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ABSTRACT 29 

The detection and subsequent analysis of phylogenetic core groups (PCGs) in a 30 

microbial ecosystem has been recently proposed as a potentially important analytical 31 

framework with which to increase our understanding of its structure and function. 32 

However, it was still unclear whether PCGs represented an infrequent phenomenon in 33 

nature. Here we provide evidence of PCGs in a large and diverse array of environments, 34 

which seems to indicate that their existence is indeed a predominant feature of microbial 35 

ecosystems. Moreover, we offer dedicated scripts to examine the presence and 36 

characteristics of PCGs in other microbial community datasets.  37 
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 59 

Background. It is nowadays commonly believed that microbial communities assemble 60 

on the basis of function alone. This idea is supported by the predominant observation 61 

that different community compositions can translate into functionally-equivalent 62 

microbial ecosystems. In this model, multiple unrelated populations would be 63 

functionally redundant [1] in a particular microbial ecosystem type. However, this idea 64 

is somewhat challenged by the extended phenomenon of phylogenetic clustering in 65 

microbial communities; the tendency of bacteria to co-occur with phylogenetically 66 

related populations more often than expected by chance alone [2, 3]. 67 

Phylogenetic clustering in a microbial ecosystem can be studied in terms of 68 

phylogenetic core groups (PCGs), representing discrete portions of the bacterial 69 

phylogeny present in all instances of a given ecosystem type. PCGs have been detected 70 

so far in the rice rhizosphere [4] and human gut (fecal) [5] environments. The existence 71 

of a PCG in a particular microbial ecosystem type has been theorized to be linked to 72 

selection based on a combination of biotic and abiotic factors characteristic of that 73 

ecosystem, and the existence in populations belonging to that PCG of a 74 

phylogenetically-conserved set of traits allowing them to surpass such selection [4]. 75 

Thus, the study of PCGs in a given ecosystem could help understand the selection 76 

forces at play in the ecosystem, and thus illuminate overall community assembly and 77 

function.  78 

It is still unclear whether PCGs are a predominant feature of microbial ecosystems or a 79 

rare phenomenon. Thus, to test these possibilities we evaluate here the existence of 80 

PCGs in a wide array of diverse microbial ecosystems. Also, so far PCGs had been 81 

detected in terms of 16S sequence clusters of varying depth, which represents a 82 

reasonable proxy. However, sequence clustering lacks true transitivity, which, jointly 83 

with differential initial seeding between clustering runs, may translate into slightly 84 

different clusters for the same input dataset generated by different runs or clustering 85 

algorithms. Thus, here we analyze PCGs also on the basis of nodes in a phylogenetic 86 

tree detected in all instances of the ecosystem type, an approach that also provides 87 

increased phylogenetic resolution. 88 

Methods. Here we analyze the existence of PCGs in nine different datasets from the 89 

literature presenting a comparatively high number of ecosystem replicates and 90 

sequencing depth (Table 1); The human microbiome is represented by datasets 91 

FlemishGut [6] (fecal), TwinsUK [7] (fecal), Illeum [8] (mucosa), Rectum [8] (mucosa), 92 

and Vagina [9] (mucosa). Plant-associated environments are represented by Rice (root 93 

samples) [10] and Leaf [11], animal microbiomes by Sponge (Carteriospongia 94 

foliascens) [12] and Mice [13], and environmental communities by Wastewater [14]. 95 

Rice was further subdivided by root environment (rhizosphere, rhizoplane, and 96 

endosphere), Mice by origin (wild or lab), and Vagina in terms of previously reported 97 

community types [9].   98 

For each dataset, samples presenting very low sequence depths were removed, then all 99 

samples were subsampled to a (minimum) common depth. Finally, the normalized 100 

datasets were analyzed with  BacterialCore.py (https://git.io/Je5V3). The script uses 101 

various QIIME processes [15] and R libraries to detect PCGs and produce associated 102 

analyses and statistics. It employs the clustering-based core detection approach 103 

previously described [5], and a new approach based on a 16S rRNA gene phylogeny. 104 

Here, the algorithm traverses the tree from leaves to root; if a leaf/node is present in a 105 
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(selected) percentage of samples it is flagged as “core”, and its abundance values 106 

removed from all parental nodes before continuing, so that reported core groups are 107 

non-overlapping. Additionally, BacterialCore.py provides per core-group information, 108 

statistics, and consensus taxonomies. 109 

Results and discussion. The microbial ecosystems analyzed presented a considerable 110 

number of PCGs detected at different phylogenetic depths along the bacterial phylogeny 111 

(Table 1, Figure 1, Suppl. Mat. 1, Suppl. Mat. 2). The exceptions to this pattern were 112 

the mucosa environments analyzed (Illeum, Rectum, and Vagina) as well as the Leaf 113 

ecosystem, featuring the presence of very few PCGs. This phenomenon could be 114 

hypothesized to relate to the more homogeneous abiotic conditions of these 115 

environments translating to less diverse communities. However, the Rice rhizoplane and 116 

endosphere ecosystems, which could also be a priori considered as presenting more 117 

homogeneous abiotic conditions, presented a large number of PCGs. The low number of 118 

PCGs detected in the mucosal ecosystems could be related to their comparatively low 119 

sequencing depth. Nevertheless, the leaf environment presents a substantial sequencing 120 

depth, but only two PCGs. 121 

Overall, the detected PCGs represented a preeminent fraction of the total community 122 

(Table 1), with the lowest pooled abundance values being 18.5% (Leaf) and 34.9% 123 

(Illeum), and the largest 77.6% (Sponge) and 93.4% (Vagina).  In general, there was a 124 

good correspondence between the clustering and tree-based approaches (Figure 1, 125 

Supplementary Material 2), both of which produced correlated results in terms of 126 

number of PCGs and their phylogenetic depth. Commonly, results for the clustering 127 

approach represented a subset of those from the tree-based approach (Supplementary 128 

Material 1; Venn diagrams) 129 

In this brief report we have detected PCGs in terms of 16S sequence clusters and nodes 130 

in a phylogenetic tree of different depths present in all samples from the same 131 

ecosystem type. While this is a useful heuristic, other criteria such as a Poisson 132 

distribution [16], a competitive lottery schema [17], invariance metrics [18], or the use 133 

of neutral models [19, 20], could be employed and implemented within 134 

BacterialCore.py. 135 

Conclusion. The use of observed phylogenetic clustering patterns of community 136 

assembly may represent an important clue to understand the assembly and function of a 137 

microbial ecosystem. Here we provide evidence of PCGs in a large and diverse array of 138 

environments, which seems to indicate that their existence is indeed a predominant 139 

feature of microbial ecosystems. Moreover, we offer dedicated scripts to examine the 140 

presence and characteristics of PCGs in other microbial community datasets.  141 

 142 

Availability of data: 143 

The datasets analyzed during the current study are available from their original sources. 144 

Additional result files and scripts are available from the corresponding author upon 145 

request. 146 
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 204 

TABLES 205 

Table 1. PCGs in diverse ecosystems 
 

Dataset Samples Depth Frequency Core groups per clust. threshold 

FlemishGut 
873 

 
8,383 

 0.50±0.13 
97², 95¹, 93¹, 92¹, 90¹, 89³, 88³, 86³, 84¹, 

82¹, 77¹ 

TwinsUK 2,727 14,082 0.37±0.11 
90², 89¹, 88¹, 86¹, 83², 81¹, 77¹ 

 

Illeum 429 3,624 0.34±0.17 
84¹, 81¹ 

 

Rectum 304 3,763 0.42±0.18 
86¹, 79¹ , 75¹ 

 

Rice 372 16,884 0.43±0.20 
97�, 95¹, 90¹, 87¹, 86¹, 85¹, 84¹, 83�, 
82�, 81³, 80³, 79�, 78³, 77³, 76², 75¹ 

Rice 
(Rhizosphere) 125 16,884 0.50±0.03 

97��, 96�, 95�, 94�, 93�, 92�, 91�, 
90�, 89¹°, 88¹�, 87¹�, 86¹�, 85�, 84¹�, 

83¹², 82�, 81�, 80�, 79¹³, 78�, 77�, 
76�, 75¹ 

Rice 
(Endosphere) 133 17,735 0.70±0.15 

97¹�, 96¹, 95¹, 92¹, 91¹, 90¹, 88¹, 87², 86³, 
85², 84², 83¹, 82�, 81�, 80², 79², 78², 77², 

76², 75³ 

Rice 
(Rhizoplane) 114 17,821 0.54±0.09 

97³³, 96�, 95³, 94³, 93³, 92�, 91�, 90�, 
89², 88�, 87¹¹, 86�, 85�, 84¹¹, 83¹�, 

82�, 81�, 80�, 79�, 78�, 77�, 76¹, 75² 
Vagina (#1-3,5) 286 693 0.93±0.11 82¹ 
Vagina (#1) 105 693 0.80±0.19 97¹ 
Vagina (#2) 25 774 0.79±0.17 97¹ 
Vagina (#3) 135 1,271 0.85±0.13 97¹ 
Vagina (#4) 108 881 NA NA 
Vagina (#5) 21 936 0.76±0.17 97¹, 95¹ 

Wastewater 43 48,668 0.53±0.07 

97��, 96², 95², 94¹, 93�, 92�, 91�, 
90�, 89�, 88�, 87�, 86¹�, 85�, 84�, 

83¹¹, 82³, 81�, 8³, 79³, 78�, 77³, 76�, 
75� 

Sponge 143 27,921 0.77±0.10 
97¹°, 96¹, 93¹, 92³, 91¹, 90³, 89¹, 88�, 

87�, 86�, 85¹, 84�, 83², 81³, 80³, 78², 76¹ 
Leaf 175 10,322 0.18±0.10 97¹, 91¹ 

Mice (Total) 230 10,086 0.52±0.08 
95¹, 92¹, 91², 9¹, 89², 88³, 87², 86², 85�, 

84�, 83�, 82�, 81¹, 80¹, 79¹, 78¹ 

Mice (Lab) 129 15,932 0.51±0.10 

97²¹, 96³, 95², 94², 93², 92�, 91¹°, 90¹°, 
89�, 88�, 87�, 86�, 85³, 84³, 83�, 81�, 

80³, 79¹, 78¹ 

Mice (Wild) 101 10,086 0.57±0.07 
97³, 96¹, 93¹, 92², 90², 89¹, 88², 87�, 86�, 

85�, 84², 83¹, 82¹, 81¹, 79¹, 78², 77¹, 75¹ 
Depth; sequences per sample. Frequency; average pooled abundance of members of the core OTUs 
across the dataset. Core groups per clust. threshold; Numbers represent similarity clustering thresholds 
(x10-2) were core OTUs were detected, and superscript values indicate the number of such OTUs 
observed for each threshold. 
 206 

 207 

 208 
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 209 

FIGURE LEGENDS 210 

Figure 1. Detection of PCGs in datasets. Results for selected datasets based on the 211 

dynamic clustering of 16S rRNA gene sequences from 97% to 75% sequence identity 212 

(right to left) [OTUs] and the phylogenetic tree-based approach [Tree]. For each 213 

threshold, OTUs/nodes present in all samples (i.e. core) appear vertically stacked with 214 

individual heights representing average relative abundance of each core OTU/node in 215 

the dataset. For the tree-based approach, x-axis values represent the maximum intra-216 

node distance, not the average. 217 

 218 

SUPPLEMENTARY MATERIALS 219 

Supplementary Material 1. BacterialCore.py result files (intermediate clustering 220 

files have been omitted due to their large size). 221 

Supplementary Material 2. Detection of PCGs in datasets. Results based on the 222 

dynamic clustering of 16S rRNA gene sequences from 97% to 75% sequence identity 223 

(right to left) [Page 1; OTUs], and the phylogenetic tree-based approach where x-axis 224 

values represent the maximum intra-node distance [Page 2; MaxS] or the average intra-225 

node distance [Page3; MeanS]. For each threshold, OTUs/nodes present in all samples 226 

(i.e. core) appear vertically stacked with individual heights representing average relative 227 

abundance of each core OTU/node in the dataset. Results arising from both approaches 228 

are also compared [Pages 4-5]. 229 
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