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ABSTRACT

Characterizing species diversity and composition of bacteria
hosted by biota is revolutionizing our understanding of
the role of symbiotic interactions in ecosystems. However,
determining microbiomes diversity implies the classification
of taxa composition within the sampled community, which is
often done via the assignment of individual reads to taxa by
comparison to reference databases. Although computational
methods aimed at identifying the microbe(s) taxa are
available, it is well known that inferences using different
methods can vary widely depending on various biases. In this
study, we first apply and compare different bioinformatics
methods based on 16S ribosomal RNA gene and whole
genome shotgun sequencing for taxonomic classification
to three small mock communities of bacteria, of which
the compositions are known. We show that none of these
methods can infer both the true number of taxa and
their abundances. We thus propose a novel approach,
named Core-Kaiju, which combines the power of shotgun
metagenomics data with a more focused marker gene
classification method similar to 16S, but based on emergent
statistics of core protein domain families. We thus test the
proposed method on the three small mock communities
and also on medium- and highly complex mock community
datasets taken from the Critical Assessment of Metagenome
Interpretation challenge. We show that Core-Kaiju reliably
predicts both number of taxa and abundance of the analysed
mock bacterial communities. Finally we apply our method
on human gut samples, showing how Core-Kaiju may give
more accurate ecological characterization and fresh view on
real microbiomes.

INTRODUCTION

Modern high-throughput genome sequencing techniques
revolutionized ecological studies of microbial communities at
an unprecedented range of taxa and scales (1, 2, 3, 4, 5). It is
now possible to massively sequence genomic DNA directly
from incredibly diverse environmental samples (3, 6) and
gain novel insights about structure and metabolic functions of
microbial communities.

∗Correspondence should be addressed to Dr. Suweis. Email: suweis@pd.infn.it

One major biological question is the inference of the
composition of a microbial community, that is, the relative
abundances of the sampled organisms. In particular, the
impact of microbial diversity and composition for the
maintenance of human health is increasingly recognized
(7, 8, 9, 10). Indeed, several studies suggest that the disruption
of the normal microbial community structure, known as
dysbiosis, is associated with diseases ranging from localized
gastroenterologic disorders (11) to neurologic illnesses (12).
However, it is impossible to define dysbiosis without first
establishing what normal microbial community structure
means within the healthy human microbiome. To this purpose,
the Human Microbiome Project has analysed the largest
cohort and set of distinct, clinically relevant body habitats
(13), characterizing the ecology of healthy human-associated
microbial communities. However there are several critical
aspects. The study of the structure, function and diversity
of the human microbiome has revealed that even healthy
individuals differ remarkably in the contained species and
their abundances. Much of this diversity remains unexplained,
although diet, environment, host genetics and early microbial
exposure have all been implicated. Characterizing a microbial
community implies the classification of species/genera
composition within the sampled community, which in turn
requires the assignment of sequencing reads to taxa, usually by
comparison to a reference database. Although computational
methods aimed at identifying the microbe(s) taxa have an
increasingly long history within bioinformatics (14, 15, 16),
it is well known that inference based on 16S ribosomal RNA
(rRNA) or shotgun sequencing vary widely (17). Moreover,
even if data are obtained via the same experimental protocol,
the usage of different computational methods or algorithm
variants may lead to different results in the taxonomic
classification. The two main experimental approaches for
analyzing the microbiomes are based on 16S rRNA gene
amplicon sequencing and whole genome shotgun sequencing
(metagenomics).

Sequencing of amplicons from a region of the 16S rRNA
gene is a common approach used to characterize microbiomes
(18, 19) and many analysis tools are available (see Materials
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and Methods section). Besides the biases in the experimental
protocol, a major issue with 16S amplicon-sequencing is the
variance of copy numbers of the 16S genes between different
taxa. Therefore, abundances inferred by read counts of the
amplicons should be properly corrected by taking into account
the copy number of the different genera detected in the sample
(3, 20, 21). However, the average number of 16S rRNA copies
is only known for a restricted selection of bacterial taxa. As
a consequence, different algorithms have been proposed to
infer from data the copy number of those taxa for which this
information is not available (18, 22).

In contrast, whole genome shotgun sequencing of all
the DNA present in a sample can inform about both
diversity and abundance as well as metabolic functions of
the species in the community (23). The accuracy of shotgun
metagenomics species classification methods varies widely
(24). In particular, these methods can typically result in a
large number of false positive predictions, depending on the
used sequence comparison algorithm and its parameters. For
example in k-mer based methods as Kraken (25) and Kraken2
(26) the choice of k determines sensitivity and precision of
the classification, such that sensitivity increases and precision
decreases with increasing values for k, and vice versa. As
we will show, false positive predictions often need to be
corrected heuristically by removing all taxa with abundance
below a given arbitrary threshold (see Materials and Methods
section for an overview on different algorithms of taxonomy
classification).

We highlight that the protocols for 16S-amplicons and
shotgun methods are different and each has their own batch
effects. Importantly, while shotgun taxonomic analysis gives
classification results at species-level, 16S taxonomic profilers
most often need to stop at the genus level. However, in the
end, both aim at answering to the same question: “what are
the relative abundances of taxa in the sample?” Therefore
it is not methodologically wrong to compare their answers
against the same community. To do that, it is possible to
aggregate lower level (e.g. species) counts towards higher
levels (e.g. genus), as it has been done in many benchmarks
studies before (see, e.g., (17, 25, 27, 28)). In fact, several
studies have performed comparisons of taxa inferred from
16S amplicon and shotgun sequencing data, with samples
ranging from humans to studies of water and soil. Logares
and collaborators (29) studied communities of bacteria marine
plankton and found that shotgun approaches had an advantage
over amplicons, as they rendered more truthful community
richness and evenness estimates by avoiding PCR biases,
and provided additional functional information. Chan et al.
(30) analyzed thermophilic bacteria in hot spring water and
found that amplicon and shotgun sequencing allowed for
comparable phylum detection, but shotgun sequencing failed
to detect three phyla. In another study (31) 16S rRNA and
shotgun methods were compared in classifying community
bacteria sampled from freshwater. Taxonomic composition
of each 16S rRNA gene library was generally similar to its
corresponding metagenome at the phylum level. At the genus
level, however, there was a large amount of variation between
the 16S rRNA sequences and the metagenomic contigs,
which had a ten-fold resolution and sensitivity for genus
diversity. More recently Jovel et al. (27) compared bacteria
communities from different microbiomes (human, mice) and

also from mock communities. They found that shotgun
metagenomics offered a greater potential for identification of
strains, which however still remained unsatisfactory. It also
allowed increased taxonomic and functional resolution, as
well as the discovery of new genomes and genes.

While shotgun metagenomics has certain advantages over
amplicon-sequencing, its higher price point is still prohibitive
for many applications. Therefore amplicon sequencing
remains the go-to established cost-effective tool to the
taxonomic composition of microbial communities. In fact,
the usage of the 16S rRNA-gene as a universal marker
throughout the entire bacterial kingdom made it easy to collect
sequence information from a wide distribution of taxa, which
is yet unmatched by whole genome databases. Several curated
databases exist to date, with SILVA (32, 33), GreenGenes
(34, 35) and Ribosomal Database Project (RDP) (36) being the
most prominent. Additionally, NCBI also provides a curated
collection of 16S reference sequences in its Targeted Loci
project (https://www.ncbi.nlm.nih.gov/refseq/targetedloci/).

When benchmarking protocols for taxonomic classification
from real samples of complex microbiomes, the “ground
truth” of the contained taxa and their relative abundances is not
known (see (27)). Therefore, the use of mock communities or
simulated datasets remains as basis for a robust comparative
evaluation of a method prediction accuracy. In the first part
of this work we apply three widely used taxonomic classifiers
for metagenomics, Kaiju (28), Kraken2 (26) and MetaPhlAn2
(37), and two common methods for analyzing 16S-amplicon
sequencing data, DADA2 (38) and QIIME2 (39) to three small
mock communities of bacteria, of which we know the exact
composition (27). We show that 16S rRNA data efficiently
allow to detect the number of taxa, but not their abundances,
while shotgun metagenomics as Kaiju and Kraken2 give a
reliable estimate of the most abundant genera, but the nature
of the algorithms makes them predict a very large number of
false-positive taxa.

The central contribution of this work is thus to develop a
method to overcome the above limitations. In particular, we
propose an updated version of Kaiju, which combines the
power of shotgun metagenomics data with a more focused
marker gene classification method, similar to 16S rRNA, but
based on core protein domain families (40, 41, 42, 43) from
the PFAM database (44).

Our criterion for choosing the set of marker domain families
is that we uncover the existence of a set of core families that
are typically at most present in one or very few copies per
genome, but together cover uniquely all 8116 bacteria species
in the PFAM database with an overall quite short sequence.
Using presence of these core PFAMs (mostly related to
ribosomal proteins) as a filter criterion allows for detecting the
correct number of taxa in the sample. We tested our approach
in a protocol called “Core-Kaiju” and show that it has a
higher accuracy than other classification methods not only on
the three small mock communities, but also on intermediate
and highly biodiverse mock communities designed for the 1st
Critical Assessment of Metagenome Interpretation (CAMI)
challenge (45). In fact we will show how in all these cases
Core-Kaiju overcomes, for the most part, the problem of
false-positive genera and accurately predicts the abundances
of the different detected taxa. We finally apply our novel
pipeline to classify microbial genera in the human gut from
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the Human Macrobiome Project (HMP) (46) dataset, showing
how Core-Kajiu may allow for a more accurate biodiversity
characterization of real microbial communities, thus putting
the basis for more solid dysbiosis analysis in microbiomes.

MATERIALS AND METHODS

Taxonomic classification: amplicon versus whole genome
sequencing
Many computational tools are available for the analysis of
both amplicon and shotgun sequencing data (25, 26, 28, 37,
38, 39, 47).

One of the differences among the several software for 16S
rRNA analysis, is on how the next-generation sequencing error
rate per nucleotide is taken into account, when associating
each sampled 16s sequence read to taxa. Indeed, errors
along the nucleotide sequence could lead to an inaccurate
taxon identification and, consequently, to misleading diversity
statistics.

The traditional approach to overcome this problem is to
cluster amplicon sequences into the so-called operational
taxonomic units (OTUs), which are based on an arbitrary
shared similarity threshold usually set up equal to 97% for
classification at the genus level. Of course, in this way, these
approaches lead to a reduction of the phylogenetic resolution,
since gene sequences below the fixed threshold cannot be
distinguished one from the other.

That is why, sometimes, it may be preferable to work
with exact amplicon sequence variants (ASVs), i.e. sequences
recovered from a high-throughput marker gene analysis after
the removal of spurious sequences generated during PCR
amplification and/or sequencing techniques. The next step in
these approaches is to compare the filtered sequences with
reference libraries as those cited above. In this work, we
chose to conduct the analyses with the following two open-
source platforms: DADA2 (38) and QIIME2 (39). DADA2
is an R-package optimized to process large datasets (from
10s of millions to billions of reads) of amplicon sequencing
data with the aim of inferring the ASVs from one or more
samples. Once the spurious 16S rRNA gene sequences have
been recovered, DADA2 allowed for the comparison with
both SILVA, GreenGenes and RDP libraries. We performed
the analyses for all the three possible choices. QIIME2 is
another widely used bioinformatic platform for the exploration
and analysis of microbial data which allows, for the sequence
quality control step, to choose between different methods. For
our comparisons, we performed this step by using Deblur
(48), a novel sub-operational-taxonomic-unit approach which
exploits information on error profiles to recover error-free 16S
rRNA sequences from samples.

As shown in (27), where different amplicon sequencing
methods are tested on both simulated and real data and the
results are compared to those obtained with metagenomic
pipelines, the whole genome approach resulted to outperform
the previous ones in terms of both number of identified
strains, taxonomic and functional resolution and reliability
on estimates of microbial relative abundance distribution in
samples.

Similar comparisons have also been performed with
analogous results in (29, 30, 47, 49) (see (17) for a

comprehensive summary of studies comparing different
sequencing approaches and bioinformatic platforms).

Standard widespread taxonomic classification algorithms
for metagenomics (e.g. Kraken (25) and Kraken2 (26)) extract
all contained k−mers (all the possible strings of length k that
are contained in the whole metagenome) from the sequencing
reads and compare them with index of a genome database.
However, the choice of the length k highly influences the
classification, since, when k is too large, it is easy not to
found a correspondence in reference database, whereas if k
is too small, reads may be wrongly classified. Recently, a
novel approach has been proposed for the classification of
shotgun data based on sequence comparison to a reference
database comprising protein sequences, which are much
more conserved with respect to nucleotide sequences (28).
Kaiju indexes the reference database using the Borrows-
Wheeler-Transform (BWT), and translated sequencing reads
are searched in the BWT using maximum exact matches,
optionally allowing for a certain number of mismatches via
a greedy heuristic approach. It has been shown (28) that
Kaiju is able to classify more reads in real metagenomes
than nucleotide-based k−mers methods. Therefore, previous
studies on the community composition and structure of
microbial communities in the human can be actually very
biased by previous metagenomic analysis that were missing
up to 90% of the reconstructed species (i.e. most of the
species they found were not present in the gene catalog). We
therefore chose to work with Kaiju (with MEM option (28))
for our taxonomic analysis. Although it resulted to give better
estimates of sample biodiversity composition with respect to
amplicon sequencing techniques, we found that it generally
overestimates the number of genera actually present in our
community (see Results section) of two magnitude orders, i.e.
there is a long tail of low abundant false-positive taxa. To
overcome this, we implemented a new release of the program,
Core-Kaiju, which contains an additional preliminary step
where reads sequences are firstly mapped against a newly
protein reference library we created containing the amino-acid
sequence of proteomes’ core PFAMs (see following section).
We also compared standard Kaiju and Core-Kaiju results
with those obtained via Kraken2 and via another widely used
program for shotgun data analysis, MetaPhlAn2 (37, 47).

Characterization of the core PFAM families
After downloading the PFAM database (version 32.0), we
selected only bacterial proteomes and we tabulated the data
into a F×P matrix, where each column represented a
different proteome and each row a different protein domain.
In particular, our database consisted of P =8116 bacterial
proteomes and F =11286 protein families. In each matrix
entry (f,p), we inserted the number of times the f family
recurred in proteins of the p proteome, nf,p. By summing
up over the p column, one can get the proteome length,
i.e. the total number of families of which it is constituted,
which we will denote with lp. Similarly, if we sum up over
the f row, we get the family abundance, i.e. the number of
times the f family appears in the PFAM database, which
we call af . Figure 1 shows the frequency histogram of the
proteome sizes (left panel) and of the family abundances
(right panel). Our primary goal was to find the so-called core
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Figure 1. Proteome sizes and families abundances in PFAM database. On the left panel: frequency histogram of proteome lengths lp (total number of families
of which a proteome p is composed). On the right panel: frequency histogram of family abundances, af (number of times a PFAM f appears along a proteome).

PFAM occurrences

F
re

qu
en

cy

0 2000 4000 6000 8000

0
20

00
40

00
60

00

200 2000

10
0

50
0

50
00

Log−scale

0 20 40 60 80 100

0
20

00
40

00
60

00

Percentage of Proteomes

N
um

be
r 

of
 R

ar
e 

P
FA

M

0 4 810
00

40
00

Zoom 1

90 94 98

0
40

80

Zoom 2

Figure 2. PFAM occurrences along proteomes. On the left panel: frequency histogram of family occurrences (number of proteomes in which a PFAM is
contained). On the right panel: number of families with occurrence at most four versus the percentage of proteomes in which they are contained.

families (50), i.e. the protein domains which are present in
the overwhelming majority of the bacterium proteomes but
occurring just few times in each of them (41, 51). In order to
analyze the occurrences of PFAM in proteomes, we converted
the original F×P matrix into a binary one, giving information
on whether each PFAM was present or not in each proteome.
In the left panel of Figure 2 we inserted the histogram of
the family occurrences, which displays the typical u-shape,
already observed in literature (43, 52, 53, 54): a huge number
of families are present in only few proteomes (first pick in
the histogram), whilst another smaller peak occurs at large
values, meaning that there are also a percentage of domains
occurring in almost all the proteomes. In the right panel, we
show the plot of the number of rare PFAM (having abundance
less or equal to four in each proteome) versus the percentage
of proteomes in which they have been found. We thus selected

the PFAMs found in more than 90% of the proteomes and such
that maxpnf,p=4 (see Zoom 2 panel of Figure 2).

Since we wish to have at least one representative core
PFAM for each proteome in the database, we checked
whether with these selected core families we could ‘cover’
all bacteria. Unfortunately, none of them resulted to be
present in proteomes 479430 and 1609106, corresponding
to Actinospica robiniae DSM 44927 and Streptomyces sp.
NRRL B-1568, respectively. We therefore looked for the most
prevalent PFAM(s) present in such proteomes. We found that
PFAM PF08338, occurring in 43% of the proteomes, was
present in both Actinospica robiniae and Streptomyces and
we therefore add it to our core-PFAM list. Eventually, in
order to minimize the number of PFAMs to work with (and
related computational cost), we considered in our final core-
PFAM list only the minimum number of domains through
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Table 1. Core PFAMs identity number and corresponding function in proteomes.

PFAM ID Function
PF00453 Ribosomal protein L20
PF00572 Ribosomal protein L13
PF01029 NusB family (involved in the regulation of rRNA biosynthesis by transcriptional antitermination)
PF01196 Ribosomal protein L17
PF01649 Ribosomal protein S20 (Bacterial ribosomal protein S20 interacts with 16S rRNA)
PF01795 MraW methylase family (SAM dependent methyltransferases)
PF03947 Ribosomal Proteins L2, C-terminal domain
PF08338 Domain of unknown function (DUF1731)
PF09285 EF-P (elongation factor P) translation factor required for efficient peptide bond synthesis on 70S ribosomes
PF17136 Ribosomal proteins 50S L24/mitochondrial 39S L24

which we were able to cover the whole list of proteomes of
the databases. In particular, the selected core protein domains
for bacteria proteomes are the ten PFAMs PF00453, PF00572,
PF01029, PF01649, PF01795, PF03947, PF08338, PF09285
and PF17136 (see Table 1).

Principal Coordinate Analysis. In order to explore whether
the expression of the core PFAM protein domains are
correlated with taxonomy, we did the following. First, we
downloaded from the UniProt database (55) the amino acid
sequence of each PFAM along the different proteomes (see
Supporting Information for details). Their averaged (over
proteomes) sequence lengths L resulted to be highly picked
around specific values ranging from L=46 to L=297 (see
Supporting Information, Figure S3, for the corresponding
frequency histograms).

Second, for each family we computed the
Damerau−Levenshtein (DL) distance between all its
corresponding DNA sequences. DL measures the edit
distance between two strings in terms of the minimum
number of allowed operations needed to modify one string
to match the other. Such operations include insertions,
deletions/substitutions of single characters and transposition
of two adjacent characters, which are common errors
occurring during DNA polymerase. This analogy makes
the DL distance a suitable metric for the variation between
protein sequences. By simplicity and to have a more
immediate insight, we conducted the analysis only for
sequence points corresponding to the five most abundant
phyla, i.e. Proteobacteria, Firmicutes, Actinobacteria,
Bacteroidetes and Cyanobacteria.

After computing the DL distance matrices between all the
amino-acid sequences of each PFAMs along proteomes, we
performed the Multi Dimensional Scaling (MDS) or Principal
Coordinate Analysis (PCoA) on the DL distance matrix.
This step allow us to reduce the dimensionality of the space
describing the distances between all pairs of core PFAMs
of the different taxa and visualize it in a two dimensional
space. In the last two columns of Table 2 we inserted the
percentage of the variance explained by the first two principal
coordinates for the ten different core families, where the first
one ranges from 3.3 to 12.1% and the second one from
2.4 to 7.7%. We then plotted the sequence points into the
new principal coordinate space, colouring them by phyla.

In general, we observed a two-case scenario. For some
families as PF03883 (see Figure 3, left panel), Actinobacteria
and Proteobacteria sequences are grouped in one or two
highly visible clusters each, whereas the other three phyla do
not form well distinguished structures, being their sequence
points close one another, especially for Cyanobacteria and
Firmicutes. For other families as PF01196 (see Figure 3, left
panel), all five phyla result to be clustered, suggesting a higher
correlation between taxonomy and amino-acid sequences (see
Supporting Information, Figure S4, for the other core families
graphics). These results suggest that some core families (e.g.
ribosomal ones) are phyla dependent, while other are not
directly correlated with taxa.

Mock bacteria communities
We started by testing shotgun versus 16S taxonomic pipelines
on three small artificial bacterial communities generated
by Jovel et al. (27), whose raw data are publicly available
(Sequence Read Archive (SRA) portal of NCBI, accession
number SRP059928). These mock populations contain
DNA from eleven species belonging to seven genera:
Salmonella enterica, Streptococcus pyogenes, Escherichia
coli, Lactobacillus helveticus, Lactobacillus delbrueckii,
Lactobacillus plantarum, Clostridium sordelli, Bacteroides
thetaiotaomicron, Bacteroides vulgatus, Bifidobacterium
breve, and Bifidobacterium animalis. For the taxonomic
analysis at the genus level through 16S amplicon sequencing,
we evaluated the performance of DADA2 (38) and QIIME2
pipelines (39). In particular, as shown in (27), QIIME2
produced more reliable results in terms of relative abundance
of bacteria for all three mock communities when compared
to Mothur (56), another widely used 16S pipeline, and to the
MiSeq Reporter v2.5, a software developed by Illumina to
analyze MiSeq instrument output data.

As for shotgun libraries, we tested the standard Kaiju (28),
Kraken2 (26), the improved version of Kraken (25), and
MetaPhlAn2 (37), the improved version of MetaPhlAn (47).
This latter relies on unique clade-specific marker genes and it
had been shown to have higher precision and speed over other
programs (27).

Eventually, we tested Core-Kaiju on these mock
communities and compared its performance with the
above taxonomic classification methods.
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Figure 3. Phylum-based clustering for PF03883 and PF01196. For MDS analysis, only the sequences associated to the five most-abundant phyla
(Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria) have been considered.

Table 2. Prevalence, Maximal/Total Occurences and Principal Coordinates of PFAM core families. We inserted, for each core family (PFAM ID, first
column), the percentage of proteomes in which it appears (prevalence, second column), the maximum number of times it occurrs in one proteome (maximal
occurrence, third column), the total number of times it is found among proteomes in the PFAM database (total occurrence, fourth column) and the percentage of
variance explained by the firs two coordinates (PCo1 and PCo2, last two columns) when MDS is performed on sequences belonging to the five most abundant
phyla (see Figure 3).

PFAM ID Prevalence Maximal Occurrence Total Occurrence PCo1 PCo2
PF00453 95% 3 7786 10.6% 6.6%
PF00572 97% 3 7897 5.4% 5.1%
PF01029 96% 4 12991 3.9% 2.4%
PF01196 97% 3 7888 12.1% 5.7%
PF01649 94% 3 7715 6.1% 4.6%
PF01795 96% 4 8113 5.2% 4.9%
PF03947 97% 4 7886 8.2% 7.7%
PF08338 43% 4 4267 3.3% 2.9%
PF09285 96% 4 8585 9.1% 4.9%
PF17136 97% 4 7896 5.4% 4.1%

Core-Kaiju
After defining the core PFAMs, we created two protein
databases for Kaiju: the first database only contains the protein
sequences from the core families, whereas the second database
is the standard Kaiju database based on the bacterial subset of
the NCBI NR database. The protocol then follows these steps:

1. Classify the reads with Kaiju using the database with
the core protein domains

2. Classify the reads with Kaiju using the NR database to
get the preliminary relative abundances for each genus

3. Discard from the list of genera detected in (2) those
having absolute abundance of less than or equal
to twenty reads in the list obtained in point (1).
This threshold represents our confidence level on the
sequencing pipeline (see below).

4. Re-normalize the abundances of the genera obtained in
point (3).

RESULTS

Comparison between methods, small mock community
dataset
We evaluated the performance of both shotgun and 16S
pipelines for the taxonomic classification of the three mock
communities. In the top panels of Figure 4 we show the true
relative genus abundance composition of the three small mock
communities versus the ones predicted via the different tested
taxonomic pipelines.

We then applied the Core-Kaiju pipeline to detect
the biodiversity composition of the same three mock
communities. In Figure 4, bottom panels, we plot the linear
fit performed on predicted relative abundances via Core-Kaiju
versus theoretical ones, known a priori. As we can see, in
all three cases the predicted community composition was
satisfactorily captured by our method, with an R2 value higher
than 0.7.

Our goal was to to quantitatively compare the performance
of different methods in terms of both biodiversity and relative
abundances. As for the first, we chose to measure it via the
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Figure 4. Comparison between theoretical and predicted relative abundances in small mock communities. Top panels: predicted relative abundance
composition of the three small mock communities via different taxonomic classification methods. Bottom panels: red points represent data of relative abundance
predicted for the genus level by Core-Kaiju on the three mock communities versus the true ones, known a priori. The green line is the linear fit performed on
obtained points which, in the best scenario, should coincide with the quadrant bisector (dotted red line). In all three cases the predicted community composition
was satisfactorily captured by our method, with an R-squared value of 0.97, 0.96 and 0.71, respectively.

F1 score applied at the genera level. More precisely, we
define the recall of a given taxonomic classification method
as the number of truly-positive detected genera (present in a
community and thus correctly detected by the method), Tp,
over the sum between Tp and Fn, the number of false-negative
genera (present in a community, but missed to be classified).
In contrast, we define the precision to be the ratio between Tp
and the sum of Tn and Fp, the number of false-positive genera
(not present in a community and thus incorrectly detected
as present). Finally, the F1 biodiversity score is twice the
ratio between the product of recall and precision and their
sum, i.e. F1=2∗T 2

p /((Tp+Fn)∗(Tp+Fp)). F1 score values
obtained via the different methods for the three analysed mock
communities are presented in Table 3. While F1 describes the
overall accuracy in detecting the correct number of genera
in the sample, R2 gives the correlation between the taxa
abundance measured by the pipeline and the real composition
of the microbial sample. Finally, we also indicated the number
of genera each method predicts, Ĝ.

Table 3 summarizes the results of the analysis, together with
the R-squared values, R2, obtained for the linear fit performed
between true and predicted relative abundances. As we can
see, both Core-Kaiju and MetaPhlAn2 gave a good estimate
of the number of genera in the communities (which is equal
to seven), whereas all 16S methods slightly overestimated it.

Finally, both standard Kaiju and Kraken2 predicted a number
of genera much higher than the true one. Moreover, fit with
standard Kaiju and Core-Kaiju of the predicted abundances
displayed a higher determination coefficient with respect to
all other pipelines, with the exception of Kraken2, which gave
comparable values. However, if we focus on the F1 score, we
can notice that Core-Kaiju outperformed all the other methods
in terms of precision and recall. In particular, since the pipeline
led to zero false-positive and only one false negative genus
(E.coli in all three communities), the resulting precision and
recall were 1 and 0.86 for all the sampled mocks. With Core-
Kaiju, we were therefore able to produce a reliable estimate of
both the number of genera within the communities and their
relative abundances.

Relative abundance vs absolute abundance thresholds
As stated in the introduction and observed above,
metagenomic classification methods, such as Kaiju, often
give a high number of false-positive predictions. In principle,
one could set an arbitrary threshold on the detected relative
abundances, for example 0.1% or 1%, to filter out low-
abundance taxa that are likely false-positives. However,
different choices of the threshold typically lead to very
different results. The top panels of Figure 5 shows the
empirical taxa abundance distribution of the 674 genera
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Table 3. F1 score, R-squared values and number of predicted genera. For all three analysed mock communities, we inserted the F1 score (twice the ratio
between the product of recall and precision and their sum), the R2 value of the linear fit performed between estimated and true abundances together with the
number of predicted genera, Ĝ, with various taxonomic methods. The true number of genera is G=7 for each community.

Mock 1 (G=7) Mock 2 (G=7) Mock 3 (G=7)

F1 score R2 Ĝ F1 score R2 Ĝ F1 score R2 Ĝ

Shotgun

Core-Kaiju 0.92 0.97 6 0.92 0.96 6 0.92 0.71 6
standard Kaiju 0.02 0.97 674 0.03 0.98 501 0.02 0.94 738

MetaPhlAn2 0.86 0.46 7 0.86 0.60 7 0.86 0.08 7
Kraken2 0.04 0.98 333 0.05 0.99 266 0.04 0.96 378

16S

DADA2 + SILVA 0.48 0.59 18 0.41 0.73 22 0.6 0.41 13
DADA2 + GG 0.5 0.45 17 0.43 0.60 21 0.63 0.35 12
DADA2 + RDP 0.48 0.59 18 0.4 0.73 23 0.6 0.41 13

QIIME2 + SILVA 0.21 0.50 0.21 41 0.59 41 0.21 0.43 41
QIIME2 + GG 0.26 0.46 32 0.26 0.50 32 0.25 0.36 33

detected by Kaiju in the first small mock community. Such
biodiversity number would decrease to 34, 9 or 7 if one
considers only genera accounting for more than 0.01%, 0.1%
and 1% of the total number of sample reads, respectively.
Moreover, looking at the empirical pattern, one can notice
the main gap between genera covering a fraction of less
than 5 ·10−3 with respect to the total number of reads (black
points) and those covering a fraction higher than 2·10−2

(green points), which corresponds to the genera actually
present in the artificial community. One could therefore
hope that, whenever such a gap is detected in the taxa
abundance distribution, this corresponds to the one between
false-positive and truly present taxa. However, as will be
clear in the following section, this is not the case and it is not
possible to set a relative threshold for the shotgun methods
that works for all the mock communities.

Application to CAMI challenge dataset
We tested and compared standard Kaiju, Kraken 2 and Core-
Kaiju also on medium and high complexity mock bacterial
communities obtained from the 1st CAMI challenge (45),
in terms of biodiversity (recall, precision, F1 score, Ĝ) and
abundance composition (linear fit R-squared). In Table 4 we
show the results for samples 1 and 5 of the high-complexity
dataset (see Supporting Information for the results of the other
samples). As we can see, Core-Kaiju strongly outperformed
the other methods in terms of precision. Indeed, it only slightly
overestimated the true number of genera of around 10 taxa in
sample 1, and 20 taxa in sample 5 (see Table 4), which is two
order of magnitude lower with respect to the other methods
(that predicted >1600 of taxa). On the other hand, as also
shown from the bottom panels of Figure 5, when using in
standard Kaiju (or Kracken 2) a relative threshold of 1% so to
reduce the number of false-positive taxa, as suggested by the
previous analysis on the small mock community, the number
of predicted taxa is in this case around 30, therefore strongly
underestimating the real biodiversity of the samples.

As for the recall, the performance of Core-Kaiju (values
around 77%) stands between standard Kaiju (values around
96%) and Kraken2 (values around 65%). The combination of
recall and precision led to an F1 score around 74%, much

higher than the other two pipelines (13%). Finally, as shown
in Figure 6, Core-Kaiju gave also a very good estimation
of the microbial composition, with an R-squared for the fit
between theoretical and predicted relative abundances above
0.88, value comparable to standard Kaiju and much higher
than the one obtained with Kraken2 (0.45). In the Supporting
Information we present all the results for the other high-
complexity samples as well as the analyses performed on the
medium-complexity challenge dataset and the sensitivity of
the classification on the absolute thresholds.

Application to human gut microbiome
We finally applied Core-Kaiju taxonomic classification
method to an empirical data-set. We analysed a cohort
of 26 healthy human fecal samples from the study (57)
(metagenomic sequencing data are publicly available at the
NCBI SRA under accession number SRP057027). We applied
standard Kaiju and found on average (over the 26 samples)
2108 bacterial genera. Similar overestimation of the number
of taxa of Kajiu 1.0 would be obtained also with Kracken
2, highlighting the above mentioned problem of setting the
correct threshold in order to have a realistic estimation of the
sample biodiversity.

The right panel of Figure 7 shows the empirical
taxa abundance distribution of one individual (sample ID:
SRR2145359). As we can see, in this case the only apparent
gap occurs between relative abundance of less than 10−1 and
those above 0.5, with only one genus. It therefore results quite
unrealistic that all the taxa but one should be considered false-
positive. The same plot shows the vertical lines corresponding
to threshold on relative population of 0.01%, 0.1% and 1%
above which we have 97, 32 and 10 taxa, respectively.

In contrast, with Core-Kaiju we did not need to tune a
relative threshold. Instead, by removing false-positive through
the (fixed) absolute abundance of 20 reads we ended up with
21 genera (orange diamonds in Figure 7), which is compatible
with previous estimates. In fact, the available amplicon-
sequencing datasets from stool samples of healthy participants
of the human microbiome project (1) suggest that there are on
average 25 different bacterial genera per sample (based on 174
samples with at least >5k reads per sample using 97% OTU
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Figure 5. Relative vs absolute abundance thresholds for false-positive detection. Top panels: taxa abundance distribution plots for the first mock community
(see Materials and Methods section). Green diamonds are the genera actually present in the artificial community and correctly detected by Core-Kaiju algorithm.
The red triangle corresponds to the unique false-negative genus (E.coli) undetected with the newly proposed method. Dashed lines represent relative abundance
thresholds on standard Kaiju output of 0.01%, 0.1% and 1%, respectively, which would have led to a biodiversity estimate of 34, 9 and 7 genera, respectively.
Imposing an absolute abundance threshold of twenty reads on standard Kaiju output directly, would instead lead to an overestimation of 99 genera. Bottom
panels: the same analyses have been performed on the CAMI high-complex sample 1. Again, green diamonds represent the 146 out of 193 genera present in the
community and correctly detected by our pipeline. In this case, in addition to the remaining 47 false-negative genera (red triangles) we have also the presence of
58 false-negative genera, here represented by gray triangles. Setting a threshold on the relative abundance of reads produced by standard Kaiju gives a number of
genera of 237 for the 0.01%, 120 for the 0.1% and 30 for the 1% threshold, respectively. Left and right panels represent, respectively, log-log absolute frequency
and cumulative patterns of the taxa abundances in the mock communities.

clustering). However, in terms of taxa composition, Core-
Kaiju predicted abundances are different from those obtained
using 16s classification methods (1).

DISCUSSION

An important source of errors in the performance of any
algorithm working on shotgun data is the high level of
plasticity of bacterial genomes, due to widespread horizontal
transfer (41, 58, 59, 60, 61, 62). Indeed, most highly abundant
gene families are shared and exchanged across genera, making
them both a confounding factor and a computational burden
for algorithms attempting to extract species presence and
abundance information. Thus, while having access to the

sequences from the whole metagenome is very useful for
functional characterization, restriction to a smaller set of
families may be a very good idea when the goal is to identify
the species taxa and their abundance.

To summarize, we have presented a novel method for
the taxonomic classification of microbial communities which
exploits the peculiar advantages of both whole-genome and
16S rRNA pipelines. Indeed, while the first approaches are
recognised to better estimate the relative taxa composition
of samples, the second are much more reliable in predicting
the true biodiversity of a community, since the comparison
between taxa-specific hyper-variable regions of bacterial 16S
ribosomal gene and comprehensive reference databases allows
in general to avoid the phenomenon of false-positive taxa
detection. Indeed, the identification of a threshold in shotgun
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Table 4. Performance comparison on CAMI high-complexity samples 1 and 5. In the first four columns, we inserted the values for the precision, the recall,
the F1 score, the R2 value of the linear fit performed between estimated and true abundances, and the number of predicted genera Ĝ with Core-Kaiju, standard
Kaiju and Kraken2. The true number of genera is G=193 for each sample. In the last column we also inserted the number of genera one would predict with
standard Kaiju and Kraken2 by setting a relative threshold of 1%, i.e. by considering false-positive all those genera having a relative abundance of less than 0.01
in the sample. We denoted this quantity by Ĝ1%.

Sample 1 (G=193) Sample 5 (G=193)

Precision Recall F1 score R2 Ĝ Ĝ1% Precision Recall F1 score R2 Ĝ Ĝ1%

Core-Kaiju 0.72 0.76 0.74 0.90 204 −− 0.72 0.79 0.75 0.88 213 −−
standard Kaiju 0.07 0.96 0.13 0.92 2652 30 0.07 0.96 0.13 0.89 2660 26

Kraken2 0.07 0.65 0.13 0.45 1715 27 0.07 0.65 0.13 0.45 1697 26
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Figure 6. Linear fit between theoretical and predicted relative abundances with Core-Kaiju. red points represent data of relative abundance predicted for
the genus level by Core-Kaiju on sample 1 and 5 from the CAMI highly-complex dataset versus the ground-truth abundances, known a priori. The green line
is the linear fit performed on such values which, in the case of perfect matching between data and Cor-Kaiju output, should coincide with the quadrant bisector
(dotted red line). In both cases, the predicted community composition was satisfactorily captured by our method, with a correlation with the real taxa abundances
of R2=0.9 and R2=0.88 for sample 1 and 5, respectively.

methods to remove most of the false-positive is of course a
critical problem, because in general the true taxa composition
is not known, and thus setting the wrong threshold may lead to
a huge over- (or under-) estimation of the sample biodiversity,
as shown in this work.

Inspired by the role of 16S gene as a taxonomic fingerprint
and by the knowledge that proteins are more conserved than
DNA sequences, we proposed an updated version of Kaiju,
an open-source program for the taxonomic classification
of whole-genome high-throughput sequencing reads where
sample metagenomic DNA sequences are firstly converted
into amino-acid sequences and then compared to microbial
protein reference databases. We identified a class of ten
domains, here denoted by core PFAMs, which, analogously to
16S rRNA gene, on one hand are present in the overwhelming
majority of proteomes, therefore covering the whole domain
of known bacteria, and which on the other hand occur just few
times in each of them, thus allowing for the creation of a novel
reference database where a fast research can be performed
between sample reads and PFAMs amino-acid sequences.
Tested against mock microbial communities, of different level
of complexity, generated in other studies (27, 45) and available
online, the proposed updated version of Kaiju, Core-Kaiju,
outperformed popular 16S rRNA and shotgun methods for
taxonomic classification in the estimation of both the total

biodiversity and taxa relative abundance distribution. In fact,
by fixing an absolute threshold with Core-Kaiju (by only
considering abundances greater to twenty reads), we are able
to correctly classify the biodiversity in all samples of different
size and complexity, while keeping a very good performance
in the prediction of taxa abundances.

We highlight that other technologies exist beyond
metagenomics or 16S amplicons on a MiSeq (integrated
instrument performing clonal amplification and sequencing),
as for example PaCBio (63). Earl and collaborators (64) used
a CAMI dataset to test the accuracy of this method and it
is therefore possible to indirectly compare Core-Kaiju with
PaCBio through their results. Also in this case we found that
our method gives a slightly higher R2 score for the genera
abundances composition, confirming the competitiveness of
Core-Kaiju even with long-read technology such as PaCBio.
However, a deeper comparison with these methods goes
beyond the scope this work because, although might perform
better than MiSeq next-generation sequencing approaches,
they are quite rare and available only for much higher price.

Our promising results pave the way for the application
of the newly proposed pipeline in the field of microbiota-
host interactions, a rich and open research field which has
recently attracted the attention of the scientific world due
to the hypothesised connection between human microbiome
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Figure 7. Relative vs absolute abundance thresholds in the human gut sample. Taxa abundance distribution plots for a human gut sample of a healthy
individual, where standard Kaiju detects (without any threshold) 2165 genera. In this case the number (and label) of the actual present genera is unknown.
Nevertheless estimates from a reference cohort of stool microbiomes (46) from 174 healthy HMP participants (16S V3-V5 region, >5k reads per sample, 97%
OTU clustering), report an average number of genera per sample of 25 (max=46, min=9) (1). Setting a threshold on the relative abundance of reads produced by
standard Kaiju gives a number of genera of 97 for the 0.01%, 32 for the 0.1% and 10 for the 1% threshold, respectively. In contrast, considering false-positive all
genera with less or equal to twenty reads in standard Kaiju output, we end up with 625 genera. Orange diamonds in plot correspond to the 21 genera detected with
Core-Kaiju, a number compatible with the reported estimates. Left and right panels represent log-log absolute frequency and cumulative patterns, respectively.

and healthy/disease (65, 66). Having a trustable tool for
the detection of microbial biodiversity, as measured by
the number of genera and their abundances, could have a
fundamental impact in our knowledge of human microbial
communities and could therefore lay the foundations for the
identification of the main ecological properties modulating the
healthy or ill status of an individual, which, in turn, could be
of great help in preventing and treating diseases on the basis
of the observed patterns.
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