acknowledgements

This work was funded by the Spanish Ministry of Science and Innovation grantBIO2016-80101-R.

- 151
- 152
- 153

154 REFERENCES

155	1.	Adair KL, Douglas AE. Making a microbiome: the many determinants of host-
156		associated microbial community composition. Curr Opin Microbiol. 2017;35:23-9.
157	2.	Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly
158	-	processes in subsurface microbial communities. The Isme Journal. 2012;6:1653.
159	3.	Horner-Devine MC, Bohannan BJ. Phylogenetic clustering and overdispersion in
160		bacterial communities. Ecology. 2006;87:S100-8.
161 162	4.	Aguirre de Cárcer D. A conceptual framework for the phylogenetically constrained assembly of microbial communities. Microbiome. 2019;7:142.
163 164	5.	Aguirre de Cárcer D. The human gut pan-microbiome presents a compositional core formed by discrete phylogenetic units. Scientific Reports, 2018;8:14069.
165	6.	Falony G. Joossens M. Vieira-Silva S. Wang J. Darzi Y. Faust K et al. Population-level
166		analysis of gut microbiome variation. Science. 2016:352:560-4.
167	7.	Goodrich JK. Davenport ER. Beaumont M. Jackson MA. Knight R. Ober C <i>et al.</i> Genetic
168		Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe. 2016;19:731-
169		43.
170	8.	Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B <i>et al</i> .
171		The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe.
172		2014;15:382-92.
173	9.	Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL et al. Vaginal
174		microbiome of reproductive-age women. Proceedings of the National Academy of
175		Sciences. 2011;108:4680-7.
176	10.	Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S et al.
177		Structure, variation, and assembly of the root-associated microbiomes of rice.
178		Proceedings of the National Academy of Sciences. 2015;112:E911.
179	11.	Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host
180 181		genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016:7.
182	12.	Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C <i>et al</i> . The
183		sponge microbiome project. Gigascience. 2017;6:1-7.
184	13.	Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al.
185		Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance.
186		Cell. 2017;171:1015-28.e13.
187	14.	Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. The activated sludge ecosystem
188		contains a core community of abundant organisms. ISME J. 2016;10:11-20.
189	15.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al.
190		QIIME allows analysis of high-throughput community sequencing data. Nat Meth.
191		2010;7:335-6.
192	16.	Gumiere T, Meyer K, Burns A, Gumiere S, Bohannan B, Andreote F: A probabilistic
193		model to identify the core microbial community; 2018.
194	17.	Verster AJ, Borenstein E. Competitive lottery-based assembly of selected clades in
195		the human gut microbiome. Microbiome. 2018;6:186.
196	18.	Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the
197		human gut microbiome. Microbiome. 2017;5:017-0244.
198	19.	Harris K, Parsons TL, Ijaz UZ, Lahti L, Holmes I, Quince C. Linking Statistical and
199		Ecological Theory: Hubbell's Unified Neutral Theory of Biodiversity as a
200		Hierarchical Dirichlet Process. Proceedings of the IEEE. 2017;105:516-29.
201	20.	Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild
202		populations of the fruit fly Drosophila melanogaster. The Isme Journal. 2018;12:959-
203		72.

205 TABLES

Dataset	Samples	Depth	Frequency	Core groups per clust. threshold
	873	8,383		97 ² , 95 ¹ , 93 ¹ , 92 ¹ , 90 ¹ , 89 ³ , 88 ³ , 86 ³ , 84 ¹ ,
FlemishGut			0.50±0.13	821, 771
				902, 891, 881, 861, 832, 811, 771
TwinsUK	2,727	14,082	0.37 ± 0.11	
				841, 811
Illeum	429	3,624	0.34±0.17	
				861, 791, 751
Rectum	304	3,763	0.42±0.18	
	0.50	1 4 9 9 4	0.40.0.00	$97\Box$, 95^{1} , 90^{1} , 87^{1} , 86^{1} , 85^{1} , 84^{1} , $83\Box$,
Rice	372	16,884	0.43 ± 0.20	$82\Box, 81^3, 80^3, 79\Box, 78^3, 77^3, 76^2, 75^1$
				$97 \square \square$, $96 \square$, $95 \square$, $94 \square$, $93 \square$, $92 \square$, $91 \square$,
Dise				$90 , 89^{10}, 88^{1} , 87^{1} , 86^{1} , 85^{1} , 84^{1} ,$
Rice	105	16 004	0.50.0.02	$83^{12}, 82^{\Box}, 81^{\Box}, 80^{\Box}, 79^{13}, 78^{\Box}, 77^{\Box},$
(Rhizosphere)	125	16,884	0.50 ± 0.03	
Pice				$9/1^{-1}$, 90^{-1} , 95^{-1} , 92^{-1} , 91^{-1} , 90^{-1} , 88^{-1} , $8/2^{-1}$, 80^{-3} , 95^{-2} , 94^{-2} , 92^{-1} , 92^{-1} , 91^{-1} , 90^{-2} , 70^{-2}
(Endoenhore)	133	17 735	0.70+0.15	$05^{2}, 04^{2}, 05^{3}, 02 \Box, 01 \Box, 00^{2}, 19^{2}, 10^{2}, 11^{2}, 762, 753$
(Endosphere)	155	17,755	0.70±0.15	
Rice				$97^{-2}, 90^{-1}, 93^{-2}, 94^{-2}, 93^{-2}, 92^{-1}, 91^{-1}, 90^{-1}, 90^{-2}, 92^{-2}, 91^{-2}, 91^{-2}, 90^{-2}, 91^{-2}, 9$
(Rhizonlane)	114	17 821	0 54+0 09	87 81 80 79 78 77 761 752
Vagina $(#1-3.5)$	286	693	0.93+0.11	821
$\frac{Vagina (#1-3,3)}{Vagina (#1)}$	105	603	0.95±0.11	02
Vagina (#1)	25	075	0.00 ± 0.17	
Vagina (#2)	125	1 071	0.79 ± 0.17	
Vagina (#3)	133	1,271	0.85±0.15	9/1
Vagina (#4)	108	881	<u>NA</u>	NA
Vagina (#5)	21	936	0.76±0.17	971,951
				$97 \square \square, 96^2, 95^2, 94^1, 93 \square, 92 \square, 91 \square,$
				$90 \Box$, $89 \Box$, $88 \Box$, $87 \Box$, $86^{1} \Box$, $85 \Box$, $84 \Box$,
Westewater	12	10 660	0.52+0.07	$83^{11}, 82^{3}, 81^{\Box}, 8^{3}, 79^{3}, 78^{\Box}, 77^{3}, 76^{\Box}, 75^{\Box}$
wastewater	43	40,000	0.33±0.07	/3□ 071º 0∠1 021 023 011 003 201 22□
Sponge	1/13	27 021	0.77+0.10	97° , 90° , 95° , 92° , 91° , 90° , 09° , 08° , $08^{$
	145	10 222	0.77 ± 0.10	
Leal	1/3	10,322	0.18 ± 0.10	051 021 012 01 902 993 972 962 95
Mice (Total)	230	10.086	0 52+0 08	$95^{\circ}, 92^{\circ}, 91^{\circ}, 9^{\circ}, 09^{\circ}, 00^{\circ}, 01^{\circ}, 00^{\circ}, 03^{\Box},$
	230	10,080	0.32±0.08	$0721 063 052 042 032 027 011^{\circ} 001^{\circ}$
				$\begin{array}{c} 377, 307, 357, 347, 357, 320, 317, 307, \\ 89 \square 88 \square 87 \square 86 \square 853 843 83 \square 81 \square \end{array}$
Mice (Lab)	129	15.932	0.51 ± 0.10	803 701 781
	12)	,	0.01±0.10	$97^3, 96^1, 93^1, 92^2, 90^2, 89^1, 88^2, 87 \square 86 \square$
Mice (Wild)	101	10.086	0.57 ± 0.07	85 . 84 ² , 83 ¹ , 82 ¹ , 81 ¹ , 79 ¹ , 78 ² , 77 ¹ , 75 ¹

Table 1. PCGs in diverse ecosystems

Depth; sequences per sample. **Frequency**; average pooled abundance of members of the core OTUs across the dataset. **Core groups per clust. threshold**; Numbers represent similarity clustering thresholds $(x10^{-2})$ were core OTUs were detected, and superscript values indicate the number of such OTUs observed for each threshold.

210 FIGURE LEGENDS

Figure 1. Detection of PCGs in datasets. Results for selected datasets based on the dynamic clustering of 16S rRNA gene sequences from 97% to 75% sequence identity (right to left) [OTUs] and the phylogenetic tree-based approach [Tree]. For each threshold, OTUs/nodes present in all samples (i.e. core) appear vertically stacked with individual heights representing average relative abundance of each core OTU/node in the dataset. For the tree-based approach, x-axis values represent the maximum intranode distance, not the average.

218

219 SUPPLEMENTARY MATERIALS

220 Supplementary Material 1. *BacterialCore.py* result files (intermediate clustering

files have been omitted due to their large size).

Supplementary Material 2. Detection of PCGs in datasets. Results based on the 222 223 dynamic clustering of 16S rRNA gene sequences from 97% to 75% sequence identity (right to left) [Page 1; OTUs], and the phylogenetic tree-based approach where x-axis 224 values represent the maximum intra-node distance [Page 2; MaxS] or the average intra-225 226 node distance [Page3; MeanS]. For each threshold, OTUs/nodes present in all samples (i.e. core) appear vertically stacked with individual heights representing average relative 227 228 abundance of each core OTU/node in the dataset. Results arising from both approaches 229 are also compared [Pages 4-5]. 230

250

231

209

