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Summary 26 

Pancreatic ductal adenocarcinoma (PDAC) is composed of stromal, immune and epithelial 27 

cells. Transcriptomic analysis of the epithelial compartment allows a binary classification into 28 

mainly two phenotypic subtypes, classical and basal-like. However, little is known about the 29 

intra-tumor heterogeneity of the epithelial component. Growing evidences suggest that this 30 

two side phenotypic segregation is not so clear and that both could coexist in a single tumor. In 31 

order to elucidate this hypothesis, we performed single-cell transcriptomic analyses using 32 

combinational barcoding on epithelial cells from 6 different classical PDAC obtained by 33 

Endoscopic Ultrasound (EUS) with Fine Needle Aspiration (FNA). In order to purify the 34 

epithelial compartment, PDAC were grown as Biopsy Derived Pancreatic Cancer Organoids. 35 

Single cell transcriptomic analysis allowed the identification of 4 main cell clusters present in 36 

different proportions in all tumors. Remarkably, although these tumors were classified as 37 

Classical, one of the clusters corresponded to a basal-like. These results depict the 38 

unanticipated high heterogeneity of pancreatic cancers and demonstrated that basal-like cells 39 

with a high aggressive phenotype are more widespread than expected. 40 
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Introduction 42 

With a survival rate of 5 years in less than 8% of the cases  (Siegel et al., 2018) pancreatic 43 

ductal adenocarcinoma (PDAC) is still one of the most lethal cancers. A principal problem 44 

facing this disease is its heterogeneity that results as a consequence of the combination of 45 

genetic, epigenetic, and micro-environmental factors (Lomberk et al., 2019, 2018; Yachida and 46 

Iacobuzio-Donahue, 2013). Recently, two main PDAC subtypes have been identified by 47 

molecular characterization: 1-classical, that are more frequently resectables, presenting a 48 

higher level of differentiation, often associated with fibrosis and inflammation; and 2-basal-49 

like, with a poorest clinical outcome and a loss of differentiation (Moffitt et al., 2015; Nicolle 50 

et al., 2017). This well-established binary classification could be controverted if cells from a 51 

unique tumor contain both phenotypes at the same time. In fact, in addition to the tumor 52 

differences between patients that argues in favor of stratification for personalizing PDAC 53 

treatments, it is also absolutely necessary to consider the intra-tumor differences since they are 54 

playing key roles in the evolution of tumors (i.e.: they can conduce to clonal selection of 55 

resistant cells and to the relapse so frequently observed after the first line of chemotherapy). 56 

Single-cell analysis by transcriptomics is nowadays a powerful strategy to determine the intra-57 

tumor heterogeneity, however we need to bypass two main challenging difficulties: The first 58 

one is to obtain pure epithelial transformed cells. To do that, we specifically amplified these 59 

cells by a few passages in three dimensional (3D) ex vivo culture (Tiriac et al., 2019). Three 60 

dimensional (3D) cultures of PDAC as tumoral organoids preserve and allow the amplification 61 

only of epithelial cancerous cells and create complex structures with polarized cells that 62 

recapitulate tumor morphology and allow the communication among different cells within 63 

each microtumor (Boj et al., 2015; Tuveson and Clevers, 2019). In order to avoid excessive 64 

cell culturing, organoids were directly obtained from primary PDAC samples by endoscopic 65 

fine-needle aspiration (EUS-FNA). The second difficulty is to avoid inducing transcriptional 66 

modifications in the samples to be studied during library preparation. Most scRNA-seq 67 

methods require the capture of viable single cell by cell sorters (Picelli et al., 2013), droplet-68 

based microfluidics (Klein et al., 2015; Macosko et al., 2015) or microwells. These 69 

manipulations can completely alter the transcriptional shape of cells, for this reason we 70 

decided to use a combinatorial barcoding method, known as the SPLIT-seq approach, that do 71 

not require cell physical isolation or complex and long manipulations and cells can be 72 

immediately fixed after dissociation (Cao et al., 2019, 2017; Rosenberg et al., 2018). The 73 
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combinational barcoding also presents an additional advantage  regarding its compatibility 74 

with big longitudinal sample collections because of its reduced batch effects. 75 

Therefore, in this work, we performed single cell analysis by the SPLIT-seq technology on 76 

Biopsy Derived Pancreatic Cancer Organoids (BDPCO) to unravel intratumoral heterogeneity 77 

exclusively in the epithelial compartment of 6 PDAC patients. 78 

 79 

Results 80 

Phenotype characterization of organoids 81 

Six consecutive BDPCOs were prepared and characterized by histologic, immunostaining and 82 

transcriptomic analysis after a maximum of 4 in vitro passages (Figure 1). In all cases 83 

hematoxylin and eosin stained organoids exhibited the formation of glandular architectures 84 

with lumen and mucus secretion in all samples. Cells observed were polarized based on 85 

immunofluorescent staining for type IV collagen (COL IV) and zona occludes (ZO-1), 86 

markers of basement and apical membranes, respectively (Figure 1A and 1B). These 87 

anatomophatological characteristics suggests that all cells in the organoids come from the 88 

epithelial compartment and are organized as well differentiated glands suggesting that they 89 

belong phenotypically to the classical PDAC subtype. In order to confirm their transcriptomic 90 

phenotype, a profiling was performed using bulk RNA-seq on these 6 BDPCOs. A 50 gene 91 

molecular signature able to identify classical tumors was defined based on the recently Basal-92 

like/classical classification proposed by Nicolle et al, 2017 (Nicolle et al., 2017). Accordingly, 93 

to the histologic features, the transcriptomic analysis shows that all BDCPOs present high 94 

expression of transcripts associated to the classical subtype indicating that they belong and 95 

preserve the classical PDAC phenotype (Figure 1C). 96 

Then, in order to study PDAC heterogeneity, we started by characterizing vimentin (VIM) 97 

expression on these BDPOs by immunohistochemistry. We observed that most of the 98 

organoids that we obtained directly from patients are clearly heterogeneous presenting 99 

concomitantly VIM+ and VIM- cells (Figure 1D). Then, we confirmed that this heterogeneity 100 

is also present when organoids were grown in vivo as Patient Derived Xenografts (PDX). To 101 

do this, we injected these organoids in nude mice and found that this heterogeneous expression 102 

of VIM was conserved for at least two passages in PDX (Figure 1E). As VIM is a good basal-103 

like marker, we hypothesized that heterogeneous organoids could contain concomitantly basal-104 
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like and classical cells indicating that stratifying tumors in a binary classification (basal-like or 105 

classical) could not be as exact as previously supposed. 106 

Setting a performant scRNA-seq analysis by combinational indexing 107 

In order to perform single cell analysis, organoids cultures from 6 patients were dissociated in 108 

a single-cell suspension with a slight protease treatment (see M&M). Two thousands cells 109 

from each patient (12,000 total cells) were analyzed by single-cell combinational indexing 110 

using the SPLIT-seq technology as previously described (Rosenberg et al., 2018). Cells were 111 

formaldehyde-fixed and frozen immediately after treatment. Cultures were expanded to 8 wells 112 

on a 48 well/plate and the first indexes were added by retro-transcription. This step allowed the 113 

identification of each cell origin knowing that the first barcodes were sample-specific. This 114 

first barcoding round was followed by two consecutive ligation steps of barcodes in two 96 115 

well/plates, resulting in a total of 442,368 (48 x 96 x 96) different barcode combinations 116 

(Figure 2A). Following the library construction and sequencing, we obtained an excellent 117 

performance (in a single cell context) of uniquely mapped reads representing 64.67% of the 118 

total reads (982,396,428). After filtering at 15,000 reads by cell, 8,934 individual cells were 119 

validated to be considered for analysis with a median of 27,220 reads per cell. Most of the 120 

cells (74.45% from the total) were included indicating the high efficiency and quality of 121 

barcoding obtained with the modified SPLIT-seq method setup for this work. The Pearson 122 

correlation between read counts and genes was next to 1 (0.94) and the number of detected 123 

genes and reads were similarly distributed across patients. Both parameters indicate a good and 124 

unbiased library preparation and amplification (Figure S1A and B). 125 

Characterization of intra-organoid heterogeneity in 6 BDPCOs 126 

Unsupervised clustering analysis was performed using the shared nearest neighbor modularity 127 

optimization based algorithm implemented in Seurat R package. This transcriptomic single cell 128 

analysis on BDPCO highlighted 4 different cell subtypes with different gene expression 129 

profiles identified as four cell clusters named C0 to C3, being C0, the biggest one, accounting 130 

for 5,341 cells (about 60% of the total). C1 accounted for 1,521 cells (17%), C2 for 1,174 cells 131 

(13%) and C3 for 898 cells (10%) (Figure 2B). The cells distributed between the four clusters 132 

showed very low overlapping with cluster C1 and were more distal in the spatial distribution 133 

generated by UMAP (uniform manifold approximation and projection). These diversified 134 

transcriptomic patterns displayed by different cell sub-groups indicate that human pancreatic 135 
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tumor organoids maintain an important cell heterogeneity within the epithelial compartment of 136 

the tumor. 137 

Characterization of molecular markers in cell clusters 138 

To deeply characterize this intra BDPCO heterogeneity, we performed a differential analysis 139 

of gene expression between all four clusters (Figure 3A, 3B and Table S1). Except cluster C0, 140 

all other clusters are characterized by a high expression of at least one specific molecular 141 

marker. In fact, C0 cluster is mainly characterized by low expression of the genes identified as 142 

markers in other clusters (Figure 3B). The most remarkable cluster is C1 which is not only the 143 

most distal but also the cluster best defined by many specific molecular markers expressed in 144 

the majority of their cells. These markers include the phosphodiesterase PDE3A, the helicase 145 

HFM1, DLG2 a member of the membrane-associated guanylate kinase family and SLCO5A1, a 146 

solute carrier organic anion transporter. It is important to note that PDE3A and HFM1 are two 147 

of the best basal-like markers identified by Nicolle et al. 2017. Cluster C1 was also 148 

characterized by a lower expression level in a particular set of genes compared to all other 149 

clusters. This low expression gene set includes INO80D a component of chromatin remodeling 150 

complex, TERF2 a component of the telomere nucleoprotein complex and CSMD1 which is a 151 

potential tumor suppressor as suggested by the fact that its expression in human breast cancer 152 

cells inhibited their aggressiveness, migration, adhesion and invasion (Escudero-Esparza et al., 153 

2016) (Figure 3A, 3B and Table S1). Cluster C2 presented a high expression of NEAT1 in 154 

100% of the cells; NEAT1 is a long non-coding RNA that regulates the transcription of genes 155 

involved in cancer progression (He et al., 2019; Zeng et al., 2020). The most specific markers 156 

of cluster C3 were ANKRD36, ANKRD36C, and ANKRD36B. These genes encode for 157 

ANRK proteins, three cell cycle-regulated kinases that appear to be involved in microtubule 158 

formation and/or stabilization at the spindle pole during chromosome segregation. 159 

Remarkably, supporting this fact, a recent study revealed that ANKRD36 is an oncogene 160 

whose expression was linked with poor prognosis in renal cell carcinoma (Yamada et al., 161 

2018). 162 

Molecular components revealed the presence of basal-like cells in classical PDAC 163 

organoids 164 

In order to annotate the single-cell clusters in accordance to their tumoral phenotype we 165 

extracted a basal-like and a classical PDAC component by performing an Independent 166 

Component Analysis (ICA) on the transcriptome dataset from the Nicolle et al. study (Nicolle 167 
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et al., 2017). To validate the association of these two components to basal-like and classical 168 

phenotypes, we compared the correlation of the 1003 basal-like and 776 classical gene markers 169 

obtained from the Nicolle et al. work (Nicolle et al., 2017). As shown in Figure 4A by ICA 170 

analysis, the classical markers were significantly higher in the classical component compared 171 

to the basal-like (Student t-test p-value < 1e-16) and, as expected, the basal-like were 172 

significantly higher than classical in the basal-like component identified (t-test p-value < 1e-173 

16). The projection of the average of the gene expression of clusters on these two components 174 

allowed the association of two molecular scores, the first corresponding to the classical and the 175 

second to the basal-like subtype. It is important to note that cluster C1 had the highest basal-176 

like score while its classical score was the lowest among all other clusters. This supports the 177 

hypothesis that cluster C1 presents the most basal-like characteristics from all others. Cluster 178 

C2 presents a similar classical score when compared to C0 and C3 but was the cluster that had 179 

the lowest basal-like score (Figure 4B). Similar results were obtained at single-cell level by 180 

calculating the component scores of each individual cell (Figure 4C) confirming that cluster 181 

C1 contain basal-like cells that coexist with classical cells in all 6 BDPCOs. Cluster C1 182 

contains 17% of all cells in our study which could represent the proportion of basal-like cells 183 

in these samples. The cluster C2 contains the most classical cells followed by C3 and then 184 

cluster C0. In terms of aggressiveness the single-cell clusters identified in this study could be 185 

ordered from the most to the least aggressive sub-group as follows: C1, C0, C3 and C2 186 

respectively. 187 

 188 

Analysis of pathway that characterize the different clusters 189 

To characterize the biological profiles specifically associated with these different cell clusters, 190 

we performed pathway analysis using KEGG (Kyoto Encyclopedia of Genes and Genomes) 191 

(Figure 5A). Top enriched signaling pathways in cluster C0 were mainly the PI3K-Akt and 192 

Sphingolipid pathways. Studies showed that abnormal activation of the PI3K/AKT pathway 193 

promotes the proliferation of cancerous cells (Porta et al., 2014 ; Vasioukhin, 2012) Cluster C1 194 

was characterized by a specific enrichment in many KEGG pathways including Adherents 195 

junction, Focal adhesion, Leukocyte trans endothelial migration, Glycolysis/Gluconeogenesis, 196 

Tight junction, etc. Most of these pathways are linked to each other as shown in the gene-197 

function network (Figure 5B) and could indicate a high functional interaction of C1 cells with 198 

the extracellular matrix through which the cancerous cells have to migrate during the 199 
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metastatic process (Maziveyi and Alahari, 2017; Vasioukhin, 2012). This analysis suggests 200 

that cluster C1 is highly invasive with a greater capacity to migrate and metastasize, this 201 

characteristic makes sense with the aggressive behavior of basal-like cells. Enriched pathways 202 

in cluster C2 were related to Mitophagy and AMPK signaling pathways among others. 203 

Previous studies have shown that activation of AMPK was an important regulator of 204 

mitochondrial homeostasis and that this activation initiates synthesis of new mitochondria to 205 

replace the damaged ones. In addition, activation of mitophagy pathways acts as key regulator 206 

of mitochondrial mass in cancerous cells as well as in homeostasis, bioenergetics, oncogene-207 

driven metabolic reprogramming and cell apoptosis (Vara-Perez et al., 2019). Finally, cluster 208 

C3 was uniquely enriched in Neurotrophin signaling pathway. Recent studies have shown that 209 

the role of neurotrophins is not limited to neuronal tumors but also linked to nonneuronal 210 

tumors like thyroid, breast, lung, and prostate cancer (Tan et al., 2014). 211 

Pseudotime analysis of BDPCOs uncovers a differentiation trajectory 212 

To unravel the putative developmental trajectory of cells during the tumorigenesis process we 213 

performed a single cell trajectory analysis using Monocle2 pseudotime trajectory (Qiu et al., 214 

2017). The trajectory describes the virtual route through which the cells undergo changes 215 

during a defined biological process. Thus, the order of cells in the pseudotime trajectory 216 

depends on its particular state in this process. Our analysis resulted in a trajectory of multiple 217 

branches with cells from different clusters located in different places. This remote arrangement 218 

of clusters reflects the transcriptomic heterogeneity of the cells that compose each of them. As 219 

shown in Figure 6 and Figure S2, cells from different clusters were located in different 220 

branches of the trajectory especially sub-group C1 which presents the more distal location 221 

indicating a different state compared to others. Two main branches could be distinguished on 222 

the trajectory. The horizontal branches which contains principally the cells of cluster C1 and 223 

the vertical branches containing cells from other clusters. Clusters C2 and C3 were located in 224 

the bottom side of the horizontal branches while the cells of cluster C0 were located more on 225 

the top side. These observations lead us to hypothesize that the clusters could follow an 226 

organized temporal status during the tumorigenesis process as represented here by the 227 

pseudotime trajectory. Interestingly, the aggressiveness of cells (considering basal-like cells 228 

the most aggressive) seems to increase from the vertical-bottom (cluster C2 and C3) passing 229 

via vertical-top to the vertical left (cluster C0) to right branches (cluster C1) of the pseudotime 230 

trajectory (Figures 6, trajectory for each cluster and S2 trajectory for all clusters together). 231 
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 232 

Cell clusters in PDAC organoids are conserved across patients  233 

By using combinatorial barcoding, we were able to determine the patient’s origin for each 234 

single cell in our study. In Figure 7, we split cells on the UMAP clustering according to 235 

patients and determined their proportions of each cluster. The four cell clusters found in this 236 

study were present in all six samples (Figure 7A and 7B) but in different proportions. In fact, 237 

and as an example, the proportion of cells that belonged to cluster C1, decreased from 20% in 238 

patient P2 to ~12% in patient P1 (Table S3). To determine whether these different associations 239 

between patients and clusters are significant, we used Pearson's Chi-squared test with 240 

simulated p-value based on 1000 replicates. We obtained a chi-square statistic of 53.2 and p-241 

value < 1e-05 indicating that the cluster content statistically depends on the patient’s origin. 242 

Moreover, by using the Pearson's residuals for which the absolute values indicate the 243 

contribution to the total Chi-square score above, we highlight the nature of dependence 244 

between each clusters and patients (Table S4). The results in Figure 7B showed the distinctive 245 

association between clusters across patients. For instance, cluster C1 had a strongest positive 246 

association with patient P2, then patient P4 and P6 respectively. However, this cluster (C1) 247 

had a repulsive relationship particularly with patients P1 then P3 and patient P5 at lower level. 248 

Other clusters were also associated distinctively to different patients such as C0 which was 249 

positively associated to P1 and negatively to P2 and P3 (Figure 7B). These results show that 250 

the intra-tumoral heterogeneity of PDAC cells is conserved across the patients but the content 251 

in the different clone vary between patients highlighting the heterogeneity between PDAC 252 

patients.  253 

 254 

Discussion 255 

One of the main difficulties in finding an effective treatment for PDAC is its heterogeneity. 256 

PDAC is currently stratified into two main different phenotypes: basal-like and classical, based 257 

on molecular subtyping by gene expression profiling (Moffitt et al., 2015; Nicolle et al., 2017). 258 

However, this practical classification does not take into account the heterogeneity that exists 259 

within each tumor and many sources of evidence indicate that mixed tumors (containing basal-260 

like and classical cells) could exist. Characterizing this intra-tumor heterogeneity is essential 261 

for really understanding PDAC evolution and to envision new insights that will conduce to 262 
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more personalized and efficient therapies. Recently, it became possible to investigate intra-263 

tumor heterogeneity at a single-cell resolution identifying different cell types in PDAC and 264 

opening a way to study distinct functions of cancer-associated fibroblasts subtypes in PDAC 265 

immunity and progression (Elyada et al., 2019). In fact, human primary tumor from surgery, 266 

pancreatic biopsies obtained by EUS-FNA and/or xenografts contains many different types of 267 

cells other than epithelial (fibroblasts, immune infiltrate, blood cells, etc) which can 268 

significantly impact the study of the differences between tumor cells in single-cell 269 

experiments. However, the organoid is an excellent model for in depth analysis of pure 270 

epithelial tumor cells allowing the study of intrinsic epithelial heterogeneity in a single 271 

pancreatic tumor (Brazovskaja et al., 2019). From a methodological standpoint, the study 272 

presented here represents a proof of concept that SPLIT-seq technique on BDPCO can be used 273 

to deeply characterize tumor heterogeneity in the epithelial cell compartment of PDAC. We 274 

choose this approach because it presents many advantages for studying PDAC heterogeneity 275 

on samples directly obtained from patients. It includes the possibility of studying a high 276 

number of cells in a single experiment obtaining up to 884,736 unique barcode combinations 277 

after 3 ligations, profiling several samples in parallel thus reducing the batch effect, and better 278 

preservation of the transcriptomes by reducing the steps required before cell fixation. 279 

In our study, we characterized six consecutive PDAC tumors from patients to analyze their 280 

intra-tumor heterogeneity. The 6 tumors used in our study were of classical subtype as 281 

suggested by our histologic, immunofluorescence and transcriptomic analyses. It is important 282 

to note that we detected some cells expressing VIM, as a basal-like marker, in all these 283 

organoids, as well as in the organoids-derived PDXs, after at least two consecutive passages in 284 

mice, indicating that the intra-tumor heterogeneity in PDAC is frequent if not systematic. At 285 

the scRNA analysis we identified four cell clusters or subpopulations, using a well-defined 286 

bioinformatics set-up, in all six patients analyzed. Remarkably, these clusters are recurrently 287 

present in the PDAC tumors although in different proportions, suggesting that the 288 

aggressiveness of the PDAC could be controlled, at least in part, by the presence of the most 289 

aggressive subpopulation, probably the C1. In addition, another source of the intra-tumor 290 

heterogeneity of the epithelial cells, which was not considered here, may originate from the 291 

local differences of the tumor. 292 

In this study we intended to highlight for the first time the intrinsic heterogeneity within the 293 

epithelial cancerous cell compartment of 6 classical PDAC patients. We observed that the 294 

cluster C0 contains most of the cells studied which share a common transcriptomic profile. 295 
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Other clusters were characterized by the expression of specific transcriptomic markers 296 

expressed in the majority of cells. In many cases, these markers have been previously related 297 

to tumor specific biology. For instance, NEAT1 (marker of cluster C2) has shown to be up-298 

regulated in cancer and plays a role in most types of solid tumors by regulating tumor 299 

suppressive microRNAs (Yu et al., 2017), NEAT1 has been suggested as a marker of poor 300 

prognosis in colorectal cancer (Li et al., 2015) and glioma (He et al., 2019). Cells of  cluster 301 

C1 were also characterized by several specific molecular markers such as for example PDE3A 302 

that encodes a protein which controls degradation of cyclic AMP (cAMP) and GMP (cGMP) 303 

(Beavo, 1995) that regulates various physiologic processes including adherents junction, 304 

glycolysis/gluconeogenesis and leukocyte transendothelial migration pathways. This high 305 

expression suggests that C1 cells have high metabolic and migration activities, which could 306 

correspond to highly aggressiveness cells with strong metastatic potential, supporting the 307 

basal-like phenotype of this cluster. Altogether, the diversified transcriptomic patterns 308 

displayed by different clusters indicate that PDAC organoids maintain important cell 309 

heterogeneity and that the presence of basal-like cells within all PDAC tumors studied here 310 

brings new insights into the intra-tumoral heterogeneity in PDAC cancer.  311 

In a recent work, Peng et al. (Peng et al., 2019) ports a study on single cell transcriptome analysis of a 312 

total of 57,530 cells from 24 primary PDAC tumors and 11 control pancreases. They found that PDAC 313 

tumor mass is highly heterogeneous and composed of diverse malignant and stromal cell types as 314 

expected. In addition, they report that malignant ductal subtype could be distinguished by featured gene 315 

expression profile and was observed to contain highly proliferative and migratory subpopulations. They 316 

suggest that these cell subtypes could correspond to the basal-like, which represents around 6.30% of 317 

the ductal in their samples, and classical subtype which represent 26.95% of the cells, however their 318 

protocol setup was directed mainly to describe the cellular composition of the PDAC.  319 

In summary, scRNA-seq analysis performed on 6 consecutives PDAC as organoids allowed us the 320 

identification of four main cell clusters present in different proportions in all tumors. Clusters show a 321 

specific gene expression profile associated with specific biological characteristics and molecular 322 

markers. Although these tumors were classified as Classical when analyzed in bulk, one of the clusters 323 

present in all of the patients, corresponded to a basal-like phenotype. These results depict the 324 

unanticipated high heterogeneity of pancreatic cancers and demonstrated that basal-like cells with a 325 

highly aggressive phenotype are more widespread than expected. We conclude that Basal-like and 326 

Classical cells coexist in PDAC. 327 

 328 
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MATERIALS AND METHODS 339 

Samples 340 

Patients were included under the Paoli Calmettes Institute clinical trial NCT01692873 341 

(https://clinicaltrials.gov/show/NCT01692873). Consent forms of informed patients were 342 

collected and registered in a central database. 343 

Primary PDAC-derived organoids were obtained from consecutive patients with unresectable 344 

tumors by endoscopic fine-needle aspiration (EUS-FNA). Biopsies were slightly digested with 345 

the Tumor Dissociation Kit, human (Miltenyi Biotec) at 37°C for 5 min, then incubated with 346 

Red Blood Cell Lysis Buffer (Roche), and washed two times with PBS. Samples were placed 347 

into 12-well plates coated with 150 µl GFR matrigel (Corning) and cultured with pancreatic 348 

organoid feeding media (advanced DMEM/F12 supplemented with 10 mM HEPES; Thermo-349 

Fisher); 1x Glutamax (Thermo-Fisher); penicillin/streptomycin (Thermo-Fisher); 100 ng/ml 350 

animal-free recombinant human FGF10 (Peprotech); 50 ng/ml animal-free recombinant human 351 

EGF (Peprotech); 100 ng/ml recombinant human Noggin (Biotechne); Wnt3a-conditioned 352 

medium (30% v/v); RSPO1-conditioned medium (10% v/v); 10 nM human Gastrin 1 (Sigma 353 

Aldrich) 10 mM Nicotinamide (Sigma Aldrich); 1.25 mM N acetylcysteine (Sigma Aldrich); 354 

1x B27 (Invitrogen); 500 nM A83-01 (Tocris); 10.5 µM Y27632 (Tocris). The plates were 355 

incubated at 37°C in a 5% CO2 incubator, and the media changed every 3 to 4 days. 356 
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Immunohistochemistry  357 

Organoids and PDX were embedded, section and stained for H&E and/or histology. 358 

Immunofluorescent staining with COL-IV and ZO-1 antibodies was performed using anti-359 

collagen IV rabbit polyclonal antibody (Abcam, ref ab6586), anti-ZO1 monoclonal antibody 360 

(ThermoFisher, ref Z01-1A12) and Anti-Vimentin monoclonal antibody (Sigma, ref. V6389) 361 

following standard methods. 362 

Single-cell transcriptomics 363 

For single-cell transcriptomic, we performed a modified SPLIT-seq protocol similar to the 364 

already described by Rosenberg et al. (Rosenberg et al., 2018). Briefly, single-cell suspensions 365 

from organoids were fixed with 1% formaldehyde solution in PBS and stored at -80°C 366 

immediately after dissociation. All samples were thawed in ice and permeabilized with 0.2% 367 

Triton X-100. Samples were divided into a 48-well plate. Retro-transcription was performed 368 

with well-specific barcoded oligo(dT) and hexamer primers. Cells were pooled and split twice 369 

to 96-well plates for two successive ligation steps where a second and a third well-specific 370 

barcodes were added to the cDNA. For library preparation, two rounds of SPRI size selection 371 

were performed after cDNA amplification and the tagmentation steps. Illumina amplicons 372 

were generated from 1 ng instead of 600 pg of cDNA and sequenced using the Illumina 373 

Novaseq platform.  374 

scRNA-seq data processing 375 

Raw sequencing data were processed using the zUMIs pipeline (Parekh et al., 2018) which 376 

consisted mainly in extracting barcodes, filtering cells, mapping using human genome 377 

GRCh38.96 and generating read count tables. Downstream analyses on gene-by-cell count 378 

matrix were performed with the R package Seurat, version 3 (Butler et al., 2018). These 379 

consist mainly of normalization, dimensional reduction (including PCA and UMAP algorithm) 380 

and cell classification using a shared nearest neighbor (SNN) modularity optimization based 381 

clustering algorithm. Markers for each cluster were identified based on differential gene 382 

expression using the Seurat’s function FindMarkers. Pseudotime analysis was performed using 383 

the R package Monocle2 trajectory (Qiu et al., 2017). Enrichment analyses including Gene 384 

Ontology and KEGG Pathway were performed using R packages such as ClusterProfiler (Yu 385 

et al., 2017). 386 

 387 
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Identification of basal-like and classical components 388 

Transcriptomic dataset was pre-processed and normalized using only 50% most variable 389 

genes. Thus, data were thus sample-wise zero-centered and scaled. Independent component 390 

analysis was performed with JADE (joint approximate diagonalization of eigenmatrices) 391 

algorithm. Two components were retrieved using biologically relevant composition. The 392 

annotation of the components was performed using external data including PDX samples and 393 

lists of basal-like and classical markers. The cluster projections and gene correlation to the 394 

components was performed using custom R scripts and basic functions of R language. 395 

 396 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.897454


 

 

Figure legends 397 

Figure 1 398 

Characterization of PDAC-derived organoids  399 

A. Histological characterization of the 6 BDPCO by H&E staining. B. Organoids show the 400 

presence of glandular structures composed by an apical pole (marked by ZO-1 in green) and a 401 

basolateral membrane (marked by COL-IV in red). Scale bar is 50 µm. C. Heatmap showing 402 

the expression of a 50 gene molecular signature able to identify classical tumors in all six 403 

patients. D. Immunohistochemical characterization of the six BDPCO with anti-vimentin 404 

antibodies. E. Immunohistochemical characterization of the six BDPCO derived PDX with 405 

anti-vimentin antibodies.  406 

Figure 2 407 

Identification of cell clusters by scRNA-seq from PDAC organoids  408 

A. Experimental design. Organoids were cultured from EUS-FNA samples, dissociated into 409 

single cells, splited into wells and labeled with well-specific barcodes. During the first round 410 

RT barcoded primers were added to the RNA, followed by ligation of a second and third 411 

barcode. The final cDNA library was sequenced on a NovaSeq platform. B. UMAP projections 412 

of combined single-cell profiles from the six patients. Each dot represents a single cell, and 413 

color refers different clusters. Number of cells in each cluster is indicated.  414 

Figure 3 415 

Characterization of cell clusters  416 

A. Feature plot highlighting the expression of the gene markers for each cluster and the 417 

corresponding violin plots. B. Dot plot for the top markers of clusters. The dot size represents 418 

the percentage of cells expressing the marker and the colors indicate the expression level.  419 

Figure 4 420 

Identification and application of basal-like and classical components from transcriptomic 421 

to the single-cell data 422 

A. Boxplots comparing basal-like and classical gene markers in the molecular components. B. 423 

Projections of average expression values of single-cell clusters on the components. C. 424 
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Individual projections of each single-cell on the components. The boxplots of the single-cells 425 

projections were plotted by cluster.  426 

Figure 5 427 

Pathway signatures of cell subtypes in organoids 428 

A. Enrichment plot from KEGG pathway analysis comparing the single-cell clusters. B. 429 

Visualization of Gene-function network of top enriched pathways in cluster C1. The size is 430 

proportional to the number of genes associated to each pathway while the color indicates the 431 

average expression of genes in cluster C1. 432 

Figure 6 433 

Pseudotime analysis of PDAC organoids 434 

Pseudotime trajectory of single-cell transcriptomes simulating biological process in PDAC 435 

organoids. Each cluster of cells was plotted separately.  436 

Figure 7 437 

Intra-tumoral heterogeneity is conserved across the patients with different proportions 438 

A. UMAP projections of combined single-cell clusters separately for each patient. B. 439 

Correlogram plot of Pearson’s residuals from Chi-squared test between the cluster and 440 

patients. The color of circles indicates the nature of relationship between the patients and 441 

clusters while the absolute value indicates the global contribution to Chi-square score.  442 
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Legend of Supplementary Figures 443 

Supplementary Figure S1 444 

Performance of scRNA-seq by combinational indexing 445 

A. Scatter plot showing the correlation between read counts and genes (Pearson coefficient 446 

=0.94). B. Violin plots of detected genes and number of reads across patients.  447 

Supplementary Figure S2 448 

Pseudotime trajectory 449 

Pseudotime trajectory analysis indicating the state of all cells from the four clusters together on 450 

the same trajectory.  451 
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