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Abstract  
Understanding the complicated interactions between cells in their environment is a major 
challenge in genomics. Here we developed BayesPrism, a Bayesian method to jointly predict 
cellular composition and gene expression in each cell type, including heterogeneous malignant 
cells, from bulk RNA-seq using scRNA-seq as prior information. We conducted an integrative 
analysis of 1,412 bulk RNA-seq samples in primary glioblastoma, head and neck squamous cell 
carcinoma, and melanoma using single-cell datasets of 85 patients. We identified cell types 
correlated with clinical outcomes and explored spatial heterogeneity in tumor state and stromal 
composition. We refined subtypes using gene expression in malignant cells, after excluding 
confounding non-malignant cell types. Finally, we identified genes whose expression in malignant 
cells correlated with infiltration of macrophages, T cells, fibroblasts, and endothelial cells across 
multiple tumor types. Our work introduces a new lens that uses scRNA-seq to accurately infer 
cellular composition and expression in large cohorts of bulk data.  
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Introduction 
Cells in an organism have complicated interactions with other cells in their environment. 

A quintessential example where cell-cell interactions have important ramifications in medicine is 
interactions between malignant tumor cells and functionally diverse non-malignant cell types 
known as stromal cells1±3. During the past two decades numerous studies have revealed 
interactions between malignant cells and the stroma that promote diverse functions including 
angiogenesis4,5, metastasis6, and immunosuppression7,8. Stromal cells differ between patients 
and tumor types9±15 and the abundance of certain stromal cell populations are used in the clinic 
as biomarkers16±19 and therapeutic targets20±25. These studies motivate direct measurements of 
cell types and the interactions between them in human cancers. 

Two layers of information are critical for understanding cell-cell interactions26: (1) the 
quantity of different cell types, and (2) systematic variation of gene expression in each cell type. 
Measurements of both cell type and expression can be made using single cell RNA sequencing 
(scRNA-seq)27±32. However, single cell transcriptomics are still costly and often require fresh 
tissues and hence scRNA-seq remains technically challenging to scale to large numbers of patient 
samples33,34. Additionally they are susceptible to confounding technical factors in capture 
efficiency that alter the composition of cell types. Other genomic studies have used bulk RNA-seq 
samples to infer cell type abundance using regression on a reference expression matrix 
constructed from a set of arbitrarily defined marker genes17,18. Although these pioneering studies 
have provided estimates of tumor infiltrating immune cells17,18, they make strong assumptions 
about the invariant expression between the reference and the bulk mixture over the selected 
markers. This often results in a reduced accuracy when such assumptions are violated, especially 
in deconvolving datasets in which significant variation exists between the bulk and single cell 
reference, due to technical differences in sequencing platforms and/or heterogeneity in gene 
expression in the tumor and its microenvironment35±37. Critically, these cell type deconvolution 
studies were not able to learn gene expression in a heterogeneous population of tumor cells. 

These studies leave open several foundational questions: How do malignant cells affect 
the composition of stromal cells? And which genes are correlated with these interactions? To 
answer these questions we need an accurate model for cell type-specific expression profiles in 
each bulk sample and cell type fraction that can accommodate uncertainty in the single cell 
reference. To address these issues, we devised a Bayesian model that infers both cell type 
composition and gene expression, called Bayesian cell Proportion Reconstruction Inferred using 
Statistical Marginalization (BayesPrism). BayesPrism infers the posterior distribution of cell types 
fractions and gene expression from bulk RNA-seq data using a scRNA-seq reference as prior 
information. We showed that by explicitly modeling the error distribution in single cell reference 
and marginalizing it out, BayesPrism significantly improves the inference of cell type fractions in 
both tumor and non-tumor settings.  
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Fig. 1 | BayesPrism algorithm flow and performance validation. a) Algorithmist flow of BayesPrism. b-e) Boxplots show the cell 
type-level Pearson’s correlation coefficient and MSE for deconvolution of pseudo bulks of GBM28 using refGBM8 (b and c), and 
bulk RNA-seq human whole blood samples with ground truth measured by flow-cytometry (d and e). Boxes mark the 25th percentile 
(bottom of box), median (central bar), and 75th percentile (top of box). Whiskers represent extreme values within 1.5 fold of the inter 
quartile range. f) UMAP visualization shows the expression of individual cells in GBM28. The expression profiles of stromal cells 
before (gray) and after (black) correction were projected onto the UMAP manifold of the scRNA-seq (left). Malignant cells in patients 
with greater than 10 malignant cells (N=27) were visualized on the zoomed-in UMAP (right), and are colored by patient. The inferred 
expression profile, shown as △, and the averaged expression profile from scRNA-seq for each patient, shown as ○, are projected 
onto the UMAP manifold. g) Scatter plot shows Spearman’s correlation between the average expression of malignant cells in 
pseudo-bulk and that estimated by BayesPrism (red), CIBERSORTx group mode (orange) or total bulk (blue), as a function of the 
fraction of malignant cells in a subsampled set (N=270). 
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Results 
 
Bayesian inference of cell type composition and gene expression 

BayesPrism uses scRNA-seq reference to infer two statistics of interest from each bulk 
RNA-seq sample: (i) the proportion of cell types and (ii) the expression level of genes in each cell 
type (Fig. 1a, Supplementary Fig. 1, Supplementary Note 1). The most challenging aspect of 
cellular deconvolution is accounting for various sources of uncertainty, including technical and 
biological batch variation, in gene expression between the bulk and scRNA-seq reference data. 
To account for uncertainty in the scRNA-seq reference, BayesPrism adopts a Baeysian strategy. 
BayesPrism models a prior distribution using scRNA-seq, and learns a posterior distribution of 
cell type proportion and gene expression in each cell type and sample conditional on each 
observed bulk after marginalizing uncertainty from the joint posterior. This strategy is implemented 
in an efficient algorithm (Supplementary Note 2). There are four major steps in the BayesPrism 
algorithm: 

1. BayesPrism first infers a joint posterior distribution of the cell type proportion and gene 
expression, θ0n and Zn, conditional on the observed single cell reference φ and bulk 
expression Xn in the nth bulk sample, i.e.  P(θ0n, Zn | φ, Xn; α), using Gibbs sampling, with α 
being a weak non-informative Bayesian hyper-parameter.  

2. For each bulk sample n, BayesPrism estimates (2a) the gene expression matrix of each cell 
type, Zn, and (2b) the proportion of each cell type, θ0n, by marginalizing the joint posterior 
and reporting the posterior mean of the marginals. This strategy is highly robust to technical 
variation between the bulk and reference data, allowing BayesPrism to perform well despite 
substantial technical noise.  

3. BayesPrism updates the reference matrix φ using information from Z to improve estimates 
of cell type fractions. The updated reference matrix, ψ, is the multinomial distribution 
parameters describing the distribution of Z. Two strategies are supported to infer ψ for use 
in distinct settings. First, BayesPrism can infer a maximum likelihood estimate (MLE) of cell 
type-specific gene expression that is unique to each bulk sample. This feature allows users 
to estimate gene expression in each bulk sample when there is substantial heterogeneity, 
as is generally the case with tumor cells from different patients27–32. Second, BayesPrism 
uses all bulk samples to summarize a maximum a posterior (MAP) estimate of cell type-
specific expression. For most cell types, gene expression is reasonably similar in bulk 
samples28,30,31, and in these cases it is appropriate to share information between samples 
by estimating ψ using all bulk data. BayesPrism then uses the updated prior distribution 
parameterized by ψ to re-sample the posterior marginal distribution of cell type composition 
for each bulk sample, θ, i.e. P(θn | ψ , Xn; α). Sharing information across bulk samples results 
in a shrinkage property in the estimates, and provides higher accuracy for problems with 
batch effects. 

4. Optionally, BayesPrism has an additional embedding learning module which can be used 
as factor analysis to explain the heterogeneous gene expression of one particular cell type 
across multiple bulk samples. This mode is particularly useful for analyzing common gene 
expression programs in malignant cells in bulk tumors, similar to the discovery of 
transcriptomic subtypes, after factoring out the confounding influence of stromal cells (Fig. 
1a, green).  
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BayesPrism improves cell type deconvolution accuracy by accommodating 
uncertainty in the reference 

The key innovation introduced in BayesPrism is the Bayesian inference strategy, which 
accommodates substantial variation in gene expression between the bulk sample and scRNA-
seq reference. To benchmark the effect of measurement noise in cell-type deconvolution 
accuracy, we first multiplied the gene expression of the pseudo-bulk RNA-seq data of human 
peripheral blood mononuclear cells (PBMC) with log-normally distributed fold changes. We 
compared the Pearson correlation and mean squared error (MSE) between the ground truth and 
cell type proportions estimated using five different deconvolution methods38–42. BayesPrism was 
nearly invariant to the simulated noise and outperformed existing methods by up to an order of 
magnitude as noise increased (Supplementary Fig. 2). These data are consistent with our 
expectation that the Bayesian method outperforms existing methods by substantial margins when 
input data has noise.  

To assess whether BayesPrism improved deconvolution performance in a more realistic 
setting, we next generated pseudo-bulk data by combining reads from similar samples analyzed 
using different scRNA-seq platforms. We benchmarked performance in three different settings: 
1) technical batch effects with small amounts of biological variation using PBMCs and mouse 
cortex from different healthy subjects (Supplementary Fig. 3), 2) biological variation with small 
amounts of technical noise using leave-one-out test in datasets of two human cancer types 
generated by the same sequencing platforms (Supplementary Fig. 4), and 3) mixture of technical 
and biological variation using glioblastoma (GBM) datasets generated by different cohorts and 
sequencing platforms (Fig. 1b-c; Supplementary Fig. 5). When testing the effect of technical 
noise, we chose sequencing platforms that best recapitulate features common to bulk and scRNA-
seq data modalities: full length SMART-seq2 data as a surrogate for bulk RNA-seq and 3’ end 
enriched tag clusters obtained using 10X (for PBMCs), sci-RNA-seq (for mouse cortex) or a 
microwell-based platform (for GBM) as a reference scRNA-seq dataset. BayesPrism significantly 
outperformed all existing methods in all three settings (p < 10-10, one-sided paired t-test). In the 
GBM dataset (the third setting), BayesPrism improved MSE over the next best performing 
method, CIBERSORTx, by ~4-7-fold (Supplementary Fig. 4). BayesPrism was particularly better 
than CIBERSORTx in estimating the proportion of tumor cells, in which gene expression was a 
poor match for the reference data, consistent with our expectation that the Bayesian method will 
provide the highest performance advantage in the presence of substantial gene expression 
variation between the bulk and reference data due to a mixture of biological and technical effects. 
BayesPrism was also robust to cell types that were missing from the scRNA-seq reference 
(Supplementary Fig. 6; Supplementary Note 3) and the number of cells and tumor patients 
collected by scRNA-seq (Supplementary Fig. 7).  

As a final performance benchmark, we deconvolved real bulk RNA-seq data using ground 
truth obtained by orthogonal strategies. We obtained bulk RNA-seq data from 12 whole blood 
samples which were analyzed in parallel using flow cytometry40. Using a PBMC scRNA-seq data 
as a reference, BayesPrism obtained more accurate estimates of five cell types in the bulk sample 
than other deconvolution methods (Fig. 1d-e). BayesPrism also recovered the proportion of 
neutrophils in bulk RNA-seq data collected from bladder cancer that matched the neutrophil 
infiltration graded by a pathologist using H&E sections17 (Supplementary Fig. 8). Taken together, 
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benchmarks demonstrate that BayesPrism improves deconvolution performance in realistic data 
analysis tasks compared with existing deconvolution methods. 

 
BayesPrism accurately estimates gene expression in heterogeneous cell types 

We asked whether BayesPrism accurately recovered gene expression in heterogeneous 
cell types. We focused on the recovery of gene expression in tumor samples, in which scRNA-
seq reference data is not able to accurately represent gene expression in new bulk samples due 
to substantial cross-patient heterogeneity27–32. We estimated cell types and gene expression in 
SMART-seq2 pseudo-bulk data from 28 GBMs, out of which 27 samples contain sufficient 
numbers of tumor cells, using a microwell-based scRNA-seq reference from 8 GBMs. We divided 
cell types into malignant and stromal groups. We computed a single estimator describing the 
average gene expression profile across all bulk samples for each stromal cell type (macrophages, 
oligodendrocytes and T cells) and a unique gene expression estimator for malignant cells in each 
sample. Gene expression estimates in both stromal and malignant cells were highly similar to the 
known ground truth (Fig. 1f, Supplementary Fig. 9). To determine how gene expression 
accuracy estimated by BayesPrism was affected by the proportion of tumor cells, we sampled 
random proportions of each cell type while controlling the tumor cells from an individual patient. 
BayesPrism estimated gene expression with correlations >0.95 for tumors with >50% purity (Fig. 
1g) and accurately separated all tumors by patient (supplementary Fig. 10). Similar experiments 
on macrophages also accurately recovered subtle variation in gene expression in macrophage 
subclusters between simulated patients at moderate macrophage content (Supplementary Fig. 
11). Gene expression estimates were substantially more accurate using BayesPrism than using 
either CIBERSORTx or the bulk tumor with no deconvolution (Fig. 1g; Supplementary Fig. 12). 
Taken together, BayesPrism accurately recovered gene expression in each cell type despite 
substantial differences between the bulk and scRNA-seq reference due to a mixture of batch 
effects and biological variation. 
 
BayesPrism identifies tumor gene programs through embedding learning 

Despite the heterogeneity in the gene expression of tumor cells, evolutionary pressure 
pushes tumors to optimize for different tasks that are essential for tumors to survive, which is 
done by modulating sets of co-expressed genes, known as gene programs43. The extent to which 
these gene programs are activated are often used to define molecular subtypes, using methods 
such as NMF and archetypal analysis. Although these methods provide a coarse grouping of 
genes and cancer samples, they may often reflect differential infiltration of stromal cell types 
rather than intrinsic tumor expression44.  

We developed a module in BayesPrism which recovered core tumor gene programs that 
best explain expression heterogeneity without contamination from non-malignant cell types (Fig. 
1a, green). Motivated by recent observations that malignant cells in different tumors are 
heterogeneous mixtures of functionally distinct cell types27,32,45, we modelled each patient as a 
linear combination of gene programs. BayesPrism infers the weights of each gene in each 
program and each program in each tumor using the expectation maximization (EM) algorithm, 
such that the linear combination of all gene programs most accurately approximates malignant 
cell expression in all patients (Fig. 2a). To evaluate whether BayesPrism learned subtypes that 
reflect intra-tumor heterogeneity, we identified four gene programs using the GBM28 pseudo-bulk 
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Fig. 2 | BayesPrism redefines GBM molecular subtypes after excluding expression in stromal cells. a) Graphical model 
illustrates the statistical dependencies and the generative process for the observed bulk RNA-seq data, X. Red text marks hyper-pa-
rameters; blue marks observed variables; black marks latent variables. b) Heatmap shows the gene set enrichment score for each 
tumor pathway from GBM28 inferred by BayesPrism. Marker genes in each cluster reported by Neftel et al. (2019) are used as the 
gene sets. c) Heatmap shows the inferred weights of each pathway in GBM28. d) Heatmap shows the fraction of tumor cells 
assigned to each cluster in GBM28. e) Heatmap shows the gene set enrichment score for each tumor pathway inferred by 
BayesPrism from TCGA-GBM. Three sets of subtype classification schemes and their marker genes are used for computing the 
enrichment scores.  f-g��.0�SORWV�VKRZ�WKH�VXUYLYDO�GXUDWLRQ�IRU�WXPRU�SDWKZD\V�LQ�*%0���ǻPHGLDQ��PHGLDQ�VXUYLYDO�WLPH�LQ�WKH�KLJK�
group - median survival time in the low group. P values were computed using the log-rank test. Hazard ratio is defined by high / low. 
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RNA-seq dataset. BayesPrism recovered gene programs that were highly correlated with those 
recently obtained by clustering 6,863 tumor cells from 28 patients32 (Fig. 2b). Moreover, the 
weights of each gene program learned by BayesPrism were correlated with the fraction of cells in 
each tumor that represent each of the four major subtypes (Fig. 2c-d). Thus, tumor gene 
programs learned using BayesPrism can accurately approximate major tumor cell 
subpopulations, even when the expression of subtypes are not known from direct single cell 
measurements.  

To characterize tumor heterogeneity in GBM using the most inclusive GBM cohort 
available to date, we next inferred gene programs from 169 TCGA bulk RNA-seq samples. We 
decomposed the TCGA dataset into seven gene programs, using the criterion that selected the 
number of gene programs, K, based on the degree of consensus clustering46 (Supplementary 
Fig. 13). BayesPrism revealed several programs that were similar to those in previous 
studies32,44,47, including program 2 (proneural, OPC, and NPC-like), 3 and 4 (mesenchymal), and 
6 and 7 (classical and AC-like) (Fig. 2e). Two of the programs discovered using BayesPrism were 
correlated with clinical outcomes: program 4, similar to the mesenchymal subtype (HR = 2.43, p 
= 0.001; Fig. 2f; Supplementary Fig. 14a), and program 6, which bore similarities to the classical 
subtype (HR = 0.428, p = 0.005; Fig. 2g; Supplementary Fig. 14a). Notably, prior studies found 
no correlation between subtype and clinical outcomes in GBM, except when taking a subset of 
mesenchymal tumors44. In contrast, as BayesPrism naturally generates a continuum score of 
each gene program in each sample, and hence greatly facilitates the study between activation of 
gene programs and clinical covariates of interest in an unbiased way.  
 
Cell type composition predicts clinical outcome in three tumor types 

We analyzed the proportion of cell types in 1,142 TCGA samples from three tumor types: 
GBM, HNSCC, and melanoma48±50. To maintain the highest possible accuracy for cell type 
proportions, we used the scRNA-seq reference from the same tumor type29±31. Using these 
reference datasets provided estimates of 6 cell types for GBM, 8 for HNSCC, and 8 for melanoma 
(Fig. 3a). Analysis using BayesPrism revealed that the majority of TCGA samples were >75% 
malignant cells in all three tumor types (Fig. 3a). Tumor estimates correlated with those obtained 
using CNVs and marker gene expression51,52 (Supplementary Fig. 15). Across large cohorts of 
tumors, stromal cell types had a rich correlation structure with one another that mirrored several 
previously described observations (Supplementary Fig. 16, Supplementary Note 4). 

We asked whether stromal cell types were correlated with patient survival. To avoid 
confounding our analysis with known genetic or clinical covariates, we accounted for clinical 
features known to strongly affect prognosis: GBM patients with the wild type IDH allele , and 
metastatic melanoma. In HNSCC, we studied all patients and found that results were robust when 
focusing on HPV-negative patients. The proportion of T cells was associated with better clinical 
outcomes in all three malignancies (hazard ratio [HR] = 0.416-0.604; Fig. 3b-d; Supplementary 
Fig. 17 and 18). In melanoma, where CD4+ and CD8+ cells were annotated separately in the 
reference scRNA-seq dataset, we found that CD8+ T cells had a stronger correlation with survival 
(Fig. 3d and e). Macrophages were significantly associated with survival in both GBM and 
melanoma, but not in HNSCC (Fig. 3f-h). Intriguingly, however, high macrophage infiltration had 
a poor prognosis in GBM (HR = 1.71; Fig. 3f), but a substantially better prognosis in melanoma 
(HR = 0.556; Fig. 3h), indicating substantial heterogeneity in the role of macrophages in different 
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malignancies. BayesPrism also revealed substantial information about stromal cell types that 
have not been explored in prior deconvolution studies. First, the strongest association with 
survival in GBM was with oligodendrocytes, which mark poor clinical outcomes (HR = 2.27; Fig. 
3i), suggesting that the presence of oligodendrocytes in GBM may interact with malignant cells in 
some way. Second, endothelial cells were marginally associated with better clinical outcomes in 
all three tumors (HR = 0.444 [GBM], 0.665 [HNSCC (all)], and 0.515 [melanoma]; Supplementary 
Fig. 17 and 18). Taken together, these analyses reveal new information about how heterogeneity 
in the microenvironment affects clinical outcomes in three cancer types.  
 
Spatial heterogeneity of tumor gene program and stromal cell infiltration in GBM 

We compared regional and inter-tumor heterogeneity in gene programs and stromal 
composition in GBM. To complement TCGA data, we deconvolved 122 bulk RNA-seq samples 
microdissected into five structures by IVY GAP53 (Fig. 4a and Supplementary Table 1a). 
Different regions showed logical enrichments for stromal cell composition across different tumor 
regions (Supplementary Note 5). We examined which gene programs identified using TCGA 
(above) were enriched in cellular (CT) and necrotic (PAN) regions using IVY GAP data, whose 
microenvironments are known to differ in several respects, including blood supply, hypoxia, and 
local necrosis, which affect gene expression54. PAN regions were enriched for mesenchymal 
programs (especially programs 3 and 4), consistent with observations that tumors with higher 
necrosis were more likely to be mesenchymal GBMs47 (Fig. 4b). We also discovered a novel 
association between CT and classical programs 6 and 7, and program-1 (which is not similar to 
previously discovered subtypes). To confirm the relationship between classical tumors and the 
microenvironment, we examined the correlation between stromal cells and each tumor subtype 
in TCGA samples. Consistent with the analysis of IVY GAP, Tumor-6 (classical) was correlated 
with endothelial cells (Spearman’s rank correlation = 0.49), and Tumor-4 (mesenchymal) was not 
(Spearman’s Rho = 0.04) (Fig. 4c). Gene ontology analysis for gene upregulated in these 
programs showed significant enrichment for biological process that echo prior knowledge55,56, with 
program-4 enriched for NF-κB pathway and immune processes, and program-6 enriched for cell 
division and DNA replication (p < 10-10 , Supplementary Table 2). Our results implicate the 
balance between nutrient availability and hypoxia in establishing gene expression patterns that 
are characteristic of these subtypes.  

Next we examined other stromal cell types which correlated with specific regulatory 
programs. BayesPrism recovered a correlation between Tumor-4 and macrophages as the 
strongest association, consistent with previous reports44 (Fig. 4c). Weaker associations were 
discovered between pericytes and both mesenchymal-like programs (Tumor-3 and 4), which may 
reflect the differentiation of mesenchymal tumor propagating cells into pericytes57. Finally, two 
mesenchymal subtypes (Tumor-5 and Tumor-3) were associated with higher T cell infiltration 
(Fig. 4c). Several of these associations were confirmed by an analysis of IVY GAP data, including 
an enrichment of T cells in PAN (p=0.03) (Fig. 4d). These results are consistent with a model in 
which GBM tumor cells adopt a classical subtype which divides rapidly in a nutrient and oxygen-
rich environment found near microvasculature, and a stress-induced mesenchymal subtype in 
hypoxia and resource-depleted necrotic regions, where T cells and macrophages are recruited 
(Fig. 4e)32. 
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Our model provides mechanistic insight into disease progression. We suggest that the 
classical-like program-6 may reflect an earlier stage of cancer growth where blood supply is 
ample, and as the disease progresses the tumor outgrows the local nutrient supply resulting in a 
hypoxia and necrosis. This proposal explains why classical tumors recur as mesenchymal in 
longitudinal studies more frequently than the other direction44,57. Likewise, our survival analysis, 
described above, found that program-6 (classical) was associated with a better prognosis 
whereas program-4 (mesenchymal) was worse (Fig. 2f-g). Additionally, previous studies have 
had difficulty nailing down an association between mesenchymal composition and survival. Our 
results may suggest this difficulty reflects a proclivity for certain mesenchymal tumors to recruit T 
cells, which are generally associated with better outcomes. We also obtained broadly consistent 
results using several previously reported subtype definitions32,44,47 (Supplementary Fig. 19). 
Collectively, our analysis relates known GBM subtypes to interpretable gene programs and their 
associated microenvironment, providing a mechanistic understanding of clinical prognosis.  

 
Co-activation in gene programs across melanoma and HNSCC 

We extended our analysis of GBM by learning gene programs in HNSCC and melanoma 
(Fig. 5a-b). Consensus clustering led us to divide each tumor type into five gene programs 
(Supplementary Fig. 20 and 21). As with GBM, several of these gene programs were associated 
with clinical outcomes (Fig. 5c-g). Both HNSCC and melanoma had an anti-angiogenic program 
(program 5 [HNSCC] and program 2 [melanoma]), which strongly and inversely correlated with 
endothelial cells, as well as a gene program that correlated with cancer associated fibroblasts 
(program 2 [HNSCC] and program 5 [melanoma]). We also noted several differences in tumor 
composition between HNSCC and melanoma. HNSCC had a single gene program which was 
highly immunogenic (program 4; Fig. 5a) and associated with extended survival (HR = 0.418; Fig. 
5c). In melanoma, multiple gene programs correlated more weakly with immune infiltration 
(programs 3, 4, and 5). Interestingly, program 1 was strongly and inversely correlated with 
infiltration of CD8+ T cells, B cells, and to a lesser extent with macrophages, but was positively 
correlated with NK cells (Fig. 5b). We found this program was strongly associated with poor 
survival (Fig. 5d). Taken together these results indicate a strong correspondence between 
malignant cell expression and the tumor microenvironment.  
 
BayesPrism identifies core genes involved in tumor-stroma interactions 

For many applications, such as the identification of drug targets, prioritizing specific driver 
genes for tumor-stroma interactions is often needed. To identify such candidate genes 
interactions, we examined correlations between stromal cell type proportion and gene expression 
in malignant cells. BayesPrism reduced the correlations between stromal cell type and genes that 
were simply highly expressed in the same cell type (Supplementary Fig. 22; Supplementary 
Note 6), reducing the potential for false positives. To begin, we asked whether we could recover 
known positive regulators of macrophage infiltration in GBM58,59.  Indeed, genes previously 
reported to have interactions all had statistically significant positive correlations with macrophage 
inflation, including POSTN, ITGB1 and LOX (Fig. 6a). In addition, we identified numerous other 
correlations with a stronger magnitude, including CASP5, GNG10, TNFAIP3, PI3, RIPK3, and 
PLB1.  

remix, or adapt this material for any purpose without crediting the original authors. 
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.01.07.897900doi: bioRxiv preprint 

https://paperpile.com/c/p0bcKj/quYl+UV2j
https://paperpile.com/c/p0bcKj/quYl+UV2j
https://paperpile.com/c/p0bcKj/dXHz+quYl+xttj
https://paperpile.com/c/p0bcKj/gC8O+KEqh
https://doi.org/10.1101/2020.01.07.897900


mac
rop

ha
ge

CD8+
 T ce

ll
B ce

ll
NK

en
do

the
lia

l

fib
rob

las
t

TXPRUí�

TXPRUí�

TXPRUí�

TXPRUí�

TXPRUí�

���� ���� ���� ���� ���� ��� ����

í����í����í���� ��� ���� í���� í����

���� í���� í��� í���� ���� í���� í����

���� ���� ���� ���� ���� í���� í���

í��� ���� ���� 0.06 í��� ���� í����

fib
rob

las
t

B ce
ll

mas
t

en
do

the
lia

l

mac
rop

ha
ge

T ce
ll

de
nd

riti
c

TXPRUí�

TXPRUí�

TXPRUí�

TXPRUí�

TXPRUí�

í���� ���� ���� ���� ���� ���� ����

í���� í���� ���� í���� í���� í���� í����

���� ���� í���� ��� í���� í���� í����

í���� í���� í���� í���� ���� 0 ����

���� í���� í���� ���� ���� í���� í����

&'
��
�7�
FH
OO

Head & neck Melanoma
a b

í��� í��� 0 ��� 0.6

Head & neck: TXPRUï�
уPHGLDQ ���
DGMXVWHG�S ���������
+5 �����

+LJK��1 ���

LoZ��1 ����

� �� �� �� �� ��
folloZ�XS�WLPH�����Gays

���

���

���

���

���

���

Head & neck: TXPRUï�
уPHGLDQ ï�����
DGMXVWHG�S ��������
+5 ����

+LJK��1 ����

LoZ��1 ����

� �� �� �� �� ��
folloZ�XS�WLPH�����Gays

���

���

���

���

���

���

Melanoma: TXPRUï�
уPHGLDQ ï����
DGMXVWHG�S ���������
+5 ����

+LJK��1 ���

LoZ��1 ����

� �� �� �� �� ���
folloZ�XS�WLPH�����Gays

���

���

���

���

���

���

Melanoma: TXPRUï�
уPHGLDQ ï����
DGMXVWHG�S �������
+5 ����

+LJK��1 ���

LoZ��1 ����

���

���

���

���

���

���

� �� �� �� �� ���
folloZ�XS�WLPH�����Gays

Melanoma: TXPRUï�
уPHGLDQ ������
DGMXVWHG�S ��������
+5 �����

+LJK��1 ����

LoZ��1 �������

���

���

���

���

���

� �� �� �� �� ���
folloZ�XS�WLPH�����Gays

Spearman’s correlation

better prognosis

worse prognosis

survival-associated pathways

c d

e f g

Fig. 5 | Tumor pathways correlate with stromal cell fractions. a-b) Heatmaps show Spearman’s rank correlation between 
normalized weights of gene programs and the fraction of stromal cells in HNSCC and melanoma. c-g) KM plots show the 
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survival time in the low group. P values were computed using the log-rank test. Hazard ratio is defined by high / low. 
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To validate correlations discovered using BayesPrism with independent data, we asked 
whether tumor regions expressing high levels of candidate genes tended to have higher 
macrophage infiltration. We analyzed 148 bulk RNA-seq samples from 34 GBMs that were 
collected adjacent to sections analyzed by in situ hybridization (ISH) for tumor propagating cell 
markers53. We asked whether the proportion of macrophages estimated from RNA-seq using 
BayesPrism was higher in ISH positive regions of the tumor compared to ISH negative regions. 
Despite low power in the IVY GAP dataset, we observed significantly higher macrophage content 
in ISH positive sections for three of the five genes analyzed, PI3, TNFAIP3 and POSTN (Fig. 6b-
d, Supplementary Table 1b). Thus BayesPrism identified correlations using TCGA that could be 
reproduced by the intratumoral spatial heterogeneity.  
 Having verified that BayesPrism can identify correlations observed between tumor 
expression and the proportion of stromal cells that could be validated using independent sources 
of data, we next analyzed candidate pan-cancer tumor-stroma interactions across three tumor 
types. Surprisingly, genes that had a statistically significant positive correlation in one tumor were 
strongly enriched for positive correlations in one or both of the other two tumor types, and the 
same was observed for genes with negative correlations (p < 0.001, super exact test60; Fig. 6e). 
We examined the genes that were most enriched in multiple tumor types (Fig. 6f). Notably, UBD 
and IDO1 were positively correlated with both macrophages and T cells. IDO1 encodes an 
enzyme that catalyzes the conversion of tryptophan into kynurenine, a small metabolite which 
activates T regulatory cells and myeloid-derived suppressor cells61. Endothelial cells were 
correlated with several genes known to be involved in angiogenesis, including ANGPT4, CP, and 
VASH262,63. The top gene correlating with fibroblasts was LOXL2, which is a factor secreted by 
tumor cells that promotes proliferation of fibroblasts64. Several other extracellular proteins, 
including JAM2, PRND, and FIBIN were correlated with fibroblasts which have not, to our 
knowledge, been directly implicated in fibroblast deposition in tumors. Taken together with 
previous literature, these results show that BayesPrism recovers genes known to interact with 
stromal cells in cancer.  

We found that CD4+ and CD8+ T cells were correlated with different sets of genes. In 
melanoma, there was a statistically significant intersection consisting of 212 genes which had a 
negative correlation with CD8+ cells and a positive correlation with CD4+ cells (p < 0.001, super 
exact test; Fig. 6e). Thirty-eight of these 212 (18%) were enriched in keratinization pathways (17-
fold enrichment; p < 7.5×10-30; Fisher’s exact test). Tissue stiffness affects a variety of T cell 
responses65,66, and thus one interpretation of our results is that keratinization by malignant cells 
affects tumor stiffness and has different effects on CD4+ and CD8+ T cells. Consistent with 
distinct mechanisms affecting the deposition of CD4+ and CD8+ T cells, we also noted two 
separate submodules of immune cells in melanoma, one consisting of CD4+ T cells and NK cells, 
and the other consisting of CD8+ T cells, macrophages, and B cells (Supplementary Fig. 16c). 
Taken together these results support similar genes that interact with stromal cell types between 
different tumors, and reveal differential modes of interaction between melanomas and different T 
cell subsets.  
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Discussion 
A large body of literature now provides numerous examples of stromal influence on 

malignant cell function25,26, confirming more than a century of speculation about the critical role of 
the stroma1. However, our knowledge remains largely anecdotal and based mostly on work in 
animal models rather than human subjects. scRNA-seq has recently made it possible to measure 
both cell types present in the tumor and their gene expression states in a systematic manner26. 
Although scRNA-seq provides the right data modality to chart the various ways in which tumor-
stroma interactions occur, current studies are underpowered to address these questions in a 
statistically rigorous manner. In parallel, thousands of bulk RNA-seq datasets are now available 
that provide weak information about the entire cellular milieu in a variety of malignancies48–50. 
Here we leveraged these advancements in genomic resources by developing a rigorous statistical 
modeling strategy and using it to integrate scRNA-seq data from 37 thousand cells over 85 
patients and 1,412 bulk RNA-seq samples, providing a new lens into both the cell type and 
expression in three human cancers.  

Our analysis revealed numerous examples in which systematic differences in malignant 
cell gene programs correlated with the presence of specific stromal cell types. Although different 
tumor types have unique somatic mutations and transcription states, we identified substantial 
overlap in the genes that were correlated with stromal cell types, suggesting that a few key 
pathways are used to control malignant and stromal cell communication. Our findings suggest 
that therapies targeting a few key genes could have broad impact in manipulating tumor-
microenvironment interactions in multiple tumor types.  

Many stromal cell types and tumor gene programs correlate with clinical outcomes, 
highlighting how tumor-stroma interactions affect tumor phenotype. T cell infiltration was 
associated with a better prognosis in all three of the tumors we examined. This was consistent 
with prior reports in melanoma and HNSCC19,67, but to our knowledge this is a novel finding in 
GBM that was likely missed by previous studies because T cells are so rare in GBM.  

Our modeling approach fills several critical needs in the genomics toolbox. BayesPrism 
more accurately deconvolves bulk RNA-seq into the proportion of cell types than previous 
approaches thanks in part to the Bayesian statistical model which allows the scRNA-seq 
reference to have substantial expression differences from the bulk data. Most importantly 
BayesPrism is not just a deconvolution algorithm - it jointly models cell types and their average 
expression, which was crucial for analyses reported herein. Thus BayesPrism provides a new 
type of lens for integrating new scRNA-seq data with the statistically powered cohorts of bulk 
RNA-seq data, allowing insights into cell-cell interactions.  
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Methods 
 
Overview of BayesPrism 
A complete mathematical description and justification of BayesPrism is included in 
Supplementary Note 1. Here we provide a brief summary of BayesPrism and its use in this 
manuscript. The R package of BayesPrism can be downloaded at https://github.com/Danko-
Lab/TED.git. 

BayesPrism is comprised of two functional modules (Fig. 1a): (1) a module that infers the 
cell type fractions, denoted by θ, and gene expression of each cell type in each bulk RNA-seq 
sample, denoted by Z, and (2) a module designed to identify commonly occurring subtype clusters 
after removing gene expression in stromal cells that are influtrating the tumor. Both modules take 
as input a reference matrix, φ, that describes gene expression in each cell type that is constructed 
from scRNA-seq data, and a matrix, X, representing gene expression in all available bulk RNA-
seq samples. The second module additionally depends on the output of the deconvolution 
module.  

In the deconvolution module, BayesPrism first obtains an initial estimate of the fraction of 
each cell type. BayesPrism uses the Gibbs sampling, a method for Markov chain Monte Carlo 
(MCMC) estimation, to approximate the joint posterior distribution of cell type proportion and gene 
expression, and then takes the mean over Gibbs samples to estimate the posterior distribution of 
Z. Next, BayesPrism estimates gene expression in all cell types. BayesPrism assumes the gene 
expression profiles for each cell type follow the multinomial distribution. It infers multinomial 
parameters of the tumor expression profiles ψtum in each bulk RNA-seq sample using maximum 
likelihood estimation. As BayesPrism assumes that the stromal cells share the same expression 
profiles across patients, allowing it to pool the statistical strength across bulk RNA-seq samples. 
BayesPrism infers a maximum a posterior estimator for the parameters of the multinomial 
distribution that control the expression profiles of stromal cells across all bulk RNA-seq samples 
ψstr. The cell type fractions are then updated by re-sampling θ conditional on ψtum , ψstr  and X.  

The second module of BayesPrism was designed to identify gene expression patterns that 
arise commonly among bulk RNA-seq samples after removing stromal cells influtrating the tumor. 
BayesPrism learns a series of latent embeddings, called tumor bases (denoted by η), chosen 
such that their linear combination best approximates gene expression levels in malignant cells. 
The learning module takes the input K vectors of tumor bases η0 as an initialization, and uses the 
expectation-maximization (EM) algorithm to optimize the tumor bases by maximizing the log of 
the posterior of η, conditional on X and the cell type proportions and expression of stromal cells, 
i.e.  θstr and ψstr inferred by the deconvolution module. We used the non-negative matrix 
factorization approach followed by consensus clustering on ψtum to approximate η0 and selected 
the number of clusters, K, that yields the most consensus structure46. BayesPrism then uses EM 
to determine the gene programs whose linear combination best estimates gene expression in the 
observed bulk RNA-seq malignant cells. In the E step BayesPrism uses the Gibbs sampling to 
approximate the posterior distribution of the cell type expression Z and the weights ω associated 
with each tumor basis. In the M step BayesPrism uses the conjugate gradient method to optimize 
the expectation of the log posterior of η with respect to the distribution of Z and ω that were 
approximated in the E step. At convergence, BayesPrism runs a final Gibbs sampling to derive 
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the distribution of ω under the maximum a posterior estimates of η, and uses its mean to get a 
point estimator.  
 
 
Deconvolution of bulk RNA-seq using BayesPrism 
Generating the reference expression profiles from scRNA-seq data.  We used reference 
expression profiles generated from scRNA-seq data to deconvolve the bulk RNA-seq data of the 
corresponding tumor type. We collapsed, i.e. summed up, the raw read counts whenever count 
data is available (for 30,31). For data where only TPM normalized data is available (scHNSCC), we 
collapsed TPM normalized reads. To generate the reference profiles of stromal cells, we 
collapsed read count in each cell type across all patients. To account for the heterogeneities in 
malignant cells, to generate tumor expression references, we collapsed expression of each 
subcluster of tumor cells generated by PhenoGraph68 in each individual patient, whenever tumor 
cells are clustered (refGBM8, 60 subclusters in total for 8 patients).  For datasets where tumor 
cells were not clustered by the original paper (scHNSCC and scMel), we collapsed expression of 
tumor cells in each patient. We found the expression of many of the non-coding genes in TCGA 
were close to zero across all patients, and hence we subset the inference on protein-coding genes 
when deconvolving TCGA data to speed up downstream analysis. Deconvolution over all genes 
generated almost identical results (data not shown). In addition genes on the Y chromosome are 
also excluded in the reference to avoid sex-specific transcriptions. The collapsed expression 
profiles were normalized by the total count across each cell. To avoid exact zeros in the reference 
profile, we added a customized pseudo count to each cell type (provided as the norm.to.one 
function by the BayesPrism package), such that genes with zero expression have the same small 
value (default=10-8) across all cell types after normalization.  
 
Choice of hyper-parameters and retrieving the output from BayesPrism.  We set the default 
parameters of BayesPrism to: the standard deviation of the log-normal distribution σ=2, and 
sparse dirichlet prior α=10-8 and used these defaults throughout the present study. We used the 
default setting for Gibbs sampling as follows: length of chain = 150, burn in = first 50 and thinning 
= 2 (i.e., we ran an MCMC chain of 150 samples, discarded the first 50, and used every other 
sample to estimate parameters of interest). The maximum number of iterations of conjugate 
gradient method was set to 105. All cell type fractions used were the updated θ.  
 
Statistical tests for cell type fractions. When comparison is done for two groups, we used the two-
sided Wilcoxon test. For comparisons between multiple groups, we used one-way ANOVA using 
the built-in function “aov” in R. For ANOVA F test statistics that passed alpha level (p value < 
0.05), we used the function TukeyHSD to perform multiple testing-corrected pairwise tests based 
on the studentized range statistics.  
 
Embedding learning analysis  
To initialize the tumor gene programs (bases), we used the NMF R package46 to learn a linear 
combination that best approximates the normalized tumor expression inferred by the 
deconvolution module of BayesPrism (res$ Zkg.tum.norm). We optimized the number of tumor 
bases using from 2 to 12, and chose the K that yields the best cophenetic score before a 
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significant drop begins. We then fix the K and randomly initialize the algorithm 200 times and 
choose the bases that yielded the minimal residuals. The tumor bases optimized by NMF are then 
used as inputs for the embedding learning module of BayesPrism. Although BayesPrism does 
not necessarily require the use of input bases learned using external algorithms such as NMF, 
and can use multiple replicates of an averaged tumor expression as inputs when no user-defined 
input is used, we do find the use of NMF learned bases significantly speeds up the convergence 
of EM, and also helps in selecting the number of gene programs K when no prior information is 
provided.  
 
Performance Benchmarks 
Benchmarks against other deconvolution tools. We benchmarked BayesPrism against 

CIBEROSRTx, Bseq-SC, Bisque, SCDC, and MuSiC. Marker genes are required for 

CIBERSORT-based methods including Bseq−SC and CIBERSORTx (all modes), while they are 

optional for all other methods including BayesPrism. For CIBERSORTx we used the online portal 

of CIBERSORTx (https://cibersortx.stanford.edu) to perform all the benchmarking. All parameters 
were used at their default values, except for the “Min. Expression”, which was set to 0 for single 
cell references to generate a signature matrix, following the author's recommendations for droplet-
based platforms. Quantile normalization is disabled by default following the author's 
recommendations for RNA-seq. For all other methods, we used their R packages. In all non-tumor 
sample deconvolutions, we used a single batch of scRNA-seq dataset as the reference for Bseq-
SC, SCDC, SCDC, and split the scRNA-seq dataset equally into two batches for each cell type 
for Bisque and MuSiC, as multiple batches of single cell references are required by these 
methods. When benchmarking Bisque when used the “ReferenceBasedDecomposition” and 
disabled “use.overlap", as we do not have samples with matched scRNA-seq and bulk RNA-seq. 
For tumor deconvolution (simulated GBM28), we leveraged the information of individual patients 
from scRNA-seq reference (GBM8) to label biological replicates whenever possible. This includes 
Bseq-SC, Bisque and MuSiC. Tumor cells in each patient are used as a single cell type cluster. 
When deconvolving genes without markers, ribosomal and mitochondrial genes, and genes on 
chromosome X and Y are removed in all benchmarks. To speed up computation, we removed 
lowly expressed genes, by subsetting genes expressed in at least 5 cells. In addition, outlier 
genes, defined as genes that show >1% of total reads (or normalized reads if only TPM data is 
available) in any of the bulk samples are removed, unless otherwise specified below.  In all 
pseudo-bulk analysis, we defined the ground truth as fractions of total reads over all annotated 
genes in each cell type, which is modeled by BayesPrisim. As the cell type level correlation is not 
affected by the difference in total expression, we benchmarked this metric against other 
deconvolution tools. 

To ensure a fair comparison between all methods, we use the same set of markers 
generated by CIBERSORTx when applicable (Fig. 1b-e; Supplementary Fig. 2,3) and labeled 
as “method name, w/ marker”. The BayesPrism package also provides options for the use of 
marker genes to combat cases where significant batch effects exist, such as when using 
ribosomal-depleted RNA or statistical assumptions are possibly violated, such as when using 
references collected from unmatched samples. The implementation is based on the findMarker 
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function implemented by the scran package. Briefly, single cell reference is normalized by median 
of library size followed by log2(X+0.1) - log(0.1) transformation. There are two types of marker 
defined by the findMarker function, the “all marker” (genes that are significantly differentially 
transcribed between one cell type and all other cell types) and “any marker” (those that are 
significantly differentially transcribed between one cell type and any other cell type). Significance 
is calculated based on t test, and only genes upregulated are used to define markers. 
 
Linear multiplicative noise model (Supplementary Fig. 2). We used the scRNA-seq of PBMC 
collected from the first donor using 10x Chromium (v2) A69, as the reference. The expression 
profile of each cell type was first collapsed to a vector of length equal to the number of genes by 
summing up reads for all cells within each cell type. The collapsed expression profile was then 
normalized to sum to one using the “norm.to.one” function in the BayesPrism package, such that 
the added pseudo-count equal to 10-8 after normalization. 
 We simulated 200 pseudo-bulk RNA-seq samples from the same dataset used to build 
the reference. The cell type fractions were drawn from a uniform dirichlet distribution (α=1), and 
the cell numbers of each cell type were sampled from a multinomial distribution parameterized by 
the cell type fractions with the total cell number equal to the cell number in the original batch 
(N=3222). Cells were then sampled with replacement according to the simulated cell number of 
each cell type, and then collapsed by summing up the reads over the sampled single cells to 
make pseudo-bulks. In the simulation, no outliers from the bulk were removed. 

To generate noise, we simulated a zero-centered log normally distributed fold change at 
one particular σ independently and identically distributed for each gene, which generated a vector 
of length equal to the number of genes. To mimic the real biological batch effects, we penalized 
extreme fold changes that result in unrealistic expression values, which is particularly frequent at 
high σ levels. This is done by sampling the fold change vector 10000 times and choosing the one 
that induced the minimal change to the total expression as measured by elemental-wise 
multiplying the reference expression with the fold change vector. The chosen fold change vector 
was then elemental-wise multiplied with the pseudo-bulks which were then rounded up to the 
nearest integers.  
  
Cross-platform deconvolution using pseudo-bulk RNA-seq from non-tumor samples 
(Supplementary Fig. 3). For PBMC data, we used the 10x Chromium (v2) dataset collected from 
the second donor as the reference to deconvolve pseudo-bulks generated by the Smart-seq2 
from the first donor in the original paper 69. For mouse cortex data we used the sci-RNA-seq 
dataset collected from the second mouse as the reference to deconvolve pseudo-bulks generated 
by the Smart-seq2 from the first mouse in the original paper69. The choice of these dataset is to 
represent the strongest batch effect based on the correlation shown in the Supplementary Figure 
4 of the paper by Ding et al.69.   
 
Single-platform leave-one-out deconvolution using pseudo-bulk RNA-seq from HNSCC and 
melanoma (Supplementary Fig. 4). Since only one scRNA-seq dataset was available for both 
cancers, we used a leave-one-out test, in which we generated a “pseudo-bulk” RNA-seq dataset 
from one patient, and asked how accurately BayesPrism deconvolved expression using the 
remaining datasets as a reference. All parameters of BayesPrism and CIBERSORTx were 
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default. Batch effect correction is disabled for leave-one-out tests. Two cell types, “-Fibroblast” 
and “myocyte”, in the HNSCC scRNA-seq dataset are of very low cell number <20 cells, and only 
show up in a small subset of patients (N=4), which may lead to unreliable estimates of correlation 
coefficients. Therefore, we excluded them during the leave-one-out test. Benchmarking the 
expression inference cannot be done, as CIBERSORTx requires the number of mixtures to be 
greater than the number of reference components.   

As observed with GBM, BayesPrism consistently estimated cellular proportions that were 
more accurate to the true values than CIBERSORTx (Supplementary Fig. 4a-d). As the leave-
one-out test data were generated from the same sequencing platforms and processed by a 
uniform pipeline, they represent minimal technical batch effects, and hence the superiority in 
performance of BayesPrism mainly reflects its ability to account for the uncertainty in the 
reference caused by biological variations in the tumor environment.  
 
Cross-platform deconvolution using pseudo-bulk RNA-seq from GBM samples (Fig.1b-c; 
Supplementary Fig. 5, 9, 10, 11). We analyzed two glioblastoma multiforme (GBM) datasets 
collected from different patients using different scRNA-seq platforms to represent a mixture of 
technical and biological variations. One scRNA-seq reference analyzed 23,793 cells from 8 
patients using a microwell-based platform31 (GBM8), which sequenced tag clusters near the 3’ 
end of polyadenylated genes, similar to other high-throughput scRNA-seq methods (e.g., Drop-
seq, 10x genomics, etc). A second scRNA-seq dataset was available which sequenced 7,930 
cells from 28 patients using the SMART-Seq2 platform32 (GBM28), which sequenced full length 
mRNA transcripts to a high read depth in each cell, similar to most bulk RNA-seq datasets, and 
hence also mimics differences between single cell and bulk. 

We generated “pseudo-bulk” RNA-seq datasets from GBM28 by 1) adding up scRNA-seq 
counts for each patients (N=28), and 2) 1,350 pseudo bulk RNA-seq samples by sampling random 
proportions of each cell type using GBM28 while controlling the tumor cells from an individual 
patient for each pseudo-bulk to test BayesPrism across a wider range of different tumor 
compositions.  Specifically for the second pseudo-bulk simulation, for each patient among the 27 
out of 28 GBM patients we simulated 50 pseudo-bulk RNA-seq samples (the tumor cells in one 
sample BT1187 were  excluded due to only having 8 tumor cells).  The cell type fractions were 
drawn from a uniform dirichlet distribution (α=1). The tumor cells in each simulated sample were 
drawn from one particular patient with replacement, while the stromal cells were drawn from 
pooled patients with replacement. As raw data were TPM normalized, we rounded up the counts 
after summing them up across each cell.   

When benchmarking CBIERSORTx, each column of the single cell reference matrix 
denotes a cell phenotype, which corresponds to either a sub-cluster of tumor cells in a particular 
patient or a non-malignant cell type. Same as in the refGBM8, there are 60 tumor subtypes and 
5 non-malignant cell types. Same as BayesPrism, the total tumor fraction was computed by 
summing up the fractions of 60 tumor phenotypes.  

As S mode and B mode batch correction worsened the performance, we diabled batch 
correction in imputing expression. For gene expression imputation in Fig. 1g and Supplementary 
Fig. 12, we added up the imputed expression values across 60 tumor sub-clusters to get the 
tumor expression in each sample. Only 53 genes are imputable across all tumor sub-cluster 
references by the high resolution mode (by excluding the “1” and ''NA'' values in the 
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CIBERSORTxHiRes_job1_PJ0XX-tumor-X_Window140.txt). The spearman’s rank correlation 
coefficients in Supplementary Fig. 12 were computed on these 53 genes for four different 
approaches.  
 To show BayesPrism also infers the expression of stromal cells in addition to tumors, we 
generated an additional set of references and pseudo-bulks using GBM8 and GBM28, by taking 
the heterogeneities in the macrophages into the simulation (Supplementary Fig. 11). We first 
clustered the macrophages found in GBM28 and GBM8. We processed the scRNA-seq of 
macrophages in each dataset as follows. As GBM28 data is TPM normalized, we skipped the 
normalization step, and log2(X+0.1) transformed the data followed by removal of ribosomal 
mitochondrial genes, and genes on chromosome Y. We then filtered out genes expressed in less 
than 10 cells. We performed dimension reduction using the rsvd package, using parameters k= 
20, p= 15, q= 3. Phenograph was then used to cluster the macrophages over the 20 dimensions 
imputed by SVD using the default parameter at K=30. Phenograph yielded 10 clusters for 
macrophages in GBM28. Similarly for macrophages in GBM8, we performed transformation, gene 
filtering, dimension reduction and clustering using the same methods and parameters, while 
adding the medium library size normalization step for the raw count UMI data before all these 
steps. Phenograph yielded 11 clusters for macrophages in GBM8. For each patient (N=27) and 
each macrophage cluster (N=10) in GBM28, we simulated 5 pseudo-bulk, also constituting 1,350 
samples in total. The parameters for simulation are the same as mentioned above. When 
deconvolving pseudo-bulks, we treated each 60 tumor sub-clusters and 11 macrophage clusters 
as individual cell types, and summed the inferred expression over all macrophage clusters to 
represent the total macrophage expression profile in each bulk. The cluster purity was calculated 
using the “purity” function from the NMF package.  
 
Real bulk RNA-seq human whole blood with ground truth measured by flow-cytometry (Fig.1d-e). 
To test the performance of BayesPrism on real bulk RNA-seq, we deconvolved 12 human whole 
blood samples for which the cell type composition was known using flow-cytometry. We used the 
same PBMC RNA-seq dataset from the CIBERSROTx paper as the reference, which was 
obtained from a patient with non-small cell lung cancer (NSCLC) using 10x Genomics Chromium 
v2 (3′ assay)40. The bulk PBMC dataset and scRNA-seq reference were mismatched, as the bulk 
RNA-seq reference was performed on whole blood and the scRNA-seq reference with PBMCs. 
Neutrophils present in high abundance in the whole blood sample were not represented in the 
reference because neutrophils are polynucleated and do not isolate with PBMCs. Missing 
neutrophils may inflate the fraction of other myeloid70 cell types that have similar expression. Thus, 
we inferred the proportion over a combined myeloid population and used the ground truth as the 
combined fraction of monocytes and neutrophils in all analyses. The bulk RNA-seq of human 
whole blood and the scRNA-seq reference of PBMCs from non-small cell lung cancer patients 
were downloaded from the CIBERSORTx website at: 
https://cibersortx.stanford.edu/download.php. As only the S mode of CIBERSORTx produced 
accurate results, as shown by the authors, we did not benchmark against the uncorrected and B 
mode.  
 
Validation of inferred neutrophil fractions over TCGA bladder cancer dataset based on H&E 
grouping. (Supplementary Fig. 8). We benchmarked BayesPrism using haematoxylin and eosin 
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(H&E) histopathology estimates published with TIMER. In the TIMER dataset, H&E slides from 
TCGA bladder cancer samples were scored by a pathologist for the level of infiltration of 
neutrophils. The pathologist divided samples into High, Medium, and Low neutrophil groups. The 
pathological estimation of neutrophil levels for TCGA bladder cancer samples was downloaded 
from the http://cistrome.org/TIMER/download.html. Reference scRNA-seq data was limited for 
bladder cancer: Only one individual was available71, and neutrophils were not annotated as a 
separate cell type from other myeloid cells. Nevertheless, deconvolution with BayesPrism 
revealed a myeloid cell fraction that was correlated with the pathologist designation (low, medium, 
and high; see the revised Supplementary Fig. 8a). To separate neutrophils from other myeloid 
cell types, we also tried a separate analysis by adding bulk RNA-seq data in purified blood cell 
populations72 to the bladder cancer scRNA-seq reference. BayesPrism estimated neutrophil cell 
fractions that were correlated with the pathologist designation (Supplementary Fig. 8b). 
Moreover, the two samples selected for display in the TIMER paper were correctly estimated by 
BayesPrism as having either very low or very high infiltration of myeloid or neutrophil cells in both 
analyses (Supplementary Fig. 8c). Statistical significance was computed using a two-sided 
wilcoxon test. This analysis, especially when combined with both new and existing analyses, 
supports the use of BayesPrism in deconvolving cell type fractions in bulk cancer data. 
 
Gene set enrichment analysis 
The gene set enrichment scores shown in Fig. 2b and e were computed using the GSVA R 
package73, using the marker genes of each subtype as the gene set. The GO analysis for inferred 
TCGA tumor gene programs was done using the topGO R package with the gene set of “biological 
process”.  Genes highly upregulated (one-sided t test, p<0.01) in each gene program were used 
as input.    
 
Choosing cell type marker genes for correlation analysis 
In Supplementary Fig. 22, we computed the Pearson’s correlation coefficient between the 
variance-stabilized transformed expression over a set of marker genes with the cell type fractions. 
Marker genes for CD4+ and CD8+ T cell and monocytes were derived from the LM6 matrix from 
the CIBERSORT website (https://cibersort.stanford.edu/download.php), which were based on 
based on GSE6042472, by assigning each gene to the cell type with the maximum expression 
value. Markers for oligodendrocytes, endothelial cells, pericytes, and microglias in normal brains 
were derived from the gene list generated by Lake et al. using normal brain scRNA-seq74. Only 
marker genes that are uniquely assigned to each cell type were used for the plot. 
 
Analysis of anatomically resolved transcriptomics data from IVY GAP 
Anonymized BAM files for each sample were downloaded from glioblastoma.alleninstitute.org, 
and raw counts for each gene were obtained using featureCounts75 using the GENCODE 
annotation v24lift37.   
 To test the statistical significance in the mean of cell type fractions across multiple 
anatomic structures while taking account of the multiple biological replicates of each patient,  we 
fit a linear mixed model using the lme function from the R package nlme76 with random intersect. 
We modeled anatomic structures as the fixed effects and patient IDs as random effects. The 
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ground level was set to the cellular tumor (CT). We maximized the log-likelihood function by 
setting the method as “ML”. We used “optim” as the optimizer.  
 To  quantify the level of differential transcription between PAN and CT. We first estimated 
the tumor expression profile by BayesPrism using GBM831 as the reference.  The estimated 
expression profile was rounded up to the closest integer for differential expression analysis by 
DESeq2. To account for the patient-specific means in the transcription level, we incorporated 
patient IDs as an independent variable in the model, which resulted in a design formula of  design= 
~patient ID + anatomic structure. We used the adjusted Wald test statistics to define genes that 
were differentially transcribed (p<0.01) or unchanged (p>0.5).  
 
Survival analysis 
To avoid known clinical or genetic factors that have a strong influence on patient survival from 
confounding our survival analysis, we focused on the largest homogenous population of patients 
available for each cancer type. These included IDH-1 wildtype tumors for GBM and metastatic 
melanoma. We also attempted to control for HPV status in HNSCC. Although only 72 of 500 
samples were annotated for HPV, we nevertheless reproduced trends (FDR adjusted p < 0.1) 
observed for T cells and endothelial cells in a small cohort of 56 HPV negative patients 
(Supplementary Fig. 18). We divided patients into high and low groups based on the feature of 
interest, e.g. weights of tumor gene programs or stromal cell fractions, and then computed the 
hazard ratio by fitting a Cox proportional hazards regression model for survival time of patients in 
these two groups. We used two approaches to define a cutoff. First we reported the hazard ratio 
at the threshold between 0.1 quantile and 0.9 quantile that gave the lowest two-sided p-value 
between survival times using a Chi-squared test. This ensured that we reported the largest 
possible difference in survival time for each individual feature. As this scanning threshold method 
may suffer from inflated false positives due to multiple testing, we also used a second approach 
which was dividing patients into the upper and lower 20% quantiles, which ensures that all genes 
were fit for the regression model using a roughly balanced number of patients. When applying the 
decision rule in testing the null hypothesis, we took the results from both approaches into 
consideration. 
 
Dataset used 
 

Dataset name Normalization  # of cells # of patient 
(scRNA-seq) / # of 
samples (bulk) 

Clustered tumor 
cells 

Accession ID 

Tumor scRNA-seq 

refGBM8 Raw (UMI) 23793 8 YES GSE103224 

GBM28 TPM 7930 28 NO GSE131928 

scMel  Raw 6879 31 NO GSE115978 

scHNSCC TPM 5902 18 NO GSE103322 
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scBladder TPM(UMI) 2075 1 NO GSM4307111 

Normal scRNA-seq 

PBMC 1 - 
10x 
Chromium 
(v2) A 

Raw (UMI) 3222 1 NA GSE132044 

PBMC 2 - 
10x 
Chromium 
(v2) 

Raw (UMI) 3362 1 NA GSE132044 

PBMC 1 -  
Smart-seq2 

Raw 253 1 NA GSE132044 

PBMC from 
NSCLC 
patients 

Raw (UMI) 
(converted 
from CPM) 

1054 1 NA https://cibersortx.sta
nford.edu/download.
php 

Normal mouse cortex single nucleus-seq 

Cortex2 sci-
RNA-seq 

Raw (UMI) 3791 1 NA GSE132044 

Cortex1 
Smart-seq2 

Raw 295 1 NA GSE132044 

TCGA bulk 

TCGA-GBM Raw NA 169 NA https://portal.gdc.ca
ncer.gov 

TCGA-SKCM Raw NA 471 NA 

TCGA-HNSC Raw NA 502 NA 

TCGA-BLCA Raw NA 414 NA  

Normal bulk 

Whole blood 
bulk (with 
flow-sorted 
ground truth) 

TPM NA 12 NA https://cibersortx.sta
nford.edu/download.
php 
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Flow-sorted 
blood cells 
(from health 
controls) 

Raw NA 4 NA GEO60424 

 

IVY GAP 

IVY Anatomic 
Structures 
RNA-Seq 

Raw NA 122 samples 
across 10 
tumors 

NA https://glioblastoma.
alleninstitute.org 

IVY Cancer 
Stem Cells 
RNA-Seq 

Raw NA 148 samples 
across 34 
tumors 

NA 
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Main figures 
 
Fig. 1 | BayesPrism algorithm flow and performance validation. a ) Algorithmist flow of 
BayesPrism. b-e ) Boxplots show the cell type-level Pearson’s correlation coefficient and MSE 
for deconvolution of pseudo bulks of GBM28 using refGBM8 (b and c ), and bulk RNA-seq 
human whole blood samples with ground truth measured by flow-cytometry (d and e ). Boxes 
mark the 25th percentile (bottom of box), median (central bar), and 75th percentile (top of box). 
Whiskers represent extreme values within 1.5 fold of the inter quartile range. f) UMAP 
visualization shows the expression of individual cells in GBM28. The expression profiles of 
stromal cells before (gray) and after (black) correction were projected onto the UMAP manifold 
of the scRNA-seq (left). Malignant cells in patients with greater than 10 malignant cells (N=27) 
were visualized on the zoomed-in UMAP (right), and are colored by patient. The inferred 
expression profile, shown as △, and the averaged expression profile from scRNA-seq for each 
patient, shown as ◯, are projected onto the UMAP manifold.g) Scatter plot shows Spearman’s 
correlation between the average expression of malignant cells in pseudo-bulk and that 
estimated by BayesPrism (red), CIBERSORTx group mode (orange) or total bulk (blue), as a 
function of the fraction of malignant cells in a subsampled set (N=270).  
 
Fig. 2 | BayesPrism redefines GBM molecular subtypes after excluding expression in 
stromal cells. a) Graphical model illustrates the statistical dependencies and the generative 
process for the observed bulk RNA-seq data, X. Red text marks hyper-parameters; blue marks 
observed variables; black marks latent variables. b) Heatmap shows the gene set enrichment 
score for each tumor pathway from GBM28 inferred by BayesPrism. Marker genes in each 
cluster reported by Neftel et al. (2019) are used as the gene sets. c ) Heatmap shows the 
inferred weights of each pathway in GBM28. d) Heatmap shows the fraction of tumor cells 
assigned to each cluster in GBM28. e ) Heatmap shows the gene set enrichment score for each 
tumor pathway inferred by BayesPrism from TCGA-GBM. Three sets of subtype classification 
schemes and their marker genes are used for computing the enrichment scores.  f-g) KM plots 
show the survival duration for tumor pathways in GBM.  Δmedian: median survival time in the 
high group - median survival time in the low group. P values were computed using the log-rank 
test. Hazard ratio is defined by high / low.  
 
Fig. 3 | Cell type compositions in three tumor types. a ) Violin plots show the distribution of 
cell type fractions in each tumor type. Median fractions are shown by white dots and 
upper/lower quartiles are shown by bars. b-i) KM plots show the survival associations with b-e ) 
T cell infiltration,  f-h) macrophage infiltration, and i) oligodendrocytes. Δmedian: median 
survival time in the high group - median survival time in the low group. P values were computed 
using the log-rank test, and corrected using FDR. Hazard ratio is defined by high / low.  
 
Fig. 4 | BayesPrism reveals spatial heterogeneity in GBMs. a ) A graphical illustration of the 
anatomic structures of the IVY GAP samples. b) Violin plot shows the distribution of inferred 
weights of tumor pathways normalized to one for each sample over CT and PAN regions of the 
IVY GAP samples. Asterisks mark the significant differences between CT and PAN based on a 
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linear mixed model. c ) Heatmaps show Spearman’s rank correlation between normalized 
weights of gene programs and the fraction of stromal cells in GBM. d) Violin plot shows the 
distribution of cell type fractions in each anatomic structure over 122 IVY GAP samples. Median 
fractions are shown by white dots and upper/lower quartiles are shown by bars. Asterisks mark 
the significant differences between CT and other anatomic structures based on a linear mixed 
model. e ) A model depicting the interaction between tumor gene programs and 
microenvironment in GBM.  
 
Fig. 5 | Tumor pathways correlate with stromal cell fractions. a-b) Heatmaps show 
Spearman’s rank correlation between normalized weights of gene programs and the fraction of 
stromal cells in HNSCC and melanoma. c -g) KM plots show the survival duration for tumor 
pathways in HNSCC and melanoma.  Δmedian: median survival time in the high group - median 
survival time in the low group. P values were computed using the log-rank test. Hazard ratio is 
defined by high / low.  
 
Fig. 6 | Correlation between malignant cell gene expression and stromal cell fraction. a ) 
Rank-ordered plot shows Pearson’s correlation between malignant cell gene expression inferred 
by BayesPrism and macrophage fraction in the TCGA GBM dataset. Positively correlated outlier 
genes are marked in red; negative correlations are marked in blue. Black circles highlight 
experimentally validated regulators of macrophage infiltration in GBM, or genes whose 
expression correlates with macrophage infiltration in IVY GAP. b-d) Boxplots show the 
BayesPrism inferred fraction of macrophage infiltration for regions with low (ISH-control) or high 
(ISH-high) expression of three target genes. Color indicates anatomic structures associated with 
the ISH experiments. Asterisks mark significant differences as shown by a Wilcoxon test. e ) 
Bars show the number of genes whose malignant cell expression level was correlated with the 
indicated cell types in the indicated tumor type. Bars are colored by -log10 p-value computed 
using the super-exact test. Only intersections with p<10 -3 are shown. Circles below the 
histogram indicate the set of intersections. Only genes with significant association with cell type 
fractions (p<0.001, t-test) are used for the intersection study. f) Rank-ordered plots show the 
minimum absolute value of Pearson’s correlation between BayesPrism inferred gene expression 
in malignant cells and macrophage fraction over the tumor types in the most significant 
intersections shown by e ). Positively correlated outlier genes are red; negative correlations are 
blue. 
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Supplementary figures 
 
Fig. S1 | A detailed algorithmist flow of BayesPrism. Gray grids show the dimension of the 
variables used or inferred in each step.  
 
Fig. S2  | Comparison between BayesPrism and other deconvolution methods using 
simulated noise. Line plots show the cell type-level Pearson’s correlation coefficient (left) and 
MSE (right) as a function of the noise level.  
 
Fig. S3 | Comparison between BayesPrism and other deconvolution methods on 
pseudo-bulks across different sequencing platforms and biological samples. Boxplots 
show the cell type-level Pearson’s correlation coefficient and MSE for the deconvolutions of 
pseudo-bulk human PBMC scRNA-seq (a  and b) and mouse cortex single nucleus-seq (c  and 
d). Boxes mark the 25th percentile (bottom of box), median (central bar), and 75th percentile 
(top of box). Whiskers represent extreme values within 1.5 fold of the inter quartile range.  
 
Fig. S4 | Performance of BayesPrism in inferring cell type composition and tumor gene 
expression on the leave-one-out pseudo-bulk data of HNSCC and melanoma. a -b) Scatter 
plots show the initial estimates of cell type fraction in a ) HNSCC and b) melanoma versus the 
ground truth in pseudo-bulk. c -d) Scatter plots show the CIBERSORTx inferred cell type fraction 
in c ) HNSCC and d) melanoma versus the ground truth in pseudo-bulk. e -f) UMAP shows the 
expression profile of individual tumor cells in scRNA-seq of e ) HNSCC and f) melanoma colored 
by patient ID. Patients with >50 tumor cells and cells with reads detected for >3000 genes are 
shown. The inferred expression profile, shown as △, and the averaged expression profile from 
scRNA-seq for each patient, shown as ◯, are projected onto the UMAP manifold. g-h) Scatter 
plot shows the Pearson’s correlation coefficient between inferred expression and that of the 
averaged expression from malignant cells in scRNA-seq of g) HNSCC and h) melanoma as a 
function of the fraction of tumors in each simulated data. The correlation coefficient was 
computed on DESeq2 variance-stabilized transformed values. Red marks the correlation 
inferred by BayesPrism, while blue marks that of total expression of the simulated data.  
 
Fig. S5 | Comparison between BayesPrism and various modes of CIBERSORTx. Scatter 
plots show the inferred cell type fraction in the pseudo-bulk GBM28 (a -d), and simulated 270 
pseudo-bulk dataset (e -h). (i-p) Scatter plots show the performance of individual cell types in e 
and f.  
 
Fig. S6 | BayesPrism is robust to missing cell types in the reference. Line plots show the 
cell type-level Pearson’s correlation coefficient (left) and MSE (right) for the deconvolution of 
simulated GBM28 (N=1350) using refGBM8 with T cells removed as the reference. The X axis 
marks the midpoints of each 10% width bin. Lines are colored by cell type. Solid lines represent 
the initial fractions, while dashed lines represent updated fractions. Vertical bars mark the 
average observed T cell fraction in GBM8 and GBM28.  
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Fig. S7 | BayesPrism is robust to downsampled reference. a ) Boxplots show the distribution 
of cell type-level Pearson’s correlation coefficient as a function of the number of downsampled 
patients in refGBM8, in which tumor cells are excluded from patients that are not sampled. 
Boxes mark the 25th percentile (bottom of box), median (central bar), and 75th percentile (top of 
box). Whiskers represent extreme values within 1.5 fold of the inter quartile range. b-e ) Line 
plots show the cell type-level Pearson’s correlation coefficient (left) and MSE (right) for the 
deconvolution of simulated GBM28 (N=1350) by refGBM8 (b and c ) and HNSCC leave-one-out 
test using reference with downsampled single cells (d and e ). The X axis marks the maximum 
number of cells in each cell type (or subclones for tumor) in the reference. Lines are colored by 
cell type. Dashed vertical lines mark the observed number of cells in each cell type in the 
original reference.  
 
Fig. S8 | Validation of inferred neutrophil fractions in TCGA bladder cancer using H&E 
staining. a -b) Boxplot shows distribution of the a ) estimated fractions of myeloid lineage cells 
using macrophage in the scRNA-seq bladder cancer as the reference, and b) estimated 
fractions of neutrophils using neutrophil from purified bulk as the reference. P values are 
computed using a two-sided wilcoxon test. c) Samples selected for representation in the TIMER 
paper were compared to BayesPrism.  
 
Fig. S9 | BayesPrism improves estimates of gene expression in stromal cells. Scatter plots 
show log2 gene expression in stromal cells before and after batch correction versus that of true 
expression. Genes with zero expression counts in the reference are colored in red, and those 
with non-zero expression counts are colored in blue.  
 
Fig. S10 | Heatmap shows the correlation matrix computed on tumor gene expression in 
pseudo-bulks estimated by total expression (the left column) and BayesPrism (the right 
column), at various thresholds of tumor cell fraction.  
 
Fig. S11 | BayesPrism accurately recovers the heterogeneity in the expression of 
macrophage. a) Scatter plot shows Spearman’s correlation between the average expression 
from macrophages in the pseudo-bulk and gene expression estimated by BayesPrism (red) or 
total bulk (blue) as a function of the fraction of macrophages in the simulated pseudo-bulk 
(N=1350). b) UMAP visualization shows the expression of individual macrophages in GBM28. 
The inferred expression profile, shown as △, and the averaged expression profile from 
scRNA-seq for each patient, shown as ◯, are projected onto the UMAP manifold. c -f) Heatmap 
shows the correlation matrix computed on macrophage gene expression in pseudo-bulks 
estimated by total expression (c  and e ) and BayesPrism (d and f), at various thresholds of 
macrophage fraction.  
 
Fig. S12 | Comparison between BayesPrism and the two different modes of expression 
inference by CIBERSORTx. Scatter plot shows Spearman’s correlation between gene 
expression estimated by BayesPrism (red), total bulk (blue), CIBERSORTx group mode 
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(orange) or CIBERSORTx high resolution mode (purple) and the average expression from 
malignant cells in scRNA-seq as a function of the fraction of malignant cells in the dataset 
containing the 270 simulated samples. The correlation coefficient was calculated on 53 
imputable genes by the high-resolution mode out of the top 1000 most variable genes in tumor 
cells.  
 
Fig. S13 | Choosing number of pathways K and initializing tumor basis η0  for TCGA-GBM 
using NMF factorization and consensus clustering. a) Line plots show various metrics on 
consensus clustering as a function of K. b) Heatmaps show the consensus clustering matrix of 
different choices of K.  
 
Fig. S14 | KM plots of  tumor pathway weights inferred from three tumor types across 
TCGA samples. KM plots show the survival associations of all tumor pathways in a ) GBM,  b) 
HNSCC, and c ) melanoma. The left column of each panel shows the survival curves at the 
cutoff between 0.1 and 0.9 quantile that yields the minimum p value. The right columns of each 
panel shows the survival curve at the cutoff using the 0.2 and 0.8 quantile.  
 
Fig. S15 | Comparison between tumor purity inferred by BayesPrism, ABSOLUTE and 
ESTIMATE. a-c ) Scatter plots show the correlation between tumor fractions inferred by each 
method. Dashed lines mark the y=x and regression fit. Rectangular boxes mark the outliers 
predicted as 1 by ABSOLUTE. d-e )  Scatter plots show the correlation between tumor fractions 
inferred by each method with outliers in a  and b removed. f) Violin plot shows the distribution of 
library size of tumor and non-tumor expression in GBM8. The higher total expression of tumor 
cells explains the linear shift in estimating tumor fraction by BayesPrism, as it estimates the total 
fraction of reads rather than cell number for each cell type.  
 
Fig. S16 | Heatmaps show the Spearman’s rank correlation between stromal cells in each 
tumor type. 
 
Fig. S17 | KM plots of all cell types inferred from three tumor types across TCGA 
samples. KM plots show the survival association of all stromal cell types in a ) GBM,  b) 
HNSCC, and c ) melanoma. The left column of each panel shows the survival curves at the 
cutoff between 0.1 and 0.9 quantile that yields the minimum p value. The right columns of each 
panel shows the survival curve at the cutoff using the 0.2 and 0.8 quantile.  
 
Fig. S18 | KM plots of all cell types inferred from HPV-negative HNSCC TCGA samples. 
The left column of each panel shows the survival curves at the cutoff between 0.1 and 0.9 
quantile that yields the minimum p value. The right columns of each panel shows the survival 
curve at the cutoff using the 0.2 and 0.8 quantile.  
 
Fig. S19 | Stromal cell distribution in previously reported GBM subtypes. Asterisks mark 
the significant differences between subtypes based on one-way ANOVA and studentized range 
statistics. 
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Fig. S20 | Choosing the number of pathways, K, and initializing tumor basis η0 for 
TCGA-HNSC (HNSCC) using NMF factorization and consensus clustering. a ) Line plots 
show various metrics on consensus clustering as a function of K. b) Heatmaps show the 
consensus clustering matrix of different choices of K.  
 
Fig. S21 | Choosing the number of pathways, K, and initializing tumor basis η0  for 
TCGA-SKCM (melanoma) using NMF factorization and consensus clustering. a) Line plots 
show various metrics on consensus clustering as a function of K. b) Heatmaps show the 
consensus clustering matrix of different choices of K. 
 
Fig. S22 | BayesPrism removes false positive correlates from cell type marker genes. 
Violin plot shows the distribution of Pearson’s correlation between gene expression in malignant 
cells inferred by BayesPrism (left violins) or total gene expression of bulk RNA-seq (right violins) 
and BayesPrism predicted fractions of each cell type on their corresponding marker genes over 
TCGA-GBM. Median correlations are shown by white dots and upper/lower quartiles are shown 
by bars. Braces on the horizontal direction label the cell type fraction on which the correlations 
were computed. Color indicates the cell type of which the marker genes are curated from 
independent datasets.  
 
Table S1  | Anatomic structures in IVY GAP dataset. Table shows the abbreviations of 
anatomic structures and their associated features in a ) the anatomic structures RNA-Seq study 
and b) the cancer stem cells RNA-Seq study.  
 
Table S2  | Gene ontology analysis of tumor gene programs learned in three cancer 
types.  
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