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ABSTRACT 24 

Organismal traits show dramatic variation in phylogenetic patterns of origin and loss across the 25 

Tree of Life. Understanding the causes and consequences of this variation depends critically on 26 

accounting for heterogeneity in rates of trait evolution among lineages. Here, we describe a 27 

method for modeling among-lineage evolutionary rate heterogeneity in a trait with two discrete 28 

states. The method assumes that the present-day distribution of a binary trait is shaped by a 29 

mixture of stochastic processes in which the rate of evolution varies among lineages in a 30 

phylogeny. The number and location of rate changes, which we refer to as rate-shift events, are 31 

inferred automatically from the data. Simulations reveal that the method accurately reconstructs 32 

rates of trait evolution and ancestral character states even when simulated data violate model 33 

assumptions. We apply the method to an empirical dataset of mimetic coloration in snakes and 34 

find elevated rates of trait evolution in two clades of harmless snakes that are broadly sympatric 35 

with dangerously venomous New World coral snakes, recapitulating an earlier analysis of the 36 

same dataset. Although the method performed well on many simulated data sets, we caution that 37 

overall power for inferring heterogeneous dynamics of single binary traits is low. 38 

 39 

Keywords: macroevolution, discrete trait evolution, rate heterogeneity 40 

 41 

 42 

 43 

 44 

 45 

 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.897777
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 47 

Organismal traits evolve recurrently across the Tree of Life, and the frequency with which traits 48 

evolve varies widely among clades. Among extant amniotes, for example, viviparity has evolved 49 

at least 100 times but only a single origin of it (in mammals) occurs outside squamate reptiles 50 

(Blackburn 1982, 1985). Similarly, sugar-secreting glands known as extrafloral nectaries have 51 

arisen hundreds of times among plants, mainly within the legumes, but not once among 52 

gymnosperms (Weber and Keeler 2013). Identifying the causes and consequences of repeated 53 

convergence depends critically on accounting for heterogeneity in rates of trait evolution. 54 

Ancestral trait reconstructions reveal evidence of convergence and can identify other traits 55 

enabling the repeated evolution of a convergent trait (Maddison 1990; de Queiroz and 56 

Rodríguez-Robles 2006; Marazzi et al. 2012; Christin et al. 2013). However, inferences of 57 

ancestral states may be seriously misled by models that fail to account for rate heterogeneity 58 

(King and Lee 2015). Several evolutionary theories also link how quickly traits evolve to how 59 

quickly lineages diversify (Vermeij 1973; Stanley 1979), and the repeated evolution of a trait 60 

together with methods that model among-lineage variation in evolutionary rates allows for direct 61 

tests of this coupling (Rabosky et al. 2013; Igea et al. 2017). 62 

 63 

Methods to account for evolutionary rate heterogeneity have grown in number and in 64 

sophistication over recent years (O’Meara 2006; Revell and Collar 2009; Eastman et al. 2011; 65 

Lloyd et al. 2012; Marazzi et al. 2012; Beaulieu et al. 2013; Landis et al. 2013; Rabosky et al. 66 

2014; Uyeda and Harmon 2014), but much of this methodological progress has focused on 67 

continuous traits such as body mass or seed size. Phylogenetics deals extensively with rate 68 

heterogeneity in discrete character evolution because of the challenge it poses for inference of 69 
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evolutionary relationships (e.g. Heath et al. 2012), and some of these methods carry over to the 70 

study of non-molecular traits. The “hidden rates” (Beaulieu et al. 2013) and “precursor” 71 

(Marazzi et al. 2012) models, first introduced to study variation in growth form and extrafloral 72 

nectary production in plants, are closely related to covarion models of nucleotide substitution 73 

(Fitch and Markowitz 1970; Galtier 2001; Penny et al. 2001). The “random local clock” model 74 

(Drummond and Suchard 2010) used to study variation in the rate of nucleotide substitution has 75 

also been used to study evolutionary rate variation in mimetic color pattern (Davis Rabosky et al. 76 

2016) and reproductive mode parity (King and Lee 2015) in squamate reptiles.  77 

 78 

In this paper, we describe a method for modeling evolutionary rate heterogeneity in a trait with 79 

two discrete states and implement it using the Bayesian Analysis of Macroevolutionary Mixtures 80 

(BAMM) framework (Rabosky 2014; Rabosky et al. 2014). The model discussed here is closely 81 

related to several existing phylogeny inference methods that model among-lineage substitution 82 

rate variation (Huelsenbeck 2000; Drummond and Suchard 2010) but differs in details of 83 

likelihood calculation and implementation. The general approach assumes that the present-day 84 

distribution of a binary state character is shaped by a mixture of stochastic processes in which the 85 

rate of evolutionary transition between the two states experiences shifts under a Poisson process 86 

across the branches of a phylogeny. The number and location of rate changes, which we refer to 87 

as rate-shift events, are inferred automatically from the data. Simulations reveal that the method 88 

accurately infers rates of evolution, the number and location of rate-shift events, and ancestral 89 

character states even when simulated data violate model assumptions.  90 

 91 
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MATERIALS & METHODS 92 

Likelihood of a binary state character 93 

We assume that each branch of a phylogeny evolves independently of the others and that the 94 

probability of a lineage transitioning to a character state different from its current state does not 95 

depend on its prior history of trait evolution (Pagel 1994). For a discrete character with two 96 

states, state 0 and state 1, trait evolution is modeled by a “forward” transition rate (denoted 𝑞"#), 97 

which governs how frequently a lineage in state 0 changes to state 1, and a “reverse” transition 98 

rate (denoted 𝑞#"), which governs how frequently a lineage in state 1 changes to state 0. For 99 

example, over a sufficiently small interval time Δ𝑡, the probability of observing a transition from 100 

state 0 to state 1 is approximately 𝑞"#Δ𝑡. 101 

 102 

To write down a likelihood function for estimating the transition rate parameters, we follow the 103 

approach of Maddison et al. (2007) and define 𝐷'"(𝑡) to be the probability that lineage N 104 

evolves the distribution of character states observed among its descendants given that it is in 105 

state 0 at time t. We define 𝐷'#(𝑡) analagously. Next, consider what can happen in the short 106 

interval of time between t and t+h, where t+h is closer to the root and where h is taken to be an 107 

interval of time small enough that the probability of more than one character state transition in 108 

the interval is negligible. There are only two possibilities. Either the lineage remains in the state 109 

that it was in at time t+h or it switches to the other state. We can therefore write 𝐷'"(𝑡 + ℎ) and 110 

𝐷'#(𝑡 + ℎ) as functions of 𝐷'"(𝑡), 𝐷'#(𝑡), and the transition rate parameters 𝑞"# and 𝑞#", 111 

𝐷'"(𝑡 + ℎ) = (1 − 𝑞"#ℎ)𝐷'"(𝑡) + 𝑞"#ℎ𝐷'#(𝑡) 112 

𝐷'#(𝑡 + ℎ) = (1 − 𝑞#"ℎ)𝐷'#(𝑡) + 𝑞#"ℎ𝐷'"(𝑡) 113 
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By rearranging and letting h approach zero we form two coupled differential equations that 114 

describe how these probabilities change through time, 115 

𝑑𝐷'"(𝑡)
𝑑𝑡 = −𝑞"#𝐷'"(𝑡) + 𝑞"#𝐷'#(𝑡) 116 

𝑑𝐷'#(𝑡)
𝑑𝑡 = −𝑞#"𝐷'#(𝑡) + 𝑞#"𝐷'"(𝑡) 117 

These can be solved (see appendix) to give the closed form solutions, 118 

           𝐷'"(𝑡) = 𝐴 + 𝐵"𝑒6(789:798)(;6;8)         ( 1) 119 

           𝐷'#(𝑡) = 𝐴 + 𝐵#𝑒6(789:798)(;6;8)         ( 2) 120 

Where 𝑡" is the initial time and, 121 

𝐴 = 𝜋"𝐷'"(𝑡") + 𝜋#𝐷'#(𝑡") 122 

𝐵" = 𝜋#𝐷'"(𝑡") − 𝜋#𝐷'#(𝑡") 123 

𝐵# = 𝜋"𝐷'#(𝑡") − 𝜋#𝐷'"(𝑡") 124 

Where 𝜋= is the equilibrium frequency of state i. Equations (1) and (2) are evaluated for each 125 

branch of the phylogeny proceeding from the tips to the root in a post-order traversal. The 126 

quantities 𝐷'"(𝑡") and 𝐷'#(𝑡") are the initial conditions used to begin evaluation for each 127 

branch. If we have these values, we can compute the conditional likelihood of the data for a 128 

branch’s stem group by simply setting t equal to the time at the base (rootward) of the branch 129 

and 𝑡" equal to the time at the head (tipward) of the branch and evaluating equations (1) and (2). 130 

At each internal node, we form a new set of initial conditions by multiplying the 𝐷∙" and 𝐷∙# at 131 

the base of the node’s left descendant branch with those of its right descendant. When we reach 132 

the root, R, of the tree 𝐷@"(𝑡@) and 𝐷@#(𝑡@) yield the probability of the data given the transition 133 

rate parameters and conditional on the root being in state 0 or state 1, respectively. To get the 134 

unconditional likelihood we must combine these two values, but doing so requires knowing the 135 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.897777
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability of the root being in state 0 or in state 1. We assume that the root is in state 0 or state 1 136 

with probabilities implied by their conditional likelihoods and compute the full likelihood as 137 

AB8(;B)
AB8(;B):AB9(;B)

𝐷@"(𝑡@) +
AB9(;B)

AB8(;B):AB9(;B)
𝐷@#(𝑡@). This is the same weighting scheme used in 138 

some models of trait-dependent speciation and extinction (FitzJohn et al. 2009). To begin 139 

computation, the initial conditions for each tip in the tree are set to 𝐷∙"(0) = 1 and 𝐷∙#(0) = 0 if 140 

the tip is in state 0 and vice versa if the tip is in state 1. 141 

 142 

Rate-shift model for a binary state character 143 

At broad phylogenetic scales, it may be unreasonable to assume that the transition rates remain 144 

constant over all regions of phylogeny. We therefore allow regions of a phylogeny to belong to 145 

different macroevolutionary “rate-regimes”, which are independent sets of transition rate 146 

parameters that describe the evolution of a binary state character over the regions of phylogeny 147 

to which they pertain. Transitions between rate-regimes, which we refer to as “rate-shift events”, 148 

are assumed to occur along the branches of a phylogeny according to a compound Poisson 149 

process (Huelsenbeck 2000; Blanquart and Lartillot 2006; Rabosky 2014). To compute the 150 

likelihood of the data under a rate-shift model requires minimal modification of the process 151 

described in the previous section. Rather than traversing directly from a node to its ancestor 152 

when evaluating equations (1) and (2), we pause at each rate-shift event that occurs on the 153 

branch and use the values of (1) and (2) at that point as starting values for an additional 154 

evaluation of (1) and (2) under the new set of transition rates. 155 

 156 

This model of rate variation is unsuitable when forward and reverse transition rates are 157 

asymmetric (Fig. 1). By proposing a new rate-shift event for every event of character state 158 
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change and simply making one rate arbitrarily large and the other rate arbitrarily small it is 159 

possible to fit any data set with probability 1 (when conditioned on the occurrence of the rate-160 

shift events). This is because we can guarantee with probability 1 the origin and persistence of a 161 

derived character state by making the transition rate toward the derived character state arbitrarily 162 

large and the reverse rate arbitrarily small. In such a scenario, rate-shift events become 163 

decoupled from broad-scale among-lineage variation in the rate of trait evolution. Our 164 

implementation of an asymmetric version of this rate-shift model yielded results consistent with 165 

these expectations for several empirical datasets. For this reason, the default implementation in 166 

BAMM constrains forward and reverse transition rates to be identical. All analyses presented 167 

below use this symmetric implementation. 168 

 169 

Implementation 170 

The rate-shift model described above is implemented in the Bayesian software program BAMM 171 

using reversible-jump Markov Chain Monte Carlo simulation (Rabosky 2014). Briefly, BAMM 172 

assumes that the number of rate-shift events on a phylogeny is drawn from a Poisson distribution 173 

with a rate parameter that is itself drawn from an exponential distribution. This formulation 174 

implies that the number of rate-shifts is drawn from a geometric distribution and that the 175 

expected number of rate-shifts, denoted by L, is simply the mean of the exponential hyperprior 176 

placed on the Poisson prior (Mitchell and Rabosky 2017). We extend the BAMM 177 

implementation for binary data by placing an exponential prior on the transition rate and use a 178 

proportional shrinking-expanding proposal mechanism to update its value. All other details 179 

remain the same and are described elsewhere (Mitchell and Rabosky 2017). 180 

 181 
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Simulation study 182 

We conducted a simulation study to assess how well the method estimates branch specific rates 183 

of evolution and infers the presence of rate-shift events. We also evaluated whether the estimated 184 

rates of trait evolution accurately reconstruct ancestral character states. 185 

 186 

(1) Choice of phylogeny 187 

To carry out the simulations, we generated 100 phylogenies having between 50 and 1,000 tips by 188 

randomly sampling internal nodes from the 3,962-tip ultrametric squamate reptile phylogeny of 189 

Pyron and Burbrink (2014). Nodes were assigned weights such that all sizes (measured as the 190 

number of living descendants) of extracted clades had an equal probability of being selected. We 191 

chose to select subsets of a large empirical phylogeny, rather than simulated phylogenies, to 192 

introduce more realistic distributions of branch lengths than might be obtained using simple tree 193 

simulation models (e.g. Yule or constant-rate birth-death models). 194 

 195 

(2) Simulating trait evolution 196 

For each phylogeny, we simulated evolution of a binary state trait 10 times using 2 different 197 

procedures. In the first case, we determined the number of rate-shift events to place on the tree 198 

by drawing a random integer from a Poisson distribution with a rate of 1. We determined the 199 

locations for these rate-shifts by selecting that number of internal nodes randomly without 200 

replacement, again using weights that gave all sizes of subtrees an equal probability of being 201 

chosen, and choosing a uniform random point along each chosen node’s branch. We chose the 202 

transition rate for each rate-regime by drawing a random number from a log-normal distribution 203 

with a mean of log0.01 and a standard deviation of − #
H
log 0.01. This corresponds to a log-204 
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normal distribution with a spread that position rates of 0.0001 and 1 three standard deviations 205 

below and above the mean, respectively, and these values were chosen simply for their potential 206 

to generate datasets having a range of phylogenetic signals. The second case was identical to the 207 

first except that we allowed transition rates to be asymmetric. The degree of asymmetry was 208 

determined by drawing a random number from a log-normal distribution with a mean of log1 209 

and a standard deviation of #
H
log100. This corresponds to a log-normal distribution centered on 210 

unbiased transition rates with a spread that positions a 100-fold bias in transition rates 3 standard 211 

deviations from the mean.  212 

 213 

(3) Information content of rate-shift events 214 

Due to the stochastic nature of the simulations we expected rate-shift events to vary in their 215 

degree of detectability. To quantify this, we followed Rabosky et al. (2017) and calculated the 216 

“information content” of each rate-shift, which is a measure of how strongly the data support a 217 

model with rate variation over a model with no rate variation. For each simulated trait 218 

distribution, we optimized the value of the transition rate parameter to maximize the likelihood 219 

of the full data under a model with no rate-shifts. We denote this maximum-likelihood parameter 220 

estimate by 𝜃J@ . Next, we denote by 𝐷= the trait data contained in the subtree formed by the set 221 

of all nodes and branch segments belonging to the i-th rate-regime and by 𝜃= the transition rate 222 

that generated those data. We calculated the information content of the i-th rate regime as the 223 

difference in log likelihoods of 𝐷= under the two parameter sets, 224 

ΔLog𝐿= = log𝐿(𝐷=|𝜃=) − log𝐿(𝐷=|𝜃J@) 225 

Where 𝐿(𝐷=|𝜃=) denotes the likelihood of the data in the i-th rate regime given the generating 226 

parameter, and 𝜃J@  indicates the transition rate obtained by maximizing the likelihood for the 227 
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full data under a model with no rate-shifts. If the data support a model with rate-shift events, the 228 

ΔLog	𝐿 statistic must be greater than 0. In general, we expect that this statistic must be 229 

substantially greater than 0 for BAMM to detect a rate-shift event. If ΔLog	𝐿 is expressed using 230 

the Akaike Information Criterion it can be rewritten as ΔLog	𝐿 = 𝑆
2Q + 𝑘, where S is the 231 

difference in AIC scores needed to accept a model with an additional rate-shift and k is the 232 

number of extra parameters required to fit an additional rate-shift (in our implementation k = 2, 233 

corresponding to the location of the rate-shift and its rate parameter). If 𝑆 ≥ 0	is interpreted as 234 

support for a model with an extra rate-shift, the minimum ΔLog	𝐿 needed to detect an event is 2. 235 

 236 

BAMM analysis 237 

We analyzed each simulation with BAMM using a single Markov chain that ran for ten million 238 

generations with L set equal to 1. The transition rates governing trait evolution need starting 239 

values before BAMM can proceed. For each simulation, we divided the total number of observed 240 

character state transitions by the summed branch length of the simulation’s phylogeny and used 241 

this value for the initial transition rate and for the median of the exponential prior placed on the 242 

transition rate. This number is unavailable in empirical datasets but will be close to the number 243 

implied by parsimony when rates of character evolution are low. 244 

 245 

Performance assessment 246 

For each dataset simulated under a symmetric or asymmetric rate-shift model we assessed 247 

BAMM’s ability to estimate rates of trait evolution and to detect rate-shift events. We performed 248 

each assessment using the estimated posterior distribution after discarding the first ten-percent of 249 

samples. 250 
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 251 

(1) Estimating the rate of trait evolution 252 

To determine how accurately BAMM infers rates of trait evolution we scaled each branch length 253 

to correspond to its average estimated rate of trait evolution. We performed this branch-by-254 

branch calculation for each sample in the simulated posterior distribution using the BAMM-255 

estimated transition rate parameters and assigned each branch an overall length equal to, 256 

𝑣= =
∑ 𝑣=,WW

𝑁  257 

Where 𝑣=,W  denotes the rate of evolution of branch i in the s-th posterior sample, and 𝑁 indicates 258 

the number of samples in the posterior distribution. Using these values, we computed the tree-259 

wide proportional branch rate error for a simulation as, 260 

𝑅 =Z
𝑡=
𝑇

=

(log𝑣= − log𝑉=) 261 

Where 𝑉= denotes the true rate of evolution of branch i, and the summation is taken over all 262 

branches in the phylogeny. The error of the i-th branch estimate was weighted by the 263 

proportional contribution of its branch length, 𝑡=, to the sum of all branch lengths, T, in the 264 

phylogeny. For unbiased transition rate estimates this equation is equal to 0. 265 

 266 

(2) Detection of rate-shift events 267 

For each simulated rate-shift event, we computed the mean detection accuracy as ∑ ^__
'

, where 𝐽W 268 

indicates the detection accuracy in the s-th posterior sample and 𝑁 indicates the number of 269 

samples in the posterior distribution. Letting 𝐶W denote the set of rate-shift events detected by 270 

BAMM in the s-th posterior sample, we measured the detection accuracy of a generating rate-271 

shift event as, 272 
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𝐽W = max	 ef
|𝑁 ∩ 𝑁=|
|𝑁 ∪ 𝑁=|

, 𝑖 ∈ 𝐶W	kl 273 

Where 𝑁 is the set of tips descended from the generating rate-shift event and 𝑁= is the set of tips 274 

descended from the i-th rate-shift detected by BAMM in the s-th posterior sample. A value of 1 275 

occurs when BAMM identifies the precise node that corresponds to the generating rate-shift 276 

event, and a value of 0 occurs when BAMM fails to identify the generating event at all. 277 

Intermediate values occur when BAMM identifies rate-shift events that correspond to nodes 278 

above or below the node where the generating rate-shift event occurred. 279 

 280 

(3) Empirical application 281 

Finally, we analyzed an empirical dataset of mimetic coloration in snakes previously analyzed 282 

with several related methods (Davis Rabosky et al. 2016). Red-black banded coloration arises 283 

repeatedly among harmless colubrid snakes that occur in broad sympatry with dangerously 284 

venomous red-black banded coral snakes in the Neotropics and parts of the North temperate 285 

zone. The incidence of red-black banded coloration is particularly high among dipsadine snakes, 286 

a highly diverse clade of colubrid snakes that occur in local and regional sympatry with coral 287 

snakes across the Neotropics. Using the random local clock model (Drummond and Suchard 288 

2010) and a Medusa-like (Alfaro et al. 2009) model of discrete trait evolution, Davis Rabosky et 289 

al. (2016) inferred elevated rates of mimetic color evolution within dipsadine snakes resulting 290 

from repeated independent origins of red-black banding coincident with the diversification of 291 

coral snakes in the Neotropics. We repeated their macroevolutionary rate analysis of this dataset 292 

using the method developed in this paper. We divided the number of parsimony-implied 293 

character state changes by the total branch length of the phylogeny to obtain a median rate for 294 

the transition rate prior and ran BAMM for 10 million generations with L set equal to 10. We 295 
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repeated this analysis 3 times under 3 different transition rate prior specifications corresponding 296 

to a 2-, 5-, and 10-fold speedup over the median rate implied by parsimony.  297 

 298 

RESULTS 299 

(1) Estimating the rate of trait evolution 300 

Tree-wide proportional branch rate errors were low regardless of whether the data were 301 

simulated under a symmetric (mean = 0.09, median = 0.08) or asymmetric (mean = -0.27, 302 

median = -0.17) rate-shift model (Fig. 2). The correlations between estimated and true branch 303 

rates were high when data were simulated using a symmetric model (Pearson’s r = 0.64, 304 

Spearman’s r = 0.90) but were substantially noisier when data were simulated using an 305 

asymmetric model (Pearson’s r = 0.26, Spearman’s r = 0.60). When branch rates were 306 

multiplied by the temporal duration of each branch to convert them into the expected number of 307 

character state changes these correlations improved, particularly for the asymmetric model 308 

(symmetric: Pearson’s r = 0.66, Spearman’s r = 0.93; asymmetric: Pearson’s r = 0.37, 309 

Spearman’s r = 0.75). Spearman rank correlations were substantially higher than Pearson 310 

product-moment correlations for both models, indicating that relative branch rates are generally 311 

better estimated than absolute branch rates. 312 

 313 

(2) Detection of rate-shift events 314 

BAMM’s ability to detect rate-shift events was generally low due to the limited information 315 

content of rate-shift events in the simulated data (Fig. 4). Despite relative rate differences 316 

between ancestral and derived rate-shift events that varied over 6 orders of magnitude, only 400 317 

of 2045 simulated rate-shift events had an information content above 2, the theoretical minimum 318 
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above which BAMM is expected to have power to detect them (see Discussion). This is due in 319 

part to the small average number of tips in simulated rate-regimes but also to the legitimate 320 

difficulty of simulating binary character data that reveal strong evidence for rate heterogeneity 321 

(cf. Fig. 4 rightmost panel). When BAMM has information to detect rate-shift events, however, it 322 

does reasonably well, and its performance improves monotonically as the information content of 323 

rate-shifts increases (cf. Fig. 4 leftmost panel). For example, BAMM detected the locations of 36 324 

rate-shifts with an information content of at least 10 with a mean accuracy of 88%. 325 

 326 

(3) Empirical application 327 

Analysis of the empirical dataset of red-black banded coloration in snakes largely recapitulated 328 

previous results showing an increased rate of trait evolution in Neotropical dipsadine snakes (but 329 

also revealed high rates in a clade of North temperate colubrine snakes) (Fig. 5). When analyzed 330 

under a strong, well-informed transition rate prior, rates of trait evolution ranged from a low of 331 

0.00065 My-1 in basal snake lineages to a high of 0.0093 My-1 in dipsadine snakes, with an 332 

overall mean of 0.0024 My-1 that closely matched the overall rate of 0.002 My-1 obtained by 333 

dividing the number of parsimony-inferred state changes by the total branch length (cf. Fig. 5 334 

leftmost panel). More liberal priors did not change this general picture, however rates of trait 335 

evolution in the upper tail of the estimated branch rate distribution tended to creep upward as the 336 

transition rate prior flattened. Flatter transition rate priors were associated with a higher number 337 

of posterior rate-shifts caused by the partitioning of single rate-shift events inferred under steeper 338 

transition rate priors into multiple smaller rate-shift events (i.e. lineages left out of these new 339 

rate-shift events fell back into the ancestral root regime). These new rate-shift events tended to 340 
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have estimated rates of evolution that were higher than estimates made using steeper transition 341 

rate priors. 342 

 343 

DISCUSSION 344 

In this paper, we describe a Bayesian method, implemented in the BAMM software program, for 345 

studying among-lineage variation in the rate of evolution of a binary character. Overall, our 346 

results show that the method accurately infers rates of trait evolution and the presence and 347 

location of among-lineage evolutionary rate variation, even when simulated data violate model 348 

assumptions. Although the method performed well on many simulated data sets, we caution that 349 

overall power for inferring heterogeneous dynamics of single binary traits may be low.  350 

 351 

The ability of the method to detect rate-shift events depends on the size of the clade belonging to 352 

a rate-regime but also on how much information the data contain with respect to the parameters 353 

of the rate-regime. In our simulations, we estimated this information content using a log-354 

likelihood ratio that measures the likelihood of a given rate-shift event under the true parameters 355 

relative to the corresponding likelihood under a simple model where the rate is set to the whole-356 

tree average. This information content can be surprisingly low even for large clades. In 357 

retrospect, this is not necessarily surprising because with only two character states there is a limit 358 

to how different data generated by two different rates can become. A 10- or even 100-fold rate 359 

increase will not be detectable if the ancestral rate is already high enough as to leave no 360 

phylogenetic signal. Similarly, a 10- or 100-fold rate decrease will not be detectable if the 361 

ancestral rate is already so low as to make character change highly improbable. In general, we 362 

expect detectability of rate-shifts to depend strongly on how distinct one rate’s phylogenetic 363 
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signal is from another. This will have a strong stochastic component to it, and for binary data 364 

will likely have a low signal-to-noise ratio making detection of rate-shift events difficult. 365 

 366 

While we did not explore prior sensitivity exhaustively in this study, the empirical results 367 

indicate that branch rate estimates (and ancestral state reconstructions by implication) are 368 

sensitive to the transition rate prior. In the empirical example, disagreements among the different 369 

priors occur in regions of phylogeny having elevated rates of evolution. This is not surprising 370 

given that the method works with only a single binary character and that the fast-evolving clades 371 

in the empirical phylogeny have relatively few taxa, but it does call for vigilance. A sensible rule 372 

of thumb is to treat with caution any result where the overall mean rate estimate disagrees 373 

strongly with the rate implied by parsimony. Encouragingly, the different prior specifications are 374 

in broad agreement on where relative rate differences occur in the empirical phylogeny despite 375 

disagreements over absolute rate estimates. The results also indicate that the transition rate prior 376 

interacts with the prior on the number of rate-shifts, suggesting that the method’s ability to 377 

estimate the precise location of a rate-shift and its ability to estimate the associated rate of 378 

evolution may trade-off. Finally, the combination of a prior with a high number of expected rate-379 

shift events and a relatively flat transition rate prior can lead to an apparent abundance of single 380 

tips with derived character states having elevated rates of evolution. This is because dropping a 381 

high rate of evolution on such a branch entails no penalty. It makes the derived state more 382 

probable and with only a single lineage does not suffer from the likelihood penalty that a larger 383 

clade fixed for a derived state would suffer from if given an elevated rate. Users should remain 384 

alert to this scenario and treat its presence as an indication that the priors are exerting an undue 385 

influence. For all these reasons, we recommend the use of a strong, well-informed prior on the 386 
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transition rate and setting the median rate of the prior equal to the parsimony-implied rate seems 387 

like a sensible choice. 388 

 389 

A fundamental difficulty facing macroevolutionary models of discrete character evolution is that 390 

the data contain low information content with respect to rates of evolution since actual events of 391 

character state change are not directly observed. This challenge is exacerbated further in 392 

asymmetric Markov models which must estimate the rate of evolution while simultaneously 393 

inferring the equilibrium frequencies of the character states. From this fact alone we should 394 

expect asymmetric Markov models to have lower information content with respect to transition 395 

rates than symmetric Markov models, which a priori assume equilibrium frequencies of character 396 

states are equal. In a discrete-time version of the Markov model used by this and many other 397 

studies, Sanderson (1993) has shown that maximum likelihood parameter estimates are 398 

intrinsically biased upwards for an asymmetric model with two character states but are unbiased 399 

for a symmetric model. The extent to which these conclusions apply in continuous-time or 400 

generalize to more than two states is not known to us but warrants further study.  401 

 402 

One consequence of the low information content of binary data are ancestral state 403 

reconstructions that may appear nonsensical when performed with asymmetric models. For 404 

example, Pagel (1999) presented a comb phylogeny in which every tip in the clade was fixed for 405 

one of two possible character states and showed that an asymmetric Markov model reconstructed 406 

the root as belonging to either state with equal probability. From an asymmetric model’s 407 

perspective, a clade that is almost entirely fixed for a single character state is likely to have been 408 

generated by a process with a very high transition rate toward the majority state and a very low 409 
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transition rate away from it, which makes the tip states mostly independent of the ancestral states 410 

because the asymmetry in rates will yield the same outcome at the tips regardless of the 411 

assignment of states to internal nodes. By contrast, from a symmetric model’s perspective the 412 

clade simply has a very low rate of evolution and the tip states resemble their ancestors as a 413 

result. In fact, transition rates are nearly always biased in the direction of the state appearing 414 

most frequently among the tips of the tree (Nosil and Mooers 2005; Maddison 2006). This means 415 

that in an analysis that infers a high rate of transition from state 0 to state 1 and low rate of 416 

transition from state 1 to state 0, it will sometimes be the case that a majority of the evolutionary 417 

transitions were from state 1 to state 0. This runs counter to intuition and indicates the need for 418 

caution when using transition rates to infer directionality in the history of trait evolution (Nosil 419 

and Mooers 2005; Goldberg and Igic 2008). 420 

 421 
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 517 

APPENDIX 518 

Derivation of likelihood equations (1) and (2) 519 

Begin with the differential equations, 520 

    nAo8(;)
n;

= −𝑞"#𝐷'"(𝑡) + 𝑞"#𝐷'#(𝑡)         (A1) 521 

    nAo9(;)
n;

= −𝑞#"𝐷'#(𝑡) + 𝑞#"𝐷'"(𝑡)         (A2) 522 

By solving (A1) for 𝐷'#(𝑡) and equating its derivative to (A2) we can form the second-order 523 

differential equation, 524 

𝑑p𝐷'"(𝑡)
𝑑𝑡p + (𝑞"# + 𝑞#")

𝑑𝐷'"(𝑡)
𝑑𝑡 = 0 525 

Which, after finding the roots of its auxiliary equation, has the general solution, 526 
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    𝐷'"(𝑡) = 𝑐# + 𝑐p𝑒6(789:798)(;6;8)	        (A3) 527 

Where 𝑡" is a starting time on node N’s branch, 𝑐#and 𝑐p are constants, and 𝑡 is larger than 𝑡" but 528 

smaller than the time at the base of node N’s branch.  529 

 530 

To solve for 𝑐# note that at our initial condition when 𝑡 = 𝑡", 531 

    𝑐p = 𝐷'"(𝑡") − 𝑐#	          (A4) 532 

Furthermore, differentiating equation (A3) gives, 533 

    nAo8(;)
n;

= −(𝑞"# + 𝑞#")𝑐p𝑒6(789:798)(;6;8)                               (A5) 534 

And equating (A1) with (A5) and setting 𝑡 = 𝑡" yields, after some algebra,  535 

    𝑞"#𝑐# − 𝑞#"𝑐p = 𝑞"#𝐷'#(𝑡")                                                     (A6) 536 

By substituting the right-hand side of (A4) for 𝑐p in (A6) and solving for 𝑐# we find, 537 

    𝑐# =
789Ao9(;8):798Ao8(;8)

789:798
          (A7) 538 

Finally, by substituting the right-hand side of (A7) for 𝑐# in (A6) and solving for 𝑐p we find, 539 

    𝑐p =
789Ao8(;8)6789Ao9(;8)

789:798
                                                          (A8) 540 

Thus, equation (A3) is equivalent to equation (1) after substitution of (A7) and (A8), noting that 541 

789
789:798

= 𝜋# and that 798
789:798

= 𝜋". An equivalent derivation of equation (2) is performed by 542 

starting with 𝐷'#(𝑡) = 𝑐# + 𝑐p𝑒6(789:798)(;6;8). When 𝜋" = 𝜋# =
#
p
	as in the BAMM 543 

implementation this is simply a special case of the JC69 model (Jukes and Cantor 1969) with two 544 

states. 545 

 546 
 547 
 548 
 549 
 550 
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 551 

Figure 1. A worked example showing why asymmetric Markov models are unsuitable for 552 

BAMM-type rate-shift models. A single rate-shift event (denoted by a white circle) is placed 553 

along the branch subtending the clade fixed for character state 0. The x-axes in the left plot 554 

depict transition rates for this rate-shift and for the root event (denoted by a black circle). Note 555 

that they run in opposite directions, e.g. the upper x-axis is q01 for the root event but is q10 for the 556 

rate-shift event. As the asymmetry in transition rates is increased the probability of the data 557 

(denoted by the solid line) rises to 1 while the overall rate of character evolution (denoted by the 558 

dashed line) falls to 0. Simultaneously, as the rate of character evolution falls to 0 the asymmetry 559 

in transition rates causes the prior probability of being in one or the other character state to rise to 560 

1, e.g. the inset plot denoted by an asterisk depicts the probability of being in state 0 or state 1 as 561 

a function of the asymmetric transition rates of the rate-shift event. Thus, at the extreme a “rate-562 

shift” event simply introduces a second way to observe a stochastic event of character state 563 

change and does not correspond to among-lineage heterogeneity in rates of character evolution. 564 
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565 

Figure 2. Tree-wide proportional branch rate error in BAMM-estimated branch rates when data 566 

are simulated under a symmetric rate-shift model (left) or an asymmetric rate-shift model (right). 567 

Branch rates are measured as the expected number of character transitions per million years. 568 

Tree-wide proportional branch rate error is a weighted sum of the logarithmic difference between 569 

estimated branch rates and true branch rates over all branches in a phylogeny. Errors on short 570 

branches are down-weighted relative to errors on long branches. Unbiased estimates have an 571 

error of 0, negative and positive values correspond to under- and over-estimation errors, 572 

respectively. Each histogram depicts the distribution of tree-wide proportional branch rate error 573 

over simulations with at least one rate-shift event. The vertical lines show the mean (solid) and 574 

median (dashed) of each distribution. 575 

 576 

 577 

 578 

 579 
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 580 

Figure 3. Correlation between true branch rates/lengths and BAMM-estimated branch 581 

rates/lengths when data are simulated under a symmetric rate-shift model (left panels) or an 582 

asymmetric rate-shift model (right panels). Branch rates (top panels) are measured as the 583 

expected number of character transitions per million years. Branch lengths (bottom panels) are 584 

measured as the expected number of character transitions occurring along the length of a branch. 585 

Each point depicts the average posterior rate estimate for a single branch of a phylogeny in one 586 

simulation, and the color of each point corresponds to the density of neighboring points (warm 587 

colors indicate high densities). Only branches from phylogenies with at least one simulated rate-588 

shift are represented. The one-to-one line is dashed. 589 
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590 

Figure 4. Rate-shift detection accuracy with BAMM when data are simulated under a symmetric 591 

rate-shift model (top panels) or an asymmetric rate-shift model (bottom panels). The average 592 

detection accuracy measures how accurately BAMM inferred a rate-shift’s location. The 593 

information content of a rate-shift event is a log-likelihood ratio that measures the likelihood of a 594 

given rate-shift event under the true parameters relative to the corresponding likelihood under a 595 

simple model where the rate is set to the whole-tree average. In the leftmost panels, the vertical 596 

line is the theoretical minimum log-likelihood ratio above which BAMM is expected to have 597 

power to detect a rate shift event, and it closely coincides with the upward inflection of the 598 

LOWESS regression lines (dashed). The rightmost panels plot an event’s information content 599 

against its proportional rate difference. The proportional rate difference of an event is the ratio of 600 

its rate of evolution to the ancestral rate preceding it. In all panels, each point represents a 601 

simulated rate-shift event, and the color of each point corresponds to the density of neighboring 602 

points (warm colors indicate high densities). 603 

 604 
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 605 

Figure 5. Evolution of mimetic coloration in snakes under four different transition rate priors in 606 

BAMM. A high rate of evolution of red-black banded mimetic coloration in snakes is inferred in 607 

Neotropical dipsadine snakes and North American colubrines, although precise locations of rate-608 

shifts and rate estimates differ across prior specifications. In the lower panels, the x-axis is the 609 

average posterior rate of trait evolution (expected number of character state changes per million 610 

years) and the y-axis is a kernel density estimate of the branch-specific rate distribution over 4 611 

different prior specifications. The dashed line shows the prior distribution of the rate of evolution 612 

and the prior median is indicated by the inset expression. Average posterior branch rates are 613 

mapped onto the phylogeny in the center panels. The line graphs above each phylogeny show the 614 

posterior distribution of the number of rate-shift events (solid line) in the credible shift set 615 

compared to the prior distribution (dashed line). Branches colored red in the topmost panel show 616 

the distribution of red-black banded mimetic coloration among tips in the empirical phylogeny. 617 

Phylogeny from Pyron and Burbrink (2014). 618 
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