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ABSTRACT 

Currently the majority of non-culturable microbes in sea water are yet to be discovered, 

Nanopore offers a solution to overcome the challenging tasks to identify the genomes and 

complex composition of oceanic microbiomes. In this study we evaluate the utility of Oxford 

Nanopore Technologies (ONT) sequencing to characterize microbial diversity in seawater from 

multiple locations. We compared the microbial species diversity of retrieved environmental 

samples from two different locations and time points. With only three ONT flow cells we were 

able to identify thousands of organisms, including bacteriophages, from which a large part at 

species level. It was possible to assemble genomes from environmental samples with Flye. In 

several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus 

singularis species it even produced a near complete genome. k-mer analysis reveals that a 

large part of the data represents species of which close relatives have not yet been deposited 

to the database. These results show that our approach is suitable for scalable genomic 

investigations such as monitoring oceanic biodiversity and provides a new platform for 

education in biodiversity  

 

Keywords: Metagenomics, Oxford Nanopore Technology, MinION sequencing, oceanic 

microbiome, k-mer analysis, genome assembly,  
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INTRODUCTION 

Although marine microbes have been studied for multiple decades there is still little 

knowledge on species diversity in the largest ecological environments of our planet [1-3]. 

Current database collections are estimated to represent <5% of oceanic microbial 

communities [4]. Seawater contains many non-culturable organisms, hence to understand its 

microbial ecology we need to collect sequencing data from DNA samples obtained directly 

from the environment. 

Large-scale metagenomics analyses of seawater have been performed already since 

2004 showing remarkable species diversity [5]. However, even with availability of abundant 

sequencing technology resources a complete understanding on the entire diversity remains a 

challenging task. This is due to, among others, vast water volumes and huge amounts of 

microbe communities, which through temporal and spatial dynamics contribute to the 

existence of a near infinite number of ecosystems. Recent studies focussing on marine 

biodiversity show that a variety of sediments harbour different ecosystems that are 

particularly extreme in deep ocean environments. There have been many exploratory studies 

of harnessing marine microorganism for the production of bioactive compounds, with 

versatile medicinal, industrial, or agricultural applications [6].  

Microbial diversity characterization has primarily relied on traditional high-

throughput short-read sequencing methods, such as Illumina [7-12] or 454 sequencing [5]. Even 

though Pacific Biosciences single-molecule long-read sequencing has been used to catalogue 

the diversity of coral-associated microbial communities, these studies relied on amplification 

and 16S rRNA homology to position microbes taxonomically [5,7,13,9-11,14]. Amplification, 

however, introduces biases that results in over- and underrepresentation of particular 

species. Additionally, in some cases 16S rRNA identification fails to characterize microbial 

diversity due to variability in the 16S region [15], –  for example, previous studies revealed that 

some universal primers have strong biases against the detection of pelagic bacteria (SAR11 

group) and archaea [4]. Hence 16S-based methods appear ineffective at comprehensively 

characterizing complex metagenomics samples such as from seawater. Furthermore, 

traditional 16S rRNA identification is limited to the detection of microbe presence and does 

not yield further functional insights about the organism. And finally, high-throughput short 

read sequencing methods require large scale infrastructure including sequencers and 

laboratories.  

In this pilot study we evaluate the utility of Oxford Nanopore Technologies (ONT) 

sequencing to characterize microbial diversity in seawater. ONT sequencing generates on 

average 10 Kbp reads, theoretically without upper limit, and bypasses the necessity of 

amplification. Our strategy aims to classify microbial diversification directly from 

environmental samples (two different oceanic locations were chosen) with minimal 

computational and financial cost over a relatively short time span. This will facilitate future 

scalable investigations such as monitoring oceanic biodiversity and the time and space 

dynamics these microbes are subject to. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898312doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898312
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 

Sample collection, data quality control and verification of microbial content 

We collected samples from coastal regions of both the Atlantic Ocean (west part of the English 

Channel – Roscoff, France, August 2017) and the south part of the North Sea 

(Wassenaarseslag, the Netherlands, July 2017 and August 2018). From here on, we refer to 

these as samples 1, 2 and 3. MinION 48-hour sequencing runs on every sample resulted in 

three datasets with mean read lengths that range between 1,511 and 7,983 bp (Table 2). Our 

read length distributions indicate relatively suboptimal DNA samples that resulted in shorter 

reads (Figure 1) compared to ONT read length averages of laboratory cultures. This is 

particularly apparent for sample 1. The error rate expressed in PHRED indicates similar quality 

for the three runs, our average qualities fluctuate around PHRED 12 that stands for <10% error 

per read on average. 

 
Figure 1 Read length and quality distributions of 48-hour run sequencing data for sample 1, 2 and 3 (from left 
to right). Mean read lengths vary from 1,511 up to 7,983 bp with similar base call qualities (around PHRED 12). 
Plots are based on NanoPlot plotting [23]  

 

In order to asses quality of the data we analysed homologues sequences of the three longest 

reads for all three data sets. The results (Table 1) show that several of these reads are 

representative of bacterial species that were found to be dominant by the OneCodex analyses. 

One of the reads (France – Read ID 1) also showed that we have identified a representative of 

a bacteriophage of Pelagibacter. The limited coverage of the homologues gene indicates that 

we have identified a rather distant new relative of the published bacteriophage. 
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Table 1 Blast alignment of longest raw sequencing reads. Sample) time and ocation of seawater samples, Read ID) 
read length identifier sorted from longest to smallest, Query length) the length of the read, Best hits*)* criteria for 
best hit; largest query coverage with highest identity and published study, Cov) alignment percentage that reads 
cover the reference, ID) alignment identity between query and reference, Ref length) length of the reference 
sequence 

Sample 
Read 

ID 

Query 
length 
(Kbp) 

Best hits * 
Cov 
(%) 

ID 
(%) 

Ref 
length 
(Kbp) 

Fr. 1 50 Pelagibacter phage HTVC008M [29] 2 78 147 

Fr. 2 46 
Candidatus Pelagibacter sp. 

FZCC0015 [CP031125] 
3 68 1,364 

Fr. 3 45 
Halioglobus pacificus strain RR3-57 

[CP019046] 
9 69 4,847 

NL ‘17 1 155 Brassica oleracea HDEM [LR031920] 3 68 113 
NL ‘17 2 107 No hit –repetitive stretch    

NL ‘17 3 78 
Halioglobus japonicus strain NBRC 

107739 [CP019450] 
2 69 4,085 

NL ‘18 1 161 Flavobacterium columnare [31] 28 68 3,329 

NL ‘18 2 149 
Clostridium tetani strain Harvard 

49205 [CP035787] 
<1 69 2,807 

NL ‘18 3 139 
Micromonas sp. RCC1109 virus 

MpV1 [30] 
23 74 184 

 

To confirm that our double filtering method indeed selects for microbial DNA we have used 

16S rRNA primers that are known to identify a wide range of microbial genomes. FastPCR 

aligns the currently ‘best available’ 16S rRNA primer sequences [25] to raw sequencing data 

and shows microbial content in all three raw sequencing datasets. We found 23, 178 and 188 

hits aligning both forward and reverse primers that span between 420 and 470 bp (Table 2). 

These hits have a minimum of 80% alignment identity and ranged up to 100% matches. Blast 

searches of regions that have <80% sequence identity did not result in hits originating from 

16S rRNA hence do not contribute to the identification of microbial content and have been 

omitted.  

Table 2 Raw sequencing data statistics of sample 1,2 and 3 

Statistics France (1) The Netherlands ’17 (2) The Netherlands ’18 (3) 

Reads 370,371 1,316,823 225,200 

Bases 559,696,414 6,350,530,291 1,797,851,809 

Mean length (bp) 1,511 4,822 7,983 

Max length (bp) 49,807 155,979 161,655 

16S reads 23 178 188 
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Seawater characterization using k-mer classification 

 
Figure 2 Taxonomic tree on a subset of the data generated from sample 1 data. Every node stands for a 
taxonomical ID that is supported with at least 831 reads. In red the most abundant species present in all three 
samples. Dark blue nodes together with the red node highlight the top-5 most abundantly present species in this 
sample. The yellow node indicates the most prominent species difference between the two locations.  
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Figure 3 A subset of the data set from sample 2, every node is supported with minimally 2048 reads. The red 
node indicates the most abundant species over all three datasets, together with dark blue nodes it comprises 
the top-5 most abundant species in this dataset. Particularly underrepresented is species Candidatus 
Pelagibacter (grey node) compared to sample 1 and 3. 
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Figure 4 Taxonomic tree on a subset of sequencing data from sample 3, every node is supported with at least 
588 reads. Again the red node indicates the overall most abundant species, and together with dark blues nodes 
they form the top-5 most abundant species for this dataset. Compared to the year before Flavobacteriales 
bacterium is underrepresented (green node). 
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Using OneCodex [26] we generated classification trees for the three datasets. These are built 

from raw sequencing data and indicate the taxonomic relation between the detected 

microbial classes. This relation is based on taxonomic identifiers (taxids) provided by the NCBI 

taxonomy database. For visualization purposes these taxonomic trees are subsets of the 

complete classifications: every node is supported with a minimum threshold of 831, 2,048 and 

588 reads for samples 1, 2 and 3, respectively. 

Despite the fact that a large part of all three datasets could not be classified (47%, 

69% and 38% for sample 1, 2 and 3, respectively), all taxonomic trees highlight the complexity 

of microbial communities present at a single site. None of our three datasets reveal an overall 

dominant species, with the largest differences between samples microbes that appear at low 

abundances. However 4.46% (sample 1), 15.66% (sample 2) and 7.82% (sample 3) of classified 

reads belong to Planktomarina temperata, which is therefore the most abundant species 

present in the three data sets combined (Figure 2, Figure 3 and Figure 4, red nodes). 

The top-5 most abundant species in sample 1 are: Candidatus Pelagibacter ubique 

(9.31% of Proteobacteria), bacterium TMED221 (8.61% of unclassified bacteria), 

Flavobacteriaceae bacterium TMED238 (4.48% of the FCB group), Planktomarina temperata 

(4.46% of Proteobacteria) and Cryomorphaceae bacterium MED-G11 (4.16% of the FCB group) 

(Figure 2, red and dark blue nodes). Approximately 2% of classified reads belong to species 

Nereida ignava, compared to less than 0.04% from sample 2 and 3 it is the most prominent 

difference between the two locations (Figure 2, yellow node). 

In the second sample four of the top-5 most abundant species belong to the same 

species: Planktomarina temperata (15.66% of Proteobacteria), Flavobacteriales bacterium 

UBA3446 (5.54% of the FCB group), Flavobacteriales bacterium UBA7358  (5.30% of the FCB 

group), Flavobacteriales bacterium UBA4585 (5.12% of the FCB group) and Flavobacteriales 

bacterium UBA7429 (4.41% of the FCB group) (Figure 3, red and dark blue nodes). Even though 

Planktomarina temperata reads are abundantly present in all three samples they are 

particularly enriched (15.66%) in this sample compared to 7.82% from the next year and 4.46% 

from France. Additionally, the presence of Candidatus Pelagibacter ubique is 

underrepresented in this sample, 1% of all classified reads belong to this species, compared 

to ~11% and 9% in sample 1 and 3, respectively (Figure 3, grey node).  

Finally, the top-5 most abundant species from sample 3: Candidatus Pelagibacter 

ubique (9.24% of Proteobacteria), Oceanospirillales bacterium TMED91 (8.12% of 

Proteobacteria), gamma proteobacterium SCGC AAA168-P09 (8.08% of Proteobacteria), 

Planktomarina temperata (7,82% of Proteobacteria) and gamma proteobacterium SCGC 

AAA168-I18 (7.25% of Proteobacteria) (Figure 4, red and dark blue nodes). Interestingly, the 

species gamma proteobacterium are classified strain specific (Figure 4, dark blue nodes) as 

opposed to Flavobacteriales bacterium species from sample 2 and is less abundant in this 

sample (1.6%) compared to the year before (5.9%) (Figure 4, green node).  
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Figure 5 A) Venn diagram ccomparison of identified species by OneCodex, highlighting species that are time and 
space dependent and also microbes that are not. B) Overall OneCodex classification ranks per dataset, the 
majority of classified reads have been linked to a species 

The taxonomic levels assigned by OneCodex range from kingdom down to species-specific. 

Reads that cannot be linked to a particular taxonomic level are labelled ‘no rank’. In total 

1,750, 3,017 and 2,007 taxids are assigned to the data of sample 1, 2 and 3, respectively. More 

than half of the ranks that OneCodex was able to classify are assigned to species level (Figure 

5 B) in all three samples. 

Interestingly, at least 484 microbes are identified in all three samples. Some highlights 

include: 92 different Flavobacteriaceae bacterium and Flavobacteriales bacterium strains; 19 

different Candidatus Pelagibacter strains; 18 Pelagibacteraceae bacterium and 6 SAR strains. 

This indicates that these communities are less time and location dependent compared to the 

262 and 1,127 species that were found exclusively in France or Dutch areas, respectively. 

Furthermore, 607 and 129 species are exclusively observed in the Netherlands. As they exist 

at different times, they provide an initial impression of the time-dependent dynamics of these 

local communities. Finally, 135 and 77 species could be identified that are present at both 

locations, however only detectable at particular times. This could be an indication that even 

over large areas microbes are subject to time regulated dynamics. 
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Metagenomics assembly on raw sequencing data and blast verification on the top-3 longest 

contigs 

In an attempt to very OneCodex classification results as well as to assess the current 

metagenomics assemblers capabilities we subsequently assembled the three datasets 

separately. We have assembled our complex metagenomics datasets with Flye and retrieved 

256, 1,735 and 968 contigs with mean coverage of 14x, 13x and 10x from samples 1, 2 and 3, 

respectively (Table 3). Coverage on contigs ranged up to 62, 89 and 107 for samples 1, 2 and 

3, respectively, with a lower-bound of 3x coverage for all three assemblies. As expected, 

assembly statistics on sample 1 show the least optimal assembly results (lowest number of 

contigs, smallest mean and max contig lengths and smallest N50 values) given that the data 

of this sample was smallest in volume with shortest average read lengths. Notably, although 

it has higher coverage, assembly results from sample 2 did not exceed results from sample 3. 

On the contrary, sample 3 resulted better average contig length, maximum contig length and 

N50 values compared to sample 2 (Table 3 and Table 4). 

Table 3 Flye assembly statistics 

Assembly stats France (1)  The Netherlands ’17 (2) The Netherlands ’18 (3) 

contigs 256 1,735 968 

length (bp) 8,678,102 107,863,873 94,117,952 

min length (bp) 2,432 536 494 

mean length (bp) 33,898 62,169 97,229 

max length (bp) 219,363 1,098,797 1,648,106 

N50 40,621 75,928 153,524 
 

Impressively, Flye was able to reconstruct a full genome from our third sample: 75% of our 

1.6 Mbp contig aligns with 80% identity to Candidatus Thioglobus singularis of which its 

complete genome is a single circular chromosome of 1.7 Mbp, with only 20x coverage on this 

particular contig (Table 4). The longest contig (219 Kbp) assembled from sample 1 represents 

a fragment of an entire genome and aligns with 88% identity to Candidatus Pelagibacter 

ubique, from which reads are most abundantly present in sample 1 (Table 4). 

Even though OneCodex indicates that only 397 reads originate from Candidatus 

Actinomarina, Flye was able to reconstruct contigs that exceed the length of the currently 

available reference sequence. The second (141 Kbp) and third (137 Kbp) longest contigs 

aligned with 82% and 79% identity to the reference that is just 41 Kbp in size (Table 4). 

Similarly, Flye results in a top-3 longest contigs from sample 2 and 3 that align with high 

homology to the reference and all contigs exceed the length of the reference sequence (Table 

4). 
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Table 4 Blast alignment for top-3 longest contigs for sample 1, 2 and 3. ID) identity number provided by Flye, Query 
len) the length of the contigs, Cont cov) data coverage for every contig, Best hits *) * criteria for best hit; largest 
query coverage with highest identity and published study, Query cov) how much of the contig covers the reference 
sequence, Aln ID) alignment identity between the reference and contig, Ref len) the length of the reference 
sequence the contig is aligned to. 

Sample ID 
Query 

len 
(Kbp) 

Cont 
cov 

Best hits * 
Query 

cov 
(%) 

Aln 
ID 
(%) 

Ref 
len 

(Kbp) 

1 23 219 30 
Candidatus Pelagibacter 

ubique HTCC1062 [17] 
88 78 1,308 

1 227 141 16 
Candidatus Actinomarina 

minuta [16] 
24 82 41 

1 130 137 13 
Candidatus Actinomarina 

minuta [16] 
16 79 36 

2 190 1,098 24 
Sphingobacterium sp. 

EB080_L08E11 [18] 
7 93 140 

2 71 1,017 26 
marine bacterium 

Betaproteobacterium [19] 
10 94 44 

2 8 967 27 
marine bacterium 

Gammaproteobacterium [20] 
4 80 61 

3 58 1,648 20 
Candidatus Thioglobus 

singularis [28] 
75 80 1,714 

3 376 1,283 7 
Uncultured Flavobacteriia 

bacterium [21] 
4 98 36 

3 206 1,138 12 marine bacterium [AY458647] 4 93 44 
 

Comparison of Flye assembly and raw sequencing data using OneCodex characterization 

In order to verify if new species could be identified after assembly we have compared the 

OneCodex classifications using assembly results to the classification results based on raw 

sequencing data. Using the 256 contigs Flye was able to reconstruct OneCodex identified 41 

species in total from sample 1 (Figure 6). Since reads that originate from Flavobacteriaceae 

and Pelagibacteraceae are represented in high abundance it is no surprise that detailed 

species-level classification for these two families appeared most effective, into 9 and 12 

strains (out of the 41 classified species), respectively. OneCodex is able to identify 12 species 

only after assembly, these include 11 deferent Pelagibacteraceae bacterium strains and a 

SAR86 strain. 

Although OneCodex was able to identify the most species using assembly results of 

sample 2, no prominent strain-specific enrichment was observed exclusively for assembly 

results this sample. From the 209 species that are identified Flye favoured 5 species during 

assembly: Alphaproteobacteria bacterium (10 strains), Euryarchaeota archaeon (15 strains), 

Flavobacteriaceae bacterium (23 strains), Flavobacteriales bacterium (18 strains) and 

Gammaproteobacteria bacterium (19 strains).  

Species diversification of assembly results from sample 3 appeared best for 14 

different Flavobacteriaceae bacterium strains, 13 gamma proteobacterium strains, and 13 

strains of Gammaproteobacteria bacterium. Notably, 6 Pelagibacteraceae bacterium strains 

could be identified using assembly results, that could not be classified based on raw 

sequencing data alone. 
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Figure 6: species classification on sample 1,2 and 3. Lighter shades indicate identified species on raw sequencing 
data, darker shades highlight species only identifiable after assembly.  

 

Data quality of unclassified reads and additional in silico PCR analysis 

Poor read quality and relatively short read lengths could be a potential reason explaining why 

OneCodex was unable to classify taxids. Therefore, we investigated quality and length of 

unclassified reads (Figure 7). Although average lengths are shorter, and average quality values 

have a larger distribution, the differences are minimal compared to raw sequencing data 

(Figure 7). These statistics indicate that, in theory, the reads should provide OneCodex with 

sufficient information to resolve classifications. That OneCodex was not able to classify these 

reads even to the most general taxonomic levels (such as kingdom or phylum) adds to the 

notion that these reads originate from species that are novel.  

 
 

Figure 7: Read length and quality distributions of data that OneCodex labels unclassified. On average reads are 
shorter compared to raw sequencing data, however these lengths should still be sufficient to use for k-mer 
species characterization. Average quality distributions are very comparable to reads which OneCodex was able 
to classify species with. 
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The proportion of reads for which no classification could be assigned ranges between 38% and 

69% compared to the raw sequencing data (Table 5) and provides a general impression on the 

amount of potentially novel microbes that thrive in these waters. Since OneCodex is 

particularly tailored to the identification of microbial DNA, unclassified reads potentially 

belong to non-microbial organisms. We therefore performed an additional round of in silico 

PCR analysis to inspect the presence of any remaining microbial 16S rRNA fragments. 

Interestingly, we found at least 10 more reads in sample 2 that have over 80% homology with 

our primers, showing that microbial content still exists within these unclassified reads (Table 

5). 

Table 5 Data statistics on reads for which OneCodex could not resolve any classification 

Stats 
France 

Unclassified (1) 
The Netherlands ‘17 

Unclassified (2) 
The Netherlands ‘18 

Unclassified (3) 

reads 172,843 908,744 86,653 

bases 214,536,717 3,517,616,897 479,777,298 

mean length 1,241 3,870 5,536 

max length 33,295 155,979 132,486 

% of original data 47 69 38 

16S occurence 0 10 0 
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Inspection of low complexity regions in unclassified reads using tandem repeat analysis 

An additional circumstance that might explain why reads are left unclassified is the presence 

of low complexity regions such as repeat elements. These elements cause k-mers to contain 

the exact same genomic content making it impossible to assign them uniquely to specific taxa 

or even to a more general taxonomic level. We have analysed the presence of repeat elements 

with Tandem Repeat Finder [22] in raw sequencing data and compared these to repeat counts 

of the unclassified reads. In none of our samples did we observe an increased presence of 

repetitive elements, on the contrary, the repetitive element count is lowered in every case 

(Figure 8). 

 
Figure 8: tandem repeat analysis, counts per read and comparison between raw sequencing data and 
unclassified data set for different locations and time. Repeat counts are represented in bins, the bins indicate 
the number of occurrences per read.  

Taking together the data characteristics and the lack of both general taxonomical classification 

and highly abundant regions of low complexity suggest that these reads indeed originate from 

novel species. It highlights at least the absence of these species in currently publicly available 

OneCodex database, and provides a general glimpse of the amount of unknown species that 

comprise oceanic microbiomes. 
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MATERIALS AND METHOD 

Sample collection and DNA isolation from salt water 

Approximately 10 liter salt water of both locations was filtered through a double filter setup 

(Figure 9 A). 1.2 µm and 0.22 µm filters are used to remove eukaryotes and phages/ viruses 

from the samples, respectively (Figure 9 B). Water is passed through a 1.2 µm filter that aims 

to capture eukaryotic cells on top and is discarded, the remaining water is passed through a 

0.22 µm filter during a second filtering round. The microbial material is captured on top of the 

filter, water that passed through this filter contains phage/viral material and is discarded 

afterwards. Material captured on the 0.22 µm filter represents the microbiome of our sample 

and was used for cell lysis.  

 
Figure 9 A) Filter setup; 0.22 µm containing biological material that represents the oceanic microbiome B) A 
schematic visualization of double filter setup. Discard eukaryotic cells during the first and viral/ phage content 
during the second filtering round. 

To obtain high quality DNA we used the DNeasy PowerWater Kit (Qiagen), with minimal 

adjustments, according to the manufacturer’s protocol. The largest adjustment was 

supplementing an enzyme set (Lysozyme, Mutanolysin and Lysostaphin) for a more extensive 

cell lysis. DNA from both North Sea samples was sequenced subsequent to DNA isolation, 

however we obtained a suboptimal yield from DNA isolation of sample 2 and amplified the 

isolation to meet the minimal input requirements for sequencing. Sample 1 was filtered 

through the double filter setup and temporarily stored at -20 °C and long term stored at -80 

°C, DNA isolation and sequencing were performed after approximately 11 months of storage. 

DNA library preparation, sequencing, data quality control and statistics 

We used R9.4 flow cells for sequencing all three seawater samples. Libraries were prepared 

using rapid kits (SQK-RAD004) available at that time according to the manufacturer’s protocols 

(Oxford Nanopore Technologies, Oxford, UK). Data acquisition and base-calling were 

performed by MinKNOW (v19.06.8) controlling the MinION that sequenced the samples in 48-

hours. Read-length and read-quality distributions were visualized using NanoPlot [23], and 

read counts, base counts and average read lengths were obtained using custom made scripts.   
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Using in silico PCR analysis to verify microbial genomes 

To highlight the presence of microbial genomes FastPCR [24]was used to perform in silico PCR 

analysis using primer pair sequences for identification of bacteria and archaea. FastPCR allows 

users to upload a set of primer sequences and reports, among others, positions and length of 

hits found on the input data. We used the currently 'best available' rRNA primer pair, primer 

1 and 2 are 17 and 21 bp long, respectively, with a total amplicon size of 464 bp (primer 1: 5'-

CCTACGGGNGGCNGCAG-3', primer 2: 5'-GACTACNNGGGTATCTAATCC-3'). FastPCR verifies 

both forward and reverse primer sequences and due to the erroneous nature of our long read 

technology we have set a threshold of =>80% alignment identity to the primer sequences, 

with the exception that no errors may occur at the last position on the 3' end of the primer 

sequences. Since OneCodex is primarily tailored to classification of microbial data we used 

FastPCR, in a similar fashion, to verify any remaining microbial content in the unclassified 

reads. 

K-mer based metagenome characterization of microbial sequences from seawater 

OneCodex uses a k-mer based taxonomic classification algorithm to characterize microbial 

data. It uses a reference database containing 53,193, 27,020, 1,724, 1,756 and 168 bacterial, 

viral, fungal, archaeal and protozoan genomes, respectively. A default k-mer size of 31 bp is 

used to break up every read from the input data and compares them to a database that 

contains every k-mer that is uniquely linked to a taxonomic group. OneCodex classifies reads 

based on a set of k-mers that together uniquely identify taxonomic groups, single read hits 

are taken as the minimum threshold for identification in this study. OneCodex also provides 

reads for which no unique taxonomic classification could be found, we subtracted these reads 

from the initial input data using the command line interface (CLI) provided by OneCodex. We 

filter these reads using a project ID (provided by the web interface), the original dataset and 

set the taxonomic label to 0. For these reads we inspect the presence of microbial 16S rDNA 

and repetitive content in an attempt to explain the unresolved classification.  

Assembly of long read metagenomics samples using the Flye assembler 

Flye [27] is currently one of the few de novo assembly pipelines that allows genomic 

reconstruction of complex metagenomics samples with coverage as low as 2x. We have 

downloaded the assembly software from the GitHub repository (v2.6), used the metagenome 

default settings and provided the raw sequencing data. For sample 1 and 3 we used all 

available raw sequencing data, for computational effectiveness we used half of the sample 2 

data set. We have verified the top-3 longest contigs using BLAST alignment with high 

homology parameters and selected the best hits based on largest query coverage with highest 

identity and literature references. 

Repetitive content analysis for unclassified reads 

To investigate the repetitive nature of reads that remained unclassified after OneCodex 

characterization we used Tandem Repeat Finder software (v4.09) [22], developed by Boston 

University, with default settings. The software locates repetitive patterns and reports their 

locations, sizes and copy numbers in a repeat table format. We have parsed both raw 

sequencing and unclassified data from sample 1, 2 and 3 to Tandem Repeat Finder and 

inspected the repeat occurrences on every read. With a custom-made script the frequencies 

of these occurrences on every read for every sample are summarized and expressed in 1, 2-5, 

5-10 and >10 occurrences bins and plotted with R ggplot2 [34].   
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DISCUSSION 

In this study, we have investigated the use of Nanopore sequencing for seawater 

metagenomics. Our main aims were to investigate the effectiveness of DNA isolation from 

samples directly obtained from the environment, optimize laboratory protocols for maximum 

sequencing results and evaluation of current metagenomics identification and assembly 

software. We used multiple isolation procedures, several different storage methods and 

subjected the data to a set of different analysis software. With only three ONT flow cells we 

were able to identify thousands of organisms, including bacteriophages, from which a large 

part at species level. It was possible to assemble genomes from environmental samples with 

Flye. In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus 

singularis species it even produced a near complete genome. 

Although the enzyme cocktail used for cell lysis in our study was designed to break 

down cell walls for a wide range of bacteria there are potentially microbes that are immune 

to our lysis step. This might result in an underrepresentation of specific microbial communities 

compared to what truly thrives at these locations at that time. A possible solution, instead of 

lysing microbes with an enzyme set, would be to subject samples to mechanical lysis using 

silica beads or a combination of both. During experimental 12-hour sequencing runs (data not 

shown) we have observed that combining silica beads and enzymes during isolation yields 

significantly more sequencing data compared to isolation using only enzymes. 

The double filter method separates eukaryotes and phages/viruses from bacteria in 

our sample. However, OneCodex still classifies a few hundred reads as either eukaryotic or 

viral. Eukaryota are particularly enriched for Dikarya, a subkingdom of fungi that are known 

to dominate the marine fungi fraction of environmental samples at European coastal regions 

[32]. These reads might have come from eukaryotic cells that are smaller than our largest filter 

(1.2 µm) or particles of these species that simply float around and were picked up by the 

smallest filter. 

DNA molecules of our samples possibly suffered from fragmentation due to ice crystal 

formation during eleven months -20 and -80 oC storage. Additionally the yield of some 

sequencing runs is relatively low since biological material was dry frozen to the filter, making 

it more difficult to suspend the material during cell lysis. Under ideal circumstances DNA 

should be sequenced immediately after isolation circumventing DNA strand damage and loss 

of material. 

The presence of viral DNA might be an indication that we have used too much water 

on a single filter, causing the accumulation of biological material to the point where the filter 

became saturated. A saturated filter might catch particles smaller than the smallest filter size 

and contaminate the isolation with material that would have otherwise passed through. On 

the other hand, viral DNA could be present due to infection of microbes, which could be 

recognized by inspecting flanking regions of the read containing the viral DNA to contain 

microbe specific genes. Additionally viruses could enter the microbial metagenomics pool 

when they are present at the outside of bacteria and pass through the double filter setup via 

hitchhiking. 

We initially performed de novo assembly in order to find out whether we could obtain 

longer contigs for particularly abundant species. Due to low coverage and the high diversity 

in our sample it is no surprise that this was possible for just a limited number of species. It is 
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actually encouraging that with such diversity and limited sequence depth we could still 

identify more than thousand organisms at the species level. Moreover, metagenomics analysis 

is a relative newcomer in the field of genetics hence both laboratory protocols and analytical 

pipelines still need improvement to result higher accurate and more robust solutions for 

sample such as seawater. 

We have performed an in silico PCR analysis to identify 16S RNA sequences in our raw 

sequence dataset. This showed that even under high error rate conditions reads contain 

enough homology to detect well conserved genes. This method could potentially be utilized 

to detect other genes in a similar fashion, for example genes that encode antibiotics 

biosynthesis. 

While OneCodex was able to identify the diversity of a substantial amount of our 

samples, it could not resolve any classification for a large part of our data. The large k-mer size 

is most probably a crucial factor for unclassified data, due to the relatively low quality 

(approximately 10% error) of long-read data 10 bp would be a more suitable k-mer size. We 

confirmed that the data quality of these reads (both read length and quality distributions) are 

within acceptable bounds and observed no particular repetitive element enrichment 

compared to the reads that contributed to classifications. 

Sequences that are representative of species that are currently unknown might 

explain the unclassified state of those reads, and are therefore valuable for contribution of a 

deeper understanding of the microbial marine fingerprint. Moreover, open access databases 

might not contain genomic information on particular microbes since obtaining genomes that 

are particularly large or come from non-culturable (non-culturable organisms are indicated 

with ‘Candidatus’ labels) microbes remains a complicated task. For example, although 

available, protists are poorly represented in the OneCodex database, perhaps because their 

genomes are often extremely large (for dinoflagellates up to 270 Gbp [33]). Hence, microbes 

that are less thoroughly investigated might not have been included into the OneCodex 

genome selection. Since OneCodex is tailored to the identification of single cell organisms it 

probably will leave reads from multicellular organisms unclassified. Although no strong 

evidence was observed, lenient BLAST alignment of the top-3 longest reads of every sample 

did identify some small homologue regions with sequences from plant or algae in the NCBI 

database. 

Despite the fact that these experiments are pilot studies we have observed promising 

results for both laboratory protocols and species identifications analysis. As described above, 

sample collection, DNA isolation and species identification is still hindered by both technical 

and biological difficulties. However our method provides a good impression on the elegance 

of our method that comes from its robustness and simplicity. We have performed equivalent 

experiments in student field practical assignments with similar marine samples, and students 

showed that even under more restricted conditions (12-hour sequencing runs) large 

biodiversity could still be detected. This indicates that the simplicity of our setup provides an 

ideal setting for student exercises, that will surely facilitate educational programs in genetics 

and bioinformatics. 
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