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Abstract 
Deep neural networks (DNNs) excel at visual recognition tasks and are increasingly used as a 
modelling framework for neural computations in the primate brain. However, each DNN instance, 
just like each individual brain, has a unique connectivity and representational profile. Here, we 
investigate individual differences among DNN instances that arise from varying only the random 
initialization of the network weights. Using representational similarity analysis, we demonstrate 
that this minimal change in initial conditions prior to training leads to substantial differences in 
intermediate and higher-level network representations, despite achieving indistinguishable 
network-level classification performance. We locate the origins of the effects in an under-
constrained alignment of category exemplars, rather than a misalignment of category centroids. 
Furthermore, while network regularization can increase the consistency of learned 
representations, considerable differences remain. These results suggest that computational 
neuroscientists working with DNNs should base their inferences on multiple networks instances 
instead of single off-the-shelf networks. 
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Introduction 
Deep neural networks have recently moved into the focus of the computational neuroscience 
community. Having revolutionized computer vision with unprecedented task performance, the 
corresponding networks were soon tested for their ability to explain information processing in the 
brain. To date, task-optimized deep neural networks constitute the best model class for predicting 
activity across multiple regions of the primate visual cortex (Cadieu et al., 2014; Guclu and van 
Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins et al., 2014). 
Yet, the advent of computer vision models in computational neuroscience raises the question in 
how far network internal representations generalize, or whether network instances, just like 
human brains, exhibit individual differences due to their distinct connectivity profiles. Strong 
differences would imply that the common practice of analyzing a single network instance is 
misguided and that groups of networks need to be analyzed to ensure the validity of insights 
gained. 
 
Here we investigate individual differences among deep neural networks that arise from a minimal 
experimental intervention: changing the random seed of the network weights prior to training while 
keeping all other aspects identical. Our analyses of the network internal representations learned 
during training build on representational similarity analysis (RSA, Kriegeskorte, 2008), a 
multivariate analysis technique from systems neuroscience. RSA is based on the concept of 
representational dissimilarity matrices (RDMs), which characterize a system's inner stimulus 
representations in terms of pairwise response differences. Together, the set of all possible 
pairwise comparisons provides an estimate of the geometric arrangement of the stimuli in high-
dimensional activation space. The representations of two DNNs are considered similar if they 
emphasize the same distinctions among the stimuli, i.e. to the degree that their RDMs agree. 
Comparisons on the level of RDMs, which can be computed in source spaces of different 
dimensionality, thereby side-step the problem of defining a correspondence mapping between 
the units of the networks. Due to this, RSA is commonly used in cognitive computational 
neuroscience to compare DNNs to brain data. Comparing different DNN instances using the same 
technique therefore has the advantage that the current set of results will be directly applicable to 
the common neuroscientific use case. To quantify RDM agreement across network instances, we 
define representational consistency as the shared variance between network RDMs (squared 
Pearson correlation of the upper triangle of the RDMs; Figure 1). 
 
Based on this analysis approach, we visualize the internal network representations and test them 
for consistency. We then compare the size of the effects observed to differences between 
networks trained with different input statistics and test the reliability of the observations across 
multiple activity distance measures. Subsequently, we explore possible causes for these 
individual differences and investigate their interaction with network regularization. 
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Fig 1 | Characterizing network internal representations via representational similarity analysis and 
representational consistency. (A) Our comparisons of network internal representations were based on 
their multivariate activation patterns, extracted from each layer of each network instance as it responded to 
each of 1000 test images. (B) These high-dimensional activation vectors were then used to perform a 
representational similarity analysis (RSA). The fundamental building blocks of RSA are representational 
dissimilarity matrices (RDMs), which store all pairwise distances between the network's responses to the 
set of test stimuli. Each test image elicits a multivariate population response in each of the network's layers, 
which corresponds to a point in the respective high-dimensional activation space. The geometry of these 
points, captured in the RDM, provides insight into the nature of the representation, as it indicates which 
stimuli are grouped together, and which are separated. (C) To compare pairs of network instances, we 
compute their representational consistency, defined as the shared variance between network RDMs. 
 
 
Results 
We here investigate the extent to which deep neural networks exhibit individual differences. We 
approach this question by training multiple instances of the All-CNN-C network architecture 
(Springenberg et al., 2015) and a custom architecture (VGG-753) on an object classification task 
(CIFAR-10), followed by an in-depth analysis of resulting network internal representations. 
Network instances varied only in the initial random assignment of weights, while all other aspects 
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of network training were kept identical. All networks performed similarly in terms of classification 
accuracy (ranging between 84.4 - 85.9% and 77.6 - 78.95% top-1 accuracy for All-CNN-C, and 
VGG-753, respectively). 
 
To study and compare network internal representations, we extracted network activation patterns 
for 1000 test images (100 for each of the CIFAR-10 categories, Figure 1A) and characterized the 
underlying representations in terms of pairwise distances in the high-dimensional activation space 
(Figure 1B). The reasoning of this approach is that if two images are processed similarly in a given 
layer, then the distance between their activation vectors will be low, whereas images that elicit 
distinct patterns will have a large activation distance. The matrix of all pairwise distances (size 
1000x1000) thereby describes the representational geometry of the test images, i.e. how 
exemplars of various object categories are grouped and separated by the units of a given layer 
(Kriegeskorte and Kievit, 2013). 
 
Stronger category clustering and individual differences in later network layers 
To visualize the representational geometries of different network instances and layers, we 
projected the data into 2D using multidimensional scaling (MDS, metric stress). As can be seen 
in Figure 2 for two exemplary cases of All-CNN-C, subsequent network layers increasingly 
separate out the different image categories, in line with the training objective.  
 
 

 
 
Fig 2 | 2D visualization of representational geometries in different depths of two network instances. 
The internal representations of two network instances were characterized based on their representational 
geometries. We computed the pairwise distances (correlation distance) between activity patterns in 
response to 1000 test stimuli from 10 visual categories and visualized them in 2D via multidimensional 
scaling (MDS; metric stress criterion). With increasing depth, networks exhibit increased category clustering 
and emerging differences. 
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Moving closer to the question of individual differences in network representations, we next 
investigated similarities on the level of RDMs. We again computed pairwise distances, but this 
time not based on activation patterns, but rather based on the network RDMs. Comparing patterns 
of representational distances has multiple benefits. For one, they offer a characterization of 
network internal representations that is largely invariant to rotations of the underlying high-
dimensional space, including a random shuffle of network units (see Supporting Information for 
more details). Secondly, representational spaces of varying dimensionality can be directly 
compared, as the dimensionality of the RDM is fixed by the number of test images used.  
 
This second-level distance measure was computed across all network layers and instances. 
Visualizing the respective distances in 2D (MDS, metric stress), we observe that representations 
diverge substantially with increasing network depth (Figure 3). While different network instances 
are highly similar in layer 1, indicating agreement in the underlying representations, subsequent 
layers diverge gradually with increasing network depth. Note that for later layers, the blue stripes 
parallel to the main diagonal indicate higher similarity across layers within a given network 
instance compared to the similarities across instances for a given network layer (see figure S2). 
 

 
 

Fig 3 | Network individual differences emerge with increasing network depth. (A) We compare the 
representational geometries across all network instances (10) and layers (9 convolutional) for All-CNN-C 
by computing all pairwise distances between the corresponding RDMs. (B) We projected the data points in 
(A) (one for each layer and instance) into 2D via MDS. Layers of individual network instances are connected 
via grey lines. While early representational geometries are highly similar, individual differences emerge 
gradually with increasing network depth.  
 
Representational consistency decreases with increasing network depth 
Following this initial qualitative assessment, we performed quantitative analyses for each network 
layer by testing how well the distribution of representational distances generalizes across network 
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instances. This was accomplished by computing representational consistency, defined as the 
shared variance between the lower triangle of the respective RDMs (Figure 1 C, each triangle 
contains 499,500 distance estimates, results are obtained from 45 pairwise network comparisons 
for each respective layer and network architecture as 10 network instances are trained for each 
architecture). This measure of consistency is based on all pairwise distances between category 
exemplars (100 exemplars for 10 categories each). We therefore refer to this as exemplar-based 
consistency. 
 
Two network architectures were tested (All-CNN-C, and VGG-753, see methods for details). 
Correlation distance was chosen as dissimilarity measure in computing RDMs, as it is currently 
the most frequently used distance measure in systems and computational neuroscience. As 
shown in Figure 4, representational consistency drops substantially with increasing network depth 
for both network architectures. To get better insights into the size of this effect, additional networks 
were trained (i) based on different images originating from the same categories, and (ii) based on 
different categories (see methods for details). The observed drops in consistency for different 
weight initializations (to about 44% and 71% for All-CNN-C and VGG-753, respectively), are 
comparable to training the networks with the same distribution of categories but completely 
separate image datasets (Figure 5, blue vs. orange). 
 
To ensure that the effects observed are not specific to correlation distance used in computing the 
RDMs, additional analyses were performed based on cosine, (unit length pattern-based) 
Euclidean distance and norm difference (measuring the absolute difference in the norm activation 
vectors, Figure 6). In all cases, representational consistency was observed to drop considerably 
with increasing network depth. These results demonstrate that while different network instances 
reach very similar classification performance, they do so via distinct internal representations in 
the intermediate and higher network layers. 

 

 
 

Fig 4 | Representational consistency decreases with increasing network depth. Shown is the average 
representational consistency for each layer computed across all pairwise comparisons of network instances 
(45 comparisons for 10 instances, computed separately for two network architectures). Error bars indicate 
95% confidence intervals (bootstrapped). 
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Causes of decreasing representational consistency 
We have shown above that different network instances can exhibit substantial individual 
differences in their internal representations. Next, we investigated potential mechanisms that may 
contribute to this effect. 
 
Our first analyses are based on the observation that the training goal of maximal category 
separability does not put a strong constraint on the relative positions of categories and category 
exemplars in high-dimensional activation space. To investigate this possibility, for the 10 network 
instances of All-CNN-C used in the previous section, we first computed a category clustering 
index (CCI) for each network layer using the network responses to the set of 1000 test images 
(drawn from 10 categories). CCI is defined as the normalized difference in average distances for 
stimulus pairs from different categories (across) and stimulus pairs from the same category 
(within): CCI = (across - within) / (across + within). CCI approaches zero with no categorical 
organization and is positive if stimuli from the same category cluster together (maximum possible 
CCI = 1). We find a negative relationship between CCI and representational consistency (Pearson 
r = -0.92, p = 0.001; (Pernet et al., 2013)), indicating that network layers that separate categories 
better do exhibit stronger individual differences. 
 
 

 
 
Fig 5 | Representational consistency declines with increasing network depth when trained on 
separate image sets. To better understand the size of the effect in Figure 4, we trained a separate set of 
networks based on (A) All-CNN-C,  (B) VGG-753) while using different images from the same categories 
but the same seeds (orange), and different categories, different images, and same seeds (green). The 
minimal intervention of using a different seed for the random weight initialization (shown in blue, data 
equivalent to Figure 4) affects the internal representations about as much as using a completely different 
set of training images (10 categories per training set; orange). Please note that part of the larger drop in 
representational consistency for training with different categories (5 categories per training set; green) can 
be attributed to training only five categories while computing the RDMs with images from all 10 categories. 
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Fig 6 | Representational consistency declines with increasing network depth irrespective of 
distance measure. Representational consistency decreases with increasing layer depth for both tested 
DNN architectures, and across multiple different ways to measure distances in multivariate population 
responses (cosine (A), Euclidean distance and unit length pattern-based Euclidean distance (B), and 
differences in vector norm (C)). We show the average representational consistency for each layer, 
computed across all pairwise comparisons of network instances (45 comparisons for 10 instances), 
together with a 95% bootstrapped confidence interval. 
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Fig 7 | Representational consistency and category clustering are negatively correlated. Optimized 
for categorization performance, deep neural networks aim to separate images from different categories in 
the network activation space. Here we show that increasing category separability across All-CNN-C network 
layers (estimated here by a category clustering index) exhibits a negative relationship with the mean 
representational consistency across all trained network instances. Individual differences emerge while 
category clustering increases (95% bootstrapped CIs shown as grey area).  
 
This correlation is consistent with two possible scenarios: networks can exhibit a different 
arrangement of the overall category clusters, and different arrangements of individual images 
within the category clusters, as both are not constrained by the training objective to categorize. 
To investigate the variability in general cluster placement, we computed representational 
consistency based on the ten category centroids (RDMs computed from the pairwise distances 
of average response patterns for each category). This analysis revealed that this centroid 
consistency is considerably higher than the previous exemplar-based consistency (Figure 8A, 
μcentroid-based = 0.8801, CI95 = [0.8700, 0.8905] vs. μexemplar-based = 0.4429, CI95 = [0.4291, 0.4551] for 
correlation distance; μcentroid-based = 0.9515, CI95 = [0.9450, 0.9571] vs. μeexemplar_based = 0.7384, CI95 
= [0.7312, 0.7466] for Euclidean distance, all computed for the final layer of All-CNN-C). This 
finding cannot be explained by the lower number of pairwise comparisons (45 vs. 499,500 for 
centroid and stimulus RDMs, respectively) or the operation of averaging large numbers of 
activation patterns (each centroid is computed based on 100 activation patterns), as computing 
centroids from random stimulus assignments yielded significantly lower centroid-based 
representational consistency (95% CI of centroid-based consistency based on random class 
assignment [0.14, 0.81], Figure 8B). The reliable arrangement of category centroids suggests that 
the main source of the observed individual differences lies in the arrangement of category 
exemplars within the category clusters. This view was corroborated by computing consistency not 
on the whole exemplar-based RDM that contains all pairwise distances, but only on the 
dissimilarities of exemplars of the same categories (within-category consistency). Here we 
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observe a drop in consistency that is largely comparable to the original decrease for exemplar-
based consistency when investigating the whole RDM (Figure 8A). 
 
In addition to an individual placement of category centroids and category exemplars, some 
properties of the underlying dissimilarity measures can be a source for lower representational 
consistency, especially in cases of a rotated representational space. Many commonly used DNNs 
use rectified linear units (ReLUs) as a nonlinear operation, resulting in unit activations ≥ 0. While 
overall rotations of this all-positive space will not affect classification performance, they can affect 
correlation and cosine distances (see Figure 9, and Figure S1 demonstrating the additional effect 
that rotations around the origin affect correlation distances but not cosine distances).  
 
To test the magnitude of this effect, we subtracted the mean activation pattern across all test 
images from the units of a given layer (cocktail blank normalization). As shown in Figure 10, this 
normalization leads to increases in representational consistency for RDMs computed using 
correlation or cosine distance. While the size of the effect is comparably small, these results 
indicate that a cocktail blank normalization can be of potential benefit when comparing correlation- 
or cosine-based RDMs of multiple DNNs or DNNs and brain data. 
 
 

 
 

Fig 8 | Category centroids are highly consistent across network instances. (A) Centroid-based 
representational consistency (green) remains comparably high throughout, whereas the consistency of 
within-category distances decreases significantly with increasing network depth. This indicates that 
differences in the arrangement of individual category exemplars, rather than large scale differences 
between class centroids are the main contributor to the observed individual differences. (B) High centroid-
based representational consistency cannot be explained by the smaller RDMs or the averaging of multiple 
response patterns, as centroids of randomly sampled classes show a significantly lower mean consistency 
(95% CI in light grey background). 
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Fig 9 | Rotation of a ReLU activation space affects correlation- and cosine-distance estimates. (A) 
Three exemplary classes (blue, green, red) are rotated in the all-positive (post-ReLU) activation space, 
here shown as a 2D example. (B) When comparing the activation space before (left panel) and after the 
rotation, the angle between pairs of images can differ markedly, thereby leading to lower representational 
consistency despite an overall stable data arrangement. (see Figure S1 for simulations using correlation 
distance). 
 
 
 

 
 
Fig 10 | Cocktail blank normalization increases consistency for correlation and cosine distances. 
Centring the data via cocktail blank normalization increases representational consistency for correlation (A) 
and cosine distance (B). Euclidean distance measures are not affected, as the resulting representational 
geometries are rotationally invariant. 
 
 
 
 
Network regularization (Bernoulli dropout) affects representational consistency 
An explanation of individual differences via missing constraints imposed by the training objective 
raises the possibility that explicit regularization during network training can provide the missing 
representational constraints (McClure and Kriegeskorte, 2018; Srivastava et al., 2014). We 
investigated this possibility experimentally by training networks at various levels of dropout 
regularization. We trained 10 network instances of All-CNN-C for each of 9 dropout levels 
(Bernoulli dropout probability ranging from 0 to 0.8, a total of 90 network instances trained) and 
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subsequently tested the resulting representations for their ability to classify input, and for their 
representational consistency. To test for differences in task performance, we computed the top-1 
categorization accuracy for the training- and test data. For the test data, we contrast network 
inference with and without dropout. In line with the literature (Srivastava et al., 2014), we find 
reduced training accuracy, but enhanced test accuracy at moderate dropout levels (Figure 11 A). 
 
The effects of dropout training on representational consistency were again investigated using 
layer 9 of All-CNN-C, which exhibited the lowest consistency levels in our original analyses. These 
analyses revealed that dropout regularization yields increased representational consistency 
across network instances. When using no dropout at test time, a dropout probability of 0.6 during 
training provides the highest consistency level, reaching an average of 64.7% shared variance 
(rightmost column in Figure 11 B). 
 
In analogy to our analyses of test accuracy when applying dropout at the time of inference, we 
investigated in how far this may affect representational consistency estimates. For each network 
instance, we computed 10 RDM samples while keeping the dropout mask identical across 
network instances and the rate identical to training. The average of a varying number of up to 10 
RDM samples was subsequently used to compute representational consistency across network 
instances. We find that increasing the number of RDM samples led to increased representational 
consistency for all dropout levels. Maximum representational consistency was observed for 10 
RDM samples at a dropout probability of 0.6, reaching an average of 67.8% shared variance 
across network instances. This suggests that dropout applied during training and test can 
increase the consistency of the representational distances across network instances. 
 
As a possible explanation for how dropout could have affected representational consistency, we 
computed the category clustering index (CCI) for the penultimate layer of All-CNN-C and different 
dropout levels. This is based on the idea that stronger clustering around the category centroids in 
the latest network layer will at the same time yield higher consistency, as the arrangement of 
category centroids is highly consistent. As shown in Figure 11C), we observe a positive 
relationship between dropout probability and category clustering. However, while clustering is 
further enhanced for dropout levels >0.6, representational consistency starts decreasing. To 
further explore this effect, we re-computed centroid consistency for highest dropout level (0.8) 
and observed that centroid consistency is significantly decreased (μdropout=0.8 = 0.7422, CI95 = 
[0.6881, 0.7854]) compared to the no dropout case (μno_dropout = 0.8801, CI95 = [0.8700, 0.8905]). 
Thus, while denser clustering around centroids increases consistency in cases where the 
centroids themselves are consistent, high levels of dropout lead to less consistent centroids and 
therefore to an overall decrease in consistency.  
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Fig 11 | Effects of dropout regularization on task performance and representational consistency. 
(A) Average task performance across all network instances (shown with 95% CI) for the training set (blue), 
test set (orange), and when using dropout sampling at inference time for the test set (red, 1 sample). (B) 
Representational consistency in the final convolutional layer of All-CNN-C as a function of dropout 
probability during training and test (dropout probability at test time equal to training dropout). When using 
dropout at test time, multiple samples can be drawn for each stimulus in the test set (creating multiple 
RDMs). Consistency for network pairs was computed for the respective average RDM for each instance. 
Consistency was observed to be highest when 10 samples were obtained from a DNN trained and tested 
at a dropout rate of 60%. (C) The clustering index (also see Figure 7) increases with increasing Bernoulli 
dropout probability, here shown for the penultimate layer of All-CNN-C. 
 
 
Representational consistency across training trajectories 
We have observed above that representational consistency across network instances is 
remarkably stable for category centroids. This raises the question as to whether this alignment is 
the result of task training, or whether category centroids are already well-aligned early during 
training. To investigate this, we computed representational consistency (exemplar-based and 
centroid-based) across different network instances and training epochs. We extracted activation 
patterns from each network instance at different stages of training and subsequently computed 
pairwise representational consistency, again using the penultimate layer of All-CNN-C. Individual 
networks exhibit high consistency after the first epoch, which however decreases from thereon, 
indicating that task training enhances individual differences. Yet, from very few epochs onwards 
networks exhibit stable representations with each network remaining on its own learning trajectory 
(Figure 12A, multiple diagonal lines indicate stable representations across training compared to 
other network instances). Consistency seems to saturate from epoch 150 onwards, indicating 
overall smaller changes in the network internal representations. Consistent with our earlier results, 
centroid-based consistency is overall higher across network instances even for the earliest 
epochs (Figure 12B). These results indicate that task training leads to decreased consistency, 
whereas learning trajectories of individual networks across time remain surprisingly robust. 
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Fig 12 | Penultimate-layer representational consistency across training consistency for RDMs 
based on individual images and on class centroids. (A) Exemplar-based representational consistency 
across epochs [1 to 10] (left) and across epochs  [1 to 350 in steps of 50] (right). (B) Same as A, but RDMs 
are based on class centroids instead of individual images. After the first epoch the representations across 
network instances show elevated image- and centroid-based consistency (left panel in both A and B, 
respectively). However, consistency decreases with subsequent epochs, indicating that task training 
increases individual representational differences. From very few epochs onwards, representations become 
remarkably stable, saturating around epoch 150, indicating comparably smaller representational 
adjustments induced by training. 
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Discussion 
In a series of experiments, we here investigated how the minimal intervention of changing the 
initial set of weights in feedforward deep neural networks, while keeping all else constant, affects 
their internal representations. Importantly, while many metrics exist to compare DNN 
representations (Kornblith et al., 2019; Raghu et al., 2017; Wang et al., 2018), our current 
analyses were explicitly chosen to match techniques commonly used in neuroscience to compare 
DNNs to brain data. The current set of results therefore directly transfers to the relevant 
neuroscientific publications. Operationalized as representational consistency, we demonstrated 
that significant individual differences emerge with increasing layer depth. This finding held true 
for various distance measures commonly used to compute the RDMs (correlation distance, cosine 
distance, variants of Euclidean distance, and norm differences). RDMs computed from Euclidean 
distances showed the least differences. In part, this can be attributed to the fact that this distance 
measure is sensitive to differences in overall network activation magnitudes, which may 
overshadow more nuanced pattern dissimilarities, in line with the lower consistency observed for 
norm-standardizing Euclidean distances (unit-length pattern based Euclidean distance). Although 
further experiments are required, we expect our results to generalize to representations learned 
by (unrolled) recurrent neural network architectures (Kar et al., 2019; Spoerer et al., 2019), if not 
explicitly constrained (Kietzmann et al., 2019b). For an investigation of recurrent neural network 
dynamics arising from various network architectures see Maheswaranathan et al. (2019). 
 
Having demonstrated significant network individual differences, we explored multiple non-
exclusive explanations fort the effects. Based on the hypothesis that the network training objective 
of optimizing for categorization performance may not sufficiently constrain the arrangement of 
categories and individual category exemplars, we analyzed category clustering, centroid 
arrangement, and within-category dissimilarities. All of these analyses point to a high consistency 
of category centroids, rendering differences between individual category exemplars the main 
contributor of the differences observed. As an additional source of variation, we identified an 
interaction between properties of the distance measures used and the ReLU nonlinearity in the 
DNNs. We showed that cocktail blank normalization in the DNN activation patterns can increase 
consistency for measures that are not robust to rotations that are not centered around zero (cosine 
distance) or general rotations (correlation distance). In addition to this, we showed that network 
regularization via dropout during training and test can enhance representational consistency 
estimates. As a partial explanation for this increase, we demonstrated that category centroids are 
highly consistent and that dropout enhances category clustering. 
 
Our finding of considerable individual differences has implications for computational neuroscience 
where single pre-trained computer vision networks are often used as models of information 
processing in the brain. Neglecting the potentially large variability in network representations will 
likely limit the generality of claims that can be derived from comparisons between DNNs and 
neural representations. While we here present multiple approaches that can increase consistency 
(cocktail-blank, dropout, and the choice of distance measure), significant differences remain. For 
computational neuroscience to take full advantage of the deep learning framework (Cichy and 
Kaiser, 2019; Kietzmann et al., 2019a; Kriegeskorte and Douglas, 2018; Richards et al., 2019), 
we therefore suggest that DNNs should be treated similarly to experimental participants, as 
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analyses should be based on groups of network instances. Representational consistency as 
defined here will give researchers a way to estimate the expected network variability for a given 
training scenario, and thereby enable them to better estimate how many networks are required to 
ensure that the insights drawn from them will generalize. In addition to the impact on 
computational neuroscience, we expect the concept of representational consistency, which can 
be applied across different network layers, architectures, or training epochs, to also benefit 
machine learning researchers in understanding differences among networks operating at different 
levels of task performance.  
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Materials and methods 
 
Deep neural network training 
The main architecture used throughout all experiments presented here is All-CNN-C 
(Springenberg et al., 2015), a 9 layer fully convolutional network that exhibits state of the art 
performance on the CIFAR-10 dataset. To optimize architectural simplicity, the network uses only 
convolutional layers with a stride of 2 at layer 3 and 6 to replace max- or mean-pooling. We used 
the same number of feature maps (96, 96, 96, 192, 192, 192, 192, 192, 10) and kernel-sizes (3, 
3, 3, 3, 3, 3, 3, 1, 1) as in the original paper (Figure 1 A). 
 
To show that our results generalize beyond a single DNN architecture we trained an additional 
architecture reminiscent of VGG-S (Chatfield et al., 2014). In contrast to the original VGG-S 
architecture, we replaced the two deepest, fully-connected layers with convolutional layers to 
reduce the number of trainable parameters and thus the training duration by ~80%. The number 
of feature maps used per layer was [96, 128, 256, 512, 512, 1024, 1024], and the kernel sizes 
were [7, 5, 3, 3, 3, 3, 3]. We used ReLU as the activation function at every layer. Mirroring the 
kernel sizes across layers, we refer to this architecture as “VGG-753”.  
 
All-CNN-C network instances were trained for 350 epochs using a Momentum term of 0.9 and a 
batch size of 128. All networks of the VGG-753 architecture were trained for 250 epochs using 
ADAM with an epsilon term of 0.1 and a batch size of 512. For both architectures, we used an 
initial learning rate of 0.01, the L2 coefficient was set to 10-5, and we performed norm-clipping of 
the gradients at 500. Training of the main DNNs was performed on the full CIFAR-10 image set. 
CIFAR-10 consists of 10 categories of objects, each of which is represented by 5,000 training and 
1,000 test images. Ten network instances were trained for the main analyses, all without dropout.  
 
Network training was identical across all instances (same architecture, same dataset, same 
sequence of data points), with the exception of the random seed for the weight initialization. As a 
result, the networks only differ in the initial random weights, which are, however, sampled from 
the same distribution (He et al., 2015).  
 
 
Comparing layer-internal representations across network instances 
 
Representational similarity analysis and representational consistency 
We characterize the internal representations of the trained networks based on representational 
similarity analysis (RSA, Kriegeskorte, 2008), a method used widely across systems 
neuroscience to gain insight into representations in high-dimensional spaces.  
 
RSA builds upon the concept of representational dissimilarity matrices (RDMs), which store all 
pairwise distances between the stimulus-driven pattern activations in response to a large set of 
input stimuli (Figure 1 A). Here we use 1,000 test stimuli, 100 from each of the 10 CIFAR-10 
categories, such that the resulting RDMs have a size of 1000x1000 (Figure 1 B). The RDMs are 
symmetric around the diagonal and therefore contain 499,500 unique distance estimates. In the 
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current set of experiments, pairwise distances (using correlation-, cosine-, and (unit length 
pattern-based) Euclidean-distance) are measured in the activation space of individual layers, 
where each unit corresponds to its own input dimension. The resulting matrix thereby 
characterizes the representational space spanned by the network units, as it depicts the 
geometric relations of all different input stimuli with respect to each other. This focus on relative 
distances renders RSA largely invariant to rotations of the input space (including random shuffling 
of input dimensions, but see Figure S1). It is therefore well suited for comparisons across deep 
neural network instances. 
 
Because RDMs are distance matrices, they can be used as a basis for multidimensional scaling 
(MDS) to project the high-dimensional network activation patterns into 2D. While not a lossless 
operation, as high-dimensional distances can usually not be perfectly reproduced in 2D, MDS 
does nevertheless enable us to gain first insights into the internal organization by visualizing how 
network layers cluster the 1000 test images from the 10 different categories. 
 
In addition to enabling 2D visualizations of network internal representations (or, put differently, 
the organization of test-images in high-dimensional layer activation space, Figure 2), RDMs 
themselves can be used as observations (each RDM is a point in the high-dimensional space of 
all possible RDMs) and thereby form the basis for computing "second-level" distance matrices. 
The resulting distance matrices can be used to compare representations across multiple network 
layers and network instances (rather than test-images as in first-level RDMs). Here, we compute 
a second level distance matrix based on the RDMs for all network layers and instances. Again, 
we use MDS to visualize the data points in 2D (Figure 3). 
 
For a more quantitative comparison of network internal representations, characterized here in 
terms of RDMs, we define representational consistency as the shared variance across 
representational distances observed in high-dimensional network activation space. 
Representational consistency is computed as squared Pearson correlation between RDMs 
(Figure 1 C). If two network instances separate the test stimuli with similar geometry, the 
representational consistency will be high (max 1), whereas uncorrelated RDMs exhibit low 
representational consistency (min 0). 
 
 
Comparing the effect of weight initialization to the effects of varying input statistics 
The main experimental manipulation in this work consists of using different random weights at the 
point of network initialization. To better understand the size of the effects on network internal 
representations, we compared the effects observed to differences that emerge from using 
different images from the same categories (within-category split), or different categories 
altogether (across-category split). To perform this control analysis, two subsets of CIFAR-10 were 
created. For the across-category division, we split the training and test sets on the level of 
categories. This resulted in two datasets with 5 categories each while preserving the number of 
images per category (5,000 training, 1,000 test images). For the within-category division, the 
dataset was split based on images rather than categories. This preserves the number of 
categories (10) but halves the number of training images per category. For an illustration of the 
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splitting procedure that resulted in the within-category, and the across-category splits of CIFAR-
10, see Figure 13.  
 
In summary, the consistency of network instances resulting from different random weight 
initializations (different seeds, same categories, same images), was compared with (a) different 
images (same seed, same categories), and (b) different categories (same seed, different images; 
Figure 5). Five networks were trained for each half of the dataset for both splits (a, and b, resulting 
in 5x2=10 network instances each). Representational consistency was computed using pairs of 
network instances with the same random seed (5 pairs for each split). Note that representational 
consistency was computed based on 1,000 test images from all 10 CIFAR-10 categories, 
independent of the training set used to train the networks.  
 

 
 
Fig 13 | Visualization of the CIFAR-10 training sets used. Different categories are shown as distinct 
colors. Left panel: The full CIFAR-10 training set consists of 10 categories with 5,000 images each, 50,000 
images in total. Center panel: the within-category split dataset contains 10 categories with 2,500 images 
each, 25,000 images in total for each subset. Right panel: the across-category split dataset contains 5 
categories with 5,000 images each, again 25,000 images in total for each subset. When splitting across 
categories, the number of animal- and vehicle-categories of the full CIFAR-10 set was equally distributed 
across the two subsets. 
 
 
Category clustering and its relation to representational consistency 
To measure how well the layers of a network separate exemplars from different categories, we 
computed a category clustering index (CCI), which contrasts the distances of stimuli within the 
same category with the distances for stimuli originating from different categories. Based on the 
RDM computed for the 1000 test stimuli (100 stimuli per each of 10 categories), CCI contrasts 
distances of category exemplars within the category with distances across categories. It is defined 
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as CCI = (across - within) / (across + within) and was computed for each layer of each network 
instance trained. CCI has a maximum of 1 (all categories cluster perfectly and are perfectly 
separable), and a minimum of 0 (no separability, same distances across and within categories). 
 
In addition, we investigated the relationship between CCI and representational consistency. For 
each layer we computed the mean representational consistency across all 45 pairwise 
comparisons between 10 network instances and used Pearson correlation to demonstrate its 
relation to the mean class clustering indices (CCIs) across all 10 training seeds (Figure 7).  
 
 
Investigating causes for decreasing representational consistency 
To better understand the origins of changes in representational consistency, we compare (i) 
exemplar-based consistency, (ii) centroid-based consistency, (iii) consistency of within-category 
distances, and the (iv) effects of cocktail-blank normalization. 
 
To understand whether a misalignment in the arrangement of individual category exemplars or 
the arrangement of entire classes is leading to decreased consistency, we computed the 10 class 
centroids and used their position in activation space to arrive at centroid-based representational 
consistency. This was compared with consistency based on all 1,000 stimuli (exemplar-based 
representational consistency), and consistency computed when only distances between 
exemplars of the same categories were considered (within-category consistency). 
 
To rule out effects of changed RDM size in case of centroid-based RDMs (centroid RDMs contain 
45 pairwise distances whereas the exemplar-based RDMs are composed of 499,500 entries), we 
computed a null distribution of RDM consistency based on centroids computed from randomly 
sampled classes. 
 
Finally, to test in how far the distance measure used, rather than the representational geometries 
themselves, could be the source of individual differences (see Supplemental Materials), we 
performed a cocktail blank normalization by subtracting the mean activation pattern across all 
images from each network unit, before computing the RDMs and representational consistency. 
 
 
Experiments with regularization (Bernoulli dropout) 
In an additional set of experiments, we explored how network regularization (here in the form of 
Bernoulli dropout) can affect network internal representations. Using the full CIFAR-10 set, we 
trained a set of 10 networks for each of 9 dropout levels (dropout probability ranging from 0 to 
0.8, each of the resulting 90 DNNs was trained for 350 epochs). After training, we extracted 
network activations for a set of test images either by using no dropout at test time or by using 
multiple dropout samples for each test image. We obtained up to 10 samples extracted for each 
image while keeping the Dropout mask identical across network instances and the dropout rate 
identical to training. We created one RDM per sample and then averaged up to 10 RDMs to obtain 
a single RDM representing the expected representational geometry upon dropout sampling. 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898288
http://creativecommons.org/licenses/by-nc/4.0/


Supplemental materials 
 
 

 
 
Fig S1 | Rotation sensitivity of correlation distance. We computed the distance between two random 
vectors before and after both vectors were randomly rotated around the origin using the same rotation 
matrix. This procedure was performed for 100 vector pairs in the above simulation. Rotating both vector 
pairs does not have an effect when Euclidean or cosine distance is used to compute the vector pair 
distances (A, B). However, when correlation distance is used, rotations around the origin lead to decreased 
overall distances, and an imperfect correlation between the two distance estimates. Computing a correlation 
distance involves a projection of the two vectors onto a plane cutting through the origin that is orthogonal 
to the all-1-vector. This projection differs if the original vectors are rotated. (C). Accordingly, when RDMs 
are based on correlation distance (here based on 10 example responses), rotations around the origin lead 
to decreased representational consistency, despite the fact that the relative arrangement of datapoints 
remained identical after the rotation (D). 
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Fig S2 | Consistency index across vs. within layers. We computed consistency across network 
instances (and within layers, e.g. off-diagonal elements in Fig. 3 A celllayer_4,layer_4) and subtracted its mean from 
consistency computed within instances (and across layers, e.g. diagonal elements in Fig. 3 A in celllayer_4,layer_5), 
standardized by the overall mean. This indicates that starting at layer 4, network instances are more 
consistent across adjacent layers than instances within layers. 
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