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Abstract 

Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy 
and affects boys in infancy or early childhood. DMD is known to trigger progressive muscle 
weakness due to skeletal muscle degeneration and ultimately causes death. There are limited 
treatment regimens available that can either slow or stop the progression of DMD. An accurate 
and specific method for diagnosing DMD in its earliest stages is needed to prevent progressive 
muscle degeneration and death. Current methods for diagnosing DMD are often laborious, 
expensive, invasive,  and typically diagnose the disease later on it is progression. In an effort to 
improve the accuracy and ease of diagnosis, this study focused on developing a novel method for 
diagnosing DMD which combines Raman hyperspectroscopic analysis of blood serum with 
advanced statistical analysis. Partial Least Squares Discriminant Analysis (PLS-DA), was applied 
to the spectral dataset acquired from control and mdx blood serum of 3- and 12-month old mice to 
build a diagnostic algorithm. Internal cross-validation showed 95.2% sensitivity and 94.6% 
specificity for identifying diseased spectra. These results were verified using external validation, 
which achieved 100% successful classification efficiency at the level of individual donor. This 
proof-of-concept study presents Raman hyperspectroscopic analysis of blood serum as a fast, non-
expensive, minimally invasive and early detection method for the diagnosis of Duchenne muscular 
dystrophy. 
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Introduction  

Duchenne muscular dystrophy (DMD) is a progressive form of muscular dystrophy which 
typically affects male infants. DMD is an X-chromosome linked recessive disorder caused by a 
mutation of the dystrophin gene, which results in progressive weakness and atrophy of the skeletal 
and heart muscles.1,2 Symptoms can begin in boys as young as 1 to 6 years old, and initially include 
difficulty sitting, standing, walking or speaking.3 The issues associated with DMD are severe, 
worsen overtime, and greatly impact the well-being of the afflicted individual. In fact, secondary 
complications due to DMD, including heart and respiratory muscle problems, can lead to life-
threatening conditions.4 Limited treatments exist for DMD, which can stop the progression of the 
disease and help control the symptoms associated with it. 

Diagnosing DMD typically involves evaluating family history as well as conducting blood tests to 
assess the levels of specific muscle enzymes in the blood. Although the inheritance of the disease 
is through an X-linked recessive pattern, there are cases where DMD occurs in families who have 
no history of it. The complicated pattern of inheriting DMD suggests a need for additional testing. 
Blood tests often monitor the level of serum creatine phosphokinase (CPK), with high levels 
indicating muscle damage is causing the muscle weakness. However, this test can only detect the 
disease in later stages and is generally non-specific, as high levels of CPK can be found in an 
individual’s blood after experiencing a heart attack, drinking alcohol in excess, or participating in 
strenuous exercise.5-10 Electromyography is often used to confirm muscle weakness without 
pinpointing a direct cause of it.11 Muscle biopsies can differentiate muscular dystrophies from 
other muscle diseases12, however biopsy examinations can be both expensive and invasive for the 
individual undergoing testing. Genetic testing can confirm if there is a mutation within the DMD-
causing gene, as well as distinguish between different types of muscular dystrophy. However, 
because genetic testing and muscle biopsies are invasive and expensive, these options are typically 
pursued only after other options have been exhausted, thus resulting in the disease being diagnosed 
in its later stages. Because DMD is progressive, and its symptoms worsen overtime if treatment 
isn’t initiated, it is of the utmost importance to definitively diagnose the disease as early on in its 
progression as possible, before symptoms become too severe. The earlier the disease is identified 
within its progression, the better opportunity the afflicted individual has for seeking effective 
treatment opportunities.  

To improve the accuracy and ease and potential of an early diagnosis, we focused on developing 
a novel method for diagnosing DMD using Raman hyperspectroscopic analysis of mdx mouse 
blood serum combined with advanced statistical analysis. The dystrophin mutant mdx mice do not 
express dystrophin and have been widely used as a model system to study DMD and to make 
important advances in understanding therapeutic strategies; it has allowed for the molecular 
processes and underlying causes of the disease to be better understood.2,13 The mdx mouse model 
serves as an efficient and useful model for developing a better diagnostic method without influence 
from complications, such as the effect of prescribed medications, associated with humans. 

Raman hyperspectroscopy has shown it has great potential to diagnose many diseases including 
cancers,14,15 Alzheimer’s disease,16-18 and other diseases where pathophysiological changes 
occur.19,20 Raman hyperspectroscopy involves collecting multiple Raman spectra from a sample 
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to better characterize its inherent heterogeneity. This generates a three dimensional data cube (x, 
y, λ) where the x and y dimensions correspond to spatial coordinates and the λ dimension represents 
the Raman spectrum collected at a particular pair of coordinates. Through collection of multiple 
spectra per sample, its biochemical composition is better understood; as such, a change in 
biological composition of blood serum due to disease progression can be detected using Raman 
hyperspectroscopy. This technique produces a specific spectral fingerprint which represents the 
biochemical composition of the sample analyzed. This specific information can thus be used to 
distinguish between different samples, such as body fluids collected from healthy donors and from 
donors with a disease. Here, we capitalized on the advantages of Raman hyperspectroscopy in 
combination with advanced statistical analysis to build a model which identifies spectral 
differences between different classes of samples to make diagnostic predictions. Partial Least 
Squares Discriminant Analysis (PLS-DA) was used to build a model which could distinguish 
Raman spectral data of healthy control mice from Raman spectral data of mdx mice. The results 
were verified using external cross-validation. Genetic Algorithm (GA) was then used to identify 
the spectral features which contribute the most useful information toward differentiation. The 
spectral features identified by GA were assigned to vibrational modes of various biomolecules 
which were previously identified as playing a role in the pathogenesis of DMD. For the first time, 
this proof-of-concept study shows Raman hyperspectroscopy in combination with advanced 
statistical analysis is successful in detecting DMD in a simple, accurate, early, and minimally 
invasive manner.  

 

Results  

Validation of skeletal muscle abnormalities in mdx mice by examining the Tibialis Anterior 
(TA) muscle morphology 

Duchenne muscular dystrophy is the most common and most severe form of muscular dystrophy. 
DMD is characterized by muscle wasting and weakness due to excessive muscle degeneration. 
The Tibialis Anterior (TA) muscle morphology of 3-month old and 12-month old control 
(C57BL/10ScSnJ) and mdx (C57BL/10ScSn-Dmd<mdx>/J) mice was examined using 
Hematoxylin and Eosin (H&E) staining (Figure 1 A-D). As expected, normal skeletal muscle 
morphology was observed in 3-month old control mice (Figure 1A). Mild skeletal muscle 
degeneration was observed in 3-month old mdx mice as characterized by the smaller diameter of 
muscle fibers with central nuclei, occasional presence of atrophied muscle fiber, and the presence 
of an increased number of nuclei representing inflammatory cells (Figure 1B). Similar to 3-month 
old control mice, 12-month old control mice displayed normal skeletal muscle morphology (Figure 
1C). Skeletal muscle degeneration progresses as mdx mice get older. As such, muscle degeneration 
was much more prominent in the 12-month old mdx mice as marked by the absence of normal 
muscle structure in most areas of the tissue section and the presence of fatty and fibrotic tissues 
(Figure 1D).  
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Figure 1. Skeletal muscle degeneration is observed in the mouse model of DMD.  Hematoxylin and Eosin (H&E) 
staining of TA muscle cross sections from 3- and 12-month-old control (C57BL/10ScSnJ) (A, C) and mdx 
(C57BL/10ScSn-Dmd<mdx>/J) (B, D) mice. The 3-month old control muscle cross-section shows normal 
morphology (A) whereas 3-month old mdx mice show muscle degeneration (denoted by muscle with central nuclei 
and smaller diameter, yellow arrows, atrophied muscle, black arrow, and more prevalent nuclei representing 
inflammatory cells) (B). Control mice at 12-months old (C) are compared to the 12-month old mdx mice (D) where 
muscle degeneration is much more dramatic, as evident by the absence of normal muscle structure in almost all areas 
of the section; the muscle structure is often taken over by fatty and fibrotic tissues, as indicated by green arrows. Scale 
Bar: 100 uM. 

Raman spectroscopic analysis of mice blood serum  

Because DMD is both progressive and treatable, it is crucial to diagnose the disease as early as 
possible. In this proof-of-concept study, blood serum of healthy and mdx mice at 3- and 12-months 
old was analyzed by Raman hyperspectroscopy in an attempt to develop a novel diagnostic 
method. Blood serum is the portion of blood which does not contain cells or clotting factors, and 
has been widely studied in the past for diagnostic purposes.17,21-24 Only 10 µL of blood serum was 
required from each donor. The serum was deposited on an aluminum substrate and allowed to dry 
before conducting Raman hyperspectroscopic analysis.  

Raman spectra were collected from the serum of 14 mice donors through automatic mapping. 
Mapping was conducted to obtain an accurate representation of the entire biochemical composition 
of each sample, with the intention of identifying key biochemical components useful for 
discrimination between classes. The two classes of donors consisted of healthy mice (control, n=7) 
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and mdx mice (MDX, n=7). Of the 14 total blood serum samples, six (three control and three 
MDX) were collected from mice at three months old and eight (four control and four MDX) were 
collected from mice at 12 months old. Different ages of mice were used in order to illustrate the 
method’s ability to detect the disease early on in its progression. The mean preprocessed spectra 
for all donors from each class is seen in Figure 2. 

 

Figure 2. Mean Raman spectra collected from the two classes of mice blood serum. The mean spectrum of all 
control mice blood serum samples is represented by the pink line, whereas the mean spectrum of all mdx mice blood 
serum samples is represented by the blue line.  

Model calibration for differentiating healthy controls from MDX mice  

The donors were split into two groups: the calibration group and the validation group. Ten of the 
donors were used in the calibration set (five control, five MDX); the spectral data from these 
donors was used to build the PLS-DA prediction algorithm. The validation dataset, consisting of 
spectral data from two control donors and two MDX donors, was used for external validation. 
Mice of different ages (3- and 12-months) were included in both the calibration and validation 
groups. 

The difference between the mean control spectrum and the mean MDX spectrum was calculated 
and compared with ±2 standard deviations within each class. It was observed that the difference 
spectrum fell within the standard deviations (Supplementary information, Figure S.1). This 
indicates that the spectral changes shown in the difference spectrum (Figure S.1) are smaller than 
the variation which occurs within each class, and thus are statistically insignificant. As such, 
advanced statistical analysis was required to capitalize on the important spectral features which 
vary between the two classes at the level of individual spectra but are hidden from the mean 
spectra. This variability is useful for discriminating between the two classes of data.  

To uncover the differences between individual spectra to be used for diagnostic purposes, Partial 
Least Squares Discriminant Analysis (PLS-DA) was selected to build a discrimination algorithm. 
A binary model was built to distinguish between control and MDX blood serum spectral data of 
the calibration dataset. Eight latent variables were used to capture the maximum covariance 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.08.897793doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.897793


between the spectral data and the assigned classes. Each spectrum from the calibration dataset was 
assigned a set of scores which correspond to how similar that spectrum is to each latent variable. 
Each class is thus ideally represented by a range of scores seen as typical for that class. Scores 
plots can be used to understand the separation which exists between different classes, and any 
spectrum which is loaded into the model will be given a set of scores which is used to decide to 
which class it belongs. The model built herein showed clear separation between the two classes 
(Figure 3). 

The sensitivity and specificity rate for classification of the PLS-DA diagnostic algorithm were 
calculated. In this study, the sensitivity is defined as the true positive rate, or the percentage of 
MDX spectra correctly predicted as belonging to the MDX class. The specificity is defined as the 
true negative rate, or the percentage of control spectra correctly predicted as not belonging to the 
MDX class. Individual spectral predictions for all donors within the calibration dataset can be 
observed in the confusion matrix presented in Table 1. Here, every Raman spectrum is assigned a 
class (either control or MDX). The assignments are compared to the true, or known, classification 
for each spectrum. Internal cross-validation of the PLS-DA model by venetian blinds resulted in 
95.2% sensitivity and 94.6% specificity for training the algorithm using the calibration dataset. 

 

Figure 3. PLS-DA scores plot. The PLS-DA scores plot built using the first three latent variables. The distribution 
of symbols represents the separation which exists between the two classes of blood serum spectra where pink diamonds 
signify controls and blue squares signify MDX. Each symbol represents an individual spectrum. 

Table 1. Confusion matrix illustrating individual spectral predictions for all spectra of the calibration dataset 

Confusion Matrix – Internal Cross Validation 
 Actual Class 
 Control MDX 

Predicted as Control 212 11 
Predicted as MDX 12 217 
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External validation of the PLS-DA model  

External validation was performed using the spectral data collected from the four donors of the 
validation dataset. The validation dataset was kept independent from the training set and is thus 
considered a powerful method for testing the validity and strength of the classification model as 
well as its potential for real-world applications. A total of 185 spectra collected from the four 
samples were loaded into the PLS-DA algorithm for external validation. The class assignment for 
each spectrum was predicted (Table 2). Once again, the sensitivity (true-positive rate) and 
specificity (true-negative rate) of classification for external validation were calculated. Here, 100% 
sensitivity and 87.0% specificity was achieved for external validation, calculated using the 
validation dataset.  

Table 2. Confusion matrix illustrating individual spectral predictions for all spectra of the validation dataset 

Confusion Matrix – Internal Cross Validation 
 Actual Class 
 Control MDX 

Predicted as Control 80 0 
Predicted as MDX 12 93 

 

Receiver Operating Curve analysis of external validation results  

To better understand individual spectral predictions, a receiver operating characteristic (ROC) 
curve was used to identify the most optimum threshold for determining donor-level classifications 
based on spectral-level predictions. A ROC curve is typically used to evaluate the performance of 
a binary classifier, such as the PLS-DA model built here. The curve is generated by plotting true 
positive rate values (sensitivity) against false positive rates values (1-specificty); every point in the 
ROC curve corresponds to a potential threshold for discrimination. The most ideal threshold would 
exist at (0,1), which represents no false positives and a 100% true positive rate for predictions 
made at the donor-level. The ROC curve generated for the PLS-DA model built in this study, based 
on internal validation, is seen in Figure 4. The most optimum threshold for discrimination in this 
study is designated by the point at (0,1), which corresponds to a cut-off value of 77%. This 
threshold indicates if 77% or more of the total spectra from a donor in the external validation 
dataset are assigned to the MDX class, than the overall prediction of the donor would be as 
belonging to the MDX class. 
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Figure 4. Receiver operating characteristic (ROC) curve. ROC curve for the internally cross-validated PLS-DA 
model, trained to differentiate between diseased and healthy control mice blood serum. The true positive rate 
(sensitivity) of each potential discrimination threshold are plotted according to each corresponding false positive rate 
(1 – specificity). The optimal threshold is designated by the point at (0.00, 1.00), corresponding to a threshold of 77%. 

The threshold established by the ROC curve (77%) was applied to the model’s spectral-level 
predictions in order to generate a diagnosis at the donor level, as shown in Figure 5. The percentage 
of spectra which were identified as belonging to the MDX class is plotted. All four donors in the 
validation dataset were correctly identified. Thus, based on donor-level predictions, 100% 
successful external validation was achieved. This indicates the strength and capability of the model 
to be applied to new, unknown data, to make accurate diagnoses. 

 

Figure 5. Histogram displaying the results of external validation of the PLS-DA model. The percentage of spectra 
classified as MDX is plotted as the bar height of each of the donors. The 77% threshold was established by the ROC 
curve and is plotted as the dashed line. 
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Genetic Algorithm for identifying spectral differences in blood serum  

In order to gain an understanding of the biochemical basis responsible for the model’s ability to 
discriminate between spectral datasets, Genetic Algorithm (GA) was performed. GA is a statistical 
technique which capitalizes on the ideas of “natural selection” and “survival of the fittest.”25 The 
algorithm will identify spectral features within the dataset which contribute the most 
discrimination power toward separating classes of data. The assignments of these selected spectral 
features provide an insight into the biochemical changes that occur as the disease progresses, and 
allow for the identification of key biochemical components which may serve as spectroscopic 
biomarkers for a disease. The results of GA are observed in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.  Genetic Algorithm analysis. Mean blood serum spectra of the two classes, including the spectral ranges 
selected by Genetic Algorithm: control (pink) and MDX (blue). Areas selected by Genetic Algorithm are marked by 
bolded lines. Spectral regions deemed as uninformative for discrimination are seen as unfilled lines.  

The areas which are bolded in Figure 6 are those which were identified by GA as providing the 
most useful spectral information for discrimination purposes. Interestingly, the tentative 
assignment of these bands can be attributed to various biomarkers which have been previously 
shown to be linked to DMD and are summarized in Supplementary Information Table S.1. 
Monosaccharides and polysaccharides contribute to spectral bands at 899 and 940 cm-1.26 
Specifically, bands at 1048 and 1124 cm-1 are attributed to vibrational modes of glycogen and 
glucose.27,28 Different vibrational modes of lipids are seen around the 878, 1124 and 1338 cm-1 
selected regions.27-29 Proteins are represented by the spectral features around 1124, 1156, 1260, 
and 1554 cm-1 and collagen tentatively shows contributions at 507 and 1338 cm-1.27-29 Other GA-
selected regions show potential influences from cholesterol (541, 702, and 959 cm-1), and 
DNA/RNA bases (750 and 829 cm-1).26,27,29,30 These spectral features, identified by GA, are 
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assigned to major biological components which are associated with known biochemical changes 
that occur during the onset and progression of muscular dystrophy.  

Discussion  

The combination of Raman hyperspectroscopy and advanced statistical analysis is incredibly 
advantageous for disease diagnostic purposes. Raman hyperspectroscopy involves the collection 
of multiple Raman spectra from a sample in order to characterize its heterogeneity and 
multicomponent composition. This is accomplished through acquiring the combination of spectral 
information alongside spatial information, allowing for the formation of a three dimensional data 
cube (x, y, λ). Two dimensions, x and y, correspond to spatial coordinates, and the third dimension, 
λ, represents the Raman spectrum collected at a particular pair of coordinates. By probing multiple 
small volumes or areas of a sample, there is a potential to identify biochemical components which, 
although may be present at low average concentrations, are present at a particular coordinate at a 
high local concentration. The ability to detect such components using this method indicates that 
they may be useful for discrimination purposes, and can serve as spectroscopic biomarkers. Thus, 
the advantage of Raman hyperspectroscopy resides in its ability to detect multiple biomarkers 
simultaneously, which can potentially be used for discrimination and diagnostic purposes.16  

It is often observed that spectral differences between two similar classes of samples, such as 
healthy and diseased body fluids, are insignificant when evaluated at the average level.17,31 It is 
expected that the majority of the composition of a body fluid remains consistent between healthy 
and diseased donors. In this research, the difference spectrum calculated between the average 
control spectrum for all control donors and the average MDX spectrum of all MDX donors was 
shown to be statistically insignificant. This is an indication that statistical analysis is required to 
better understand and evaluate the Raman spectral data obtained, and specifically, to uncover 
hidden characteristic features of the two classes as well as spectral variability which can be 
capitalized on for building a discrimination algorithm. In this study, the combination of Raman 
hyperspectroscopy and advanced statistical analysis was used to develop an algorithm which could 
accurately identify Duchenne muscular dystrophy via mice blood serum.  

The mdx mice model was specifically selected for this project because the species exhibits a 
mutation within its DMD gene which results in the mouse not producing a functional dystrophin 
protein and thus developing the disease. This animal model has been widely studied in the last 
several decades, and has provided extensive insight into the pathophysiology associated with 
muscular dystrophy.2,13 Additionally, the mdx mouse model can be manipulated to test potential 
therapeutic strategies, and lack of interfering factors, such as comorbidities or influence of 
prescribed medications, makes it ideal for evaluating novel diagnostic methods. As such, this 
model was selected for the initial proof-of-concept diagnostic study, which can further be easily 
translated into a platform for larger and more advanced diagnostic studies within humans. 

Two different statistical techniques were used in this study. The first, PLS-DA, was selected to 
generate the prediction algorithm. The 14 donors used in this study were split into two groups: a 
calibration set and a validation set. The spectral data from the calibration set, consisting of 452 
total spectra from five control donors and five MDX donors, was used to build and train the 
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prediction algorithm. Internal validation by venetian blinds resulted in 95.2% sensitivity and 
94.6% specificity for identifying MDX spectra as compared to control spectra within the 
calibration dataset.  

The prediction capabilities of the algorithm was then tested through external validation using the 
validation set of samples, containing two control donors and two MDX donors. The spectral data 
from these four samples was used to test the ability of the algorithm to make predictions regarding 
samples it has never before seen, and thus cannot have an inherent bias toward. The PLS-DA 
algorithm generated classification predictions for each individual spectrum collected from the four 
donors. Each sample is represented by a multitude of spectra; because blood serum is inherently 
heterogeneous, each spectrum is expected to deviate from the mean to some extent. It is also 
expected that a portion of the mice blood serum components are the same between control and 
mdx donors. As such, it is reasonable to assume that some spectra from one class may be predicted 
as belonging to the other, due to the natural overlap in biochemical composition. In order to better 
translate individual spectral predictions to an over-all prediction for the donor, ROC curve analysis 
was used to establish an optimum threshold, or cut-off, for donor-level predictions. Using the 
determined threshold of 77%, all four donors of the validation dataset were identified as belonging 
to their true class. External validation is an established process for determining whether or not a 
model is robust enough for successful application to new, and unknown, spectral data for accurate 
predictions.32,33 Thus, successful external validation, as achieved here, indicates the potential for 
the method to be applied within diagnostic settings.  

Following external validation, an attempt was made to understand the major biochemical 
differences which are useful for distinguishing between the classes of Raman spectral data. Past 
literature has demonstrated strong links between the pathogenesis of DMD and the aforementioned 
biomolecules (Supplementary Information Table S.1). Specifically, studies have shown that a 
general increase in lipids, including triglycerides, phospholipids, cholesterol, and cholesterol 
esters, is found in patients with muscular dystrophy.34,35 In fact, in mdx mice, elevated lipid levels 
were found to be associated with significant exacerbation of muscle pathology, including myofiber 
damage and skeletal muscle remodeling.35 Collagen has also been found to play a role in the 
pathogenesis of muscular dystrophy.36 Among the evidence, researchers found an inverse 
relationship exists between the over-production of connective tissue and muscle protein synthesis 
in patients suffering from DMD.37-39 Other research observed unusual clusters of “sticky cells” 
formed by dissociated muscle of patients with Duchenne and Becker muscular dystrophies, a sign 
which reflects abnormal collagen production.40 Mutations in genes coding for collagen type VI are 
also responsible for congenital muscular dystrophies including Bethlem myopathy and Ullrich 
congenital muscular dystrophy.41  

Many serum proteins have been identified as biomarkers which reflect the pathogenesis of DMD; 
the concentration of 23 identified mouse serum proteins exhibited an increase while four other 
proteins were found to exist at concentrations significantly lower in mdx mice as compared to 
healthy control mice in one study. Proteins which were elevated mostly originated from muscle or 
were glycolytic enzymes, transport proteins, or other proteins such as creatine kinase M.42 These 
identified protein biomarkers reflect the muscle activity as well as pathogenesis of the disease. 
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Many more studies have also identified various serum proteins as biomarkers for muscular 
dystrophy.43-46 It is thus unsurprising that GA identified spectral features which can be attributed 
to vibrational modes of proteins as being useful for discrimination purposes. Furthermore, a 
relationship between glycogen metabolism and DMD was supported by Naim et al. Here, results 
show that mdx mice have increased skeletal muscle glycogen content; many of the enzymes 
involved in the skeletal muscle glycogen metabolism were dysregulated.47 Because of the 
dysregulation of glycogen, levels of glucose in the blood may be affected, connecting the 
identification of both glycogen and glucose here as also being important spectroscopic markers for 
DMD. 

Notably, the spectral features identified by GA as being the most useful for spectroscopically 
discriminating between the two classes of data can also be assigned to vibrational modes of classes 
of biomolecules which have previously been related to the pathogenesis of the disease itself. 
Clearly, there is a connection between the progression of the disease and the spectroscopic 
signature produced. This link is strong enough to provide identifiable information which can be 
capitalized on through advanced statistical analysis for the purpose of generating a successful 
diagnostic algorithm.  

The contribution of multiple biomarkers to the spectroscopic signature of DMD allows for much 
more specific identification of the disease, and further supports the strength of the method. In 
general, by identifying biochemical components whose alterations in composition or concentration 
reflect the stage of a particular disease, the ability to detect that disease is dramatically increased, 
and thus can result in very high levels of classification accuracy.16 Through the identification of 
the aforementioned biomolecules associated with DMD, we were indeed able to achieve high 
levels of diagnostic accuracy. Raman hyperspectroscopy allows for simultaneous detection of 
multiple, potentially new, biomarkers for a disease, as is observed herein. This is incredibly 
advantageous over other diagnostic methods which simply investigate one, known, biomarker at a 
time.  

The method of combining Raman hyperspectroscopy with advanced statistical analysis is shown 
in this proof-of-concept study to be successful for detecting Duchenne muscular dystrophy. Raman 
spectra were collected from the blood serum of mice who were either healthy controls or who had 
the disease. The spectral data was analyzed using PLS-DA, which showed 95.2% sensitivity and 
94.6% specificity for identifying MDX spectra in the calibration dataset, and 100% sensitivity and 
87.0% specificity for identifying MDX spectra in the validation dataset. Based on donor-level 
predictions generated using ROC curve analysis, 100% accuracy was achieved for correctly 
predicting to which class the donors in the external validation dataset belonged. This is the first 
time this methodology has been applied toward diagnosing DMD. Further, Genetic Algorithm 
identified key biochemical components which were responsible for spectroscopic discrimination, 
indicating a link between the disease progression and the Raman spectroscopic fingerprint 
produced. Future research is required to study this link on a larger scale, and to investigate if a 
similar trend is observed within humans. However, it is clear that this methodology has significant 
potential for use as a novel technique for diagnosing Duchenne muscular dystrophy.  
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Methods 

Mouse strains and sample collection 

The mdx (C57BL/10ScSn-Dmd<mdx>/J; Stock Number 001801) and counterpart control mice 
(C57BL/10ScSnJ; Stock Number 000476) were purchased from the Jackson Laboratory, Bar 
Harbor, ME, USA. The mice were raised following the protocol approved by the Institutional 
Animal Care and Use Committee to the appropriate age (3 months and 12 months) before 
harvesting the tissue and blood samples. As mdx is an X-linked muscle degenerative disease, male 
mdx and male control mice were studied.   

Mice were euthanized following the standard operating procedure of Laboratory Animal 
Resources (LAR SOP # 105 and 106). Briefly, the mice were first anesthetized to a surgical plane 
of anesthesia under isoflurane inhalation using an induction chamber. The depth of anesthesia was  
verified by establishing the loss of pedal reflex. The mice were then euthanized under anesthesia 
by isoflurane and then by cervical dislocation. For harvesting skeletal muscle, the hind leg skins 
were removed and the Tibialis Anterior (TA) muscles were removed by a surgical blade. The TA 
muscles were cut into 2 pieces and frozen fresh with Optimal Cutting Temperature (OCT) 
compound in plastic molds. The freezing process was carried out in a jar containing semi-frozen 
iso-butanol and again frozen in liquid nitrogen before storing the tissue blocks at -800C. The blood 
samples were collected from the euthanized mice by cardiac puncture. Briefly, the skin and the rib 
cases were cut and pinned in the dissection board. The jugular vein was cut by sharp scissors and 
blood was collected in small Eppendorf tubes, without use of anticoagulant, using pasteur pipettes.  

The used gloves, bench coats, and paper towels were collected in the biohazard containers and 
surgical blades were collected in the biohazard labeled sharp container and discarded following 
the instructions of the Institutional Biosafety Committee. The experimental bench was cleaned 
first with 50% beach, then with sterile water, and finally with 70% ethanol. 

Isolation of serum 

The serum was isolated following a standard laboratory protocol. Briefly, the  tubes containing the 
blood without any anticoagulant were left at room temperature in a standing position for about 35 
minutes, allowing the blood to clot. Then, the clotted blood samples were centrifuged at 200C and 
2000g for 15 minutes;  the serum fraction was moved to a fresh tube and stored at -800C. At the 
time of analysis, the blood serum was allowed to thaw. Each serum sample (10 µL) was deposited 
on an aluminum foil substrate and set aside to dry overnight before analysis. 

Cryosection and histochemistry of TA muscle 

The cryosections and H&E staining was carried out using established protocol as described 
elsewhere.48,49 

Raman hyperspectroscopic methods 

A Renishaw inVia Raman spectrometer equipped with a research-grade Leica microscope was 
used to collect Raman spectra. A PRIOR automatic mapping stage was used during measurements 
and the 50X objective was used to focus on the sample. Spectra were recorded between 400-1800 
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cm-1 under excitation by the 785 nm diode laser, which was reduced to about 50% laser power to 
prevent photo-degradation of the sample. For each sample, 50 spectra were recorded to capture the 
inherent heterogeneity of blood serum.  

Data treatment and advanced statistical analysis 

Spectra were recorded using WiRE 3.2 software, and then imported to MATLAB version 2017b 
workspace (Mathworks, Inc.). Any individual Raman spectrum which displayed a poor signal-to-
noise ratio or exhibited cosmic rays was removed from the dataset. The remaining spectra were 
subjected to preprocessing. 

Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS Toolbox (eigenvector Research, Inc.) was used for statistical analysis. PLS-DA was selected 
to accomplish discrimination between the healthy and diseased classes. PLS-DA algorithms have 
been shown to be effective in various disease diagnostic applications including for investigating 
inflammatory bowel diseases50, coronary heart diseases51, and various forms of cancer52-64, among 
many others. Specifically, PLS-DA is a supervised technique which is used to predict categorical 
variables. The dataset being analyzed is reduced to a few latent variables (LVs), which capture the 
maximum covariance between spectral data and the labeled classes. Each spectrum is then given 
a score which corresponds to how closely that spectrum resembles a particular LV. Different 
classes of samples will be represented by a set of scores seen as characteristic for a sample within 
that class.65 In this way, unknown samples can be identified through comparison of the unknown 
sample’s score to those of classes which are known. Here, PLS-DA was built using spectral data 
from ten samples (five control, five MDX); eight LVs were used to reduce the dimensionality of 
the dataset. The performance of the algorithm was investigated using venetian blind internal 
validation. Following internal validation, predictions of unknowns were made using the spectral 
data obtained from donors of the external validation dataset.  

Genetic Algorithm (GA) 

GA was used to determine the spectral features which were the most useful for discrimination 
between the two classes of data. GA is a statistical technique inspired by the ideas of evolution. 
The algorithm aims to solve a specific problem by generating potential solutions; recombination 
operators are applied to the data in order to preserve critical information which can best solve the 
problem.66 Essentially, GA will identify spectral variables which provide the lowest prediction 
error rates, identified through a repetitive algorithm building process. In this way, it can recognize 
which spectral features of the dataset provide the most useful information for discriminating 
between different classes of data. Concurrently, it will eliminate uninformative data as well as 
noise from future consideration. Here, GA was applied to the training dataset which consisted of 
ten donors and 452 spectra. The parameters of GA are given as follows: the population size was 
set to 80; the mutation rate to 0.005, and the maximum number of generations for each run to 100. 
The breeding was fixed to double crossover, the window width was 30, and 30% of the windows 
were initially included. To identify the diagnostic features from within the measured Raman 
spectral dataset, GA was independently run 100 times which allowed for identification of 
significant spectral bands useful for discrimination purposes. The identified spectral features were 
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assigned to tentative corresponding vibrational modes, according to the literature, to determine 
potential biochemical basis responsible for spectroscopic differentiation (Supplementary 
Information Table S.1).  

Data Availability 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request.  
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Figure S.1 The difference between the average Control and average MDX spectra. The pre-processed difference 
mean blood serum spectra between Control and MDX (bold line) with ± 2 standard deviations (thin dotted lines) of 
the Control (blue) and MDX (red) donors’ spectral data sets. 
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Table S.1. Tentative assignments of the most important regions in the Raman spectrum of blood serum for 
discrimination between HC and MDX mice, as determined by GA. 

 GA 
region 

Peak Position 
(cm-1) Vibrational Mode Contributions26-30 

1 479-507 507 (S-S)a Collagen; Cysteine 
2 535-563 541 (S-S)a  Cysteine; Cholesterol 
3 675-703 702  Cholesterol; Cholesterol Ester 
4 760-786 750 Ring breathing mode Pyrimidines of DNA/RNA bases 

5 815-844 829 (O-P-O)a; out-of-plane 
ring breathing DNA/RNA; Tyrosine 

6 872-899 
878 (C-C-N+)b Lipids 
899 (C-O-C) skeletal mode Monosaccharides; Disaccharides 

7 929-960 
940 Skeletal mode Polysaccharides 
959  Cholesterol 

8 1042-1066 1048  Glycogen 

9 1124-1156 1124 (C-C)a; (C-N)a Lipids; Proteins; Glucose 
1156 (C-C)a Proteins 

10 1260-1294 1260 Amide III Proteins 
11 1340-1377 1338 (CH2/CH3)c,d  Collagen; Lipids 
12 1547-1575 1554 Amide II Proteins 

astretching; bsymmetric stretching; cwagging; dtwisting 
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