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ABSTRACT 

 

RNA-seq is widely used for studying gene expression, but commonly used sequencing 

platforms produce short reads that only span up to two exon-junctions per read. This makes it 

difficult to accurately determine the composition and phasing of exons within transcripts.  

Although long-read sequencing improves this issue, it is not amenable to precise quantitation, 

which limits its utility for differential expression studies. We used long-read isoform sequencing 

combined with a novel analysis approach to compare alternative splicing of large, repetitive 

structural genes in muscles. Analysis of muscle structural genes that produce medium (Nrap - 

5kb), large (nebulin - 22 kb) and very-large (titin - 106 kb) transcripts in cardiac muscle, and fast 

and slow skeletal muscles identified unannotated exons for each of these ubiquitous muscle 

genes. This also identified differential exon usage and phasing for these genes between the 

different muscle types. By mapping the in-phase transcript structures to known annotations, we 

also identified and quantified previously unannotated transcripts. Results were confirmed by 

endpoint PCR and Sanger sequencing, which revealed muscle-type specific differential 

expression of these novel transcripts. The improved transcript identification and quantification 

demonstrated by our approach removes previous impediments to studies aimed at quantitative 

differential expression of ultra-long transcripts. 

 

INTRODUCTION 

 

Cells use alternative splicing to generate a diverse array of protein products from a set of 

genes(Nilsen and Graveley 2010). Over 90% of genes undergo alternative splicing(Wang et al. 

2008). Protein isoforms created from alternative splicing of the same gene may have strikingly 

different functions and interactions(Yang et al. 2016). Splicing of a gene such as Mef2D - a 

transcription factor required for muscle differentiation, can result in protein products with 
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opposing functions(Sebastian et al. 2013). On the other hand, mutations that cause abnormal 

splicing are also implicated in genetic disorders, including muscular dystrophies and 

myopathies(Cummings et al. 2017; Pistoni et al. 2013; Hoffman and Kunkel 1989).  

Skeletal muscle has one of the highest rates of tissue-specific alternative splicing(Castle 

et al. 2008) and genes coding for contractile proteins such as troponin and tropomyosin served 

as model systems for early mechanistic studies of alternative splicing(Nadal-Ginard et al. 1991). 

Since then, studies have been performed on splicing of muscle transcription factors, calcium 

handling genes, muscle-specific mitochondrial splice isoforms and structural proteins such as 

titin and nebulin(Nakka et al. 2018). However, muscle structural proteins are one of the most 

challenging to study due to their size and presence of repetitive domains. 

Structural proteins are crucial for providing mechanical support within cells and tissues. 

For example, sarcomeres, the smallest contractile units of muscle, are supported by the largest 

protein encoded by the mammalian genome, titin (3.3-3.7 MDa). Titin spans half the sarcomere 

in length, and is coded by transcripts up to ~106 kilobases long, with 363 exons(Bang et al. 

2001). Titin primarily functions as a molecular spring that helps maintain the sarcomere as 

muscle cells contract(Linke 2017). The elasticity of muscle cells depends on differential splicing 

of the titin transcript coding a highly repetitive PEVK region, and repeating units of 

immunoglobulin (Ig), and fibronectin-type-3 domains(Linke 2017).  

Nebulin is a large (~0.9 MDa) structural protein that binds to titin in the Z-disk and 

extends along the actin thin filament within the sarcomere(Politou et al. 2002; Wang and Wright 

1988). It plays roles in assembling, stabilizing and determining the length of the actin thin 

filaments,(McElhinny et al. 2005) and  helps define the width of the Z-disk(Witt et al. 2006). The 

human nebulin gene has 183 exons that produce transcripts (up to ~22 kb) that code for 

multiple conserved 35 aa simple repeats, called nebulin domains(Labeit et al. 1991). In the 

central region of the protein are 22 super repeats composed of seven-nebulin domains each, 

one for each turn of the actin molecule(Labeit and Kolmerer 1995). The super repeat region is 
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alternatively spliced during development and in different muscle tissues(Donner et al. 2006; 

Buck et al. 2010).  

A paralog of nebulin is the nebulin related anchoring protein (Nrap)(Luo et al. 1997). 

Nrap is the second largest (~196 kDa) member of the nebulin family of proteins(Luo et al. 1997; 

Pappas et al. 2011). It is a scaffolding protein, with roles in myofibrillar assembly and 

organization during muscle development(Luo et al. 1997; Carroll et al. 2001, 2004; Dhume et al. 

2006). Its structure is also highly repetitive, containing nebulin domains and super repeats(Luo 

et al. 1997). It is primarily expressed in intercalated disks of cardiac muscle and myotendinous 

junctions of skeletal muscle(Carroll and Horowits 2000; Herrera et al. 2000). Alternative splicing 

of the Nrap gene produces tissue specific isoforms (Nrap-c and Nrap-s for cardiac and skeletal 

muscle respectively, up to ~5.5kb)(Mohiddin et al. 2003; Lu et al. 2008).  

Recently, Savarese et al. reported the most comprehensive study on alternative splicing 

of titin by RNA sequencing (RNA-seq) of twelve human muscle types from eleven non-

neuromuscular disease patients(Savarese et al. 2018). RNA-seq has been indispensable for 

studying alternative splicing in whole transcriptomes(Wang et al. 2009). Short-read RNA-seq 

methods (50-300 bp reads) are an excellent tool for determining whole gene expression and 

differential exon usage(Trapnell et al. 2010; Li et al. 2015), but the limited read-lengths makes it 

challenging to determine the full-length and complete splicing patterns of transcripts 

(Supplementary Figure S1). Further, mapping short-read sequences to highly repetitive regions 

in the reference genome can be computationally difficult, create ambiguities(Treangen and 

Salzberg 2011) and reconstructing whole transcripts from short-read data are prone to false 

positives and artifacts(Steijger et al. 2013). Also, accurate predictions of the complete transcript 

of a large gene with a vast number of potential exon combinations, is nearly impossible - the 

363 exons in titin could theoretically produce over a million alternative splice isoforms(Guo et al. 

2010).  
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Long-read sequencing technologies such as Pacific biosciences (PacBio) isoform 

sequencing (IsoSeq) are able to sequence full-length transcripts up to 10 kb in length(Wang et 

al. 2016), with a better error rate than other popular emerging long read sequencing 

technologies, such as Oxford Nanopore(Buck et al. 2017). However, the entire length of longer 

transcripts such as titin and nebulin still cannot be captured within maximum IsoSeq read 

lengths. In addition, IsoSeq is a transcript discovery tool as the bioinformatics pipeline does not 

support transcript quantification. 

Here, we have addressed above deficits of the PacBio long-read IsoSeq technology and 

used it to compare alternative splicing of transcripts between different murine muscle types: fast 

skeletal, slow skeletal and heart (Supplementary Figure S2 and Table S1). Our study focuses 

on the large structural genes: titin, nebulin and Nrap to test the limits of IsoSeq. We present a 

new analysis approach to identify and quantify in-phase transcript structures or consecutive 

multi-exon stretches of these three transcripts. We have successfully phased exons of known 

splicing patterns, discovered multiple novel patterns and determined the percent expression of 

each transcript between tissue subtypes. To our knowledge, this is the first study to apply an 

exon phasing approach that results in accurate quantification of very long and difficult 

transcripts. This method improves the utility of IsoSeq, by expanding its potential beyond 

isoform discovery, to analysis of differential expression.  

 

RESULTS 

 

Oligo-dT internal priming provides coverage across large transcripts (> 10kb) 

 

For preliminary analysis between muscle types, the aligned data for all three samples were 

surveyed in the integrated genomics viewer (IGV). Genes with transcripts close to the 6 kb 

average read length were often fully covered by a single continuous read (e.g. Nrap, 
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Myomesins, Myosins). For larger genes, such as titin (106 kb transcript) and nebulin (22 kb 

transcript), the entire genomic loci were tiled with reads up to the 5’ end of the gene (Figure 1). 

This was unexpected given that IsoSeq uses a poly-A capture method. However, the read 

coverage was not evenly distributed. Dramatic shifts in read depth, visually similar to an upside-

down “staircase” pattern were observed when viewing the aligned reads across the gene. 

Upon close inspection, reads that aligned upstream of the poly-A region (last 3’ exon) of 

the gene consistently started on specific exons in all three samples. Focusing in on these exons 

(e.g. exon 137 of nebulin), the 3’ ends of these reads aligned within 20 bases upstream of 

multiple stretches of ‘A’ bases intermixed in the genomic sequence (Figure 1B). These reads 

were likely generated from cDNAs synthesized with internally primed oligo-dT primers. Internal 

priming has long been described with the use of oligo-dT primers for cDNA generation(Nam et 

al. 2002). With older technologies such as expressed sequence tags and microarrays, internal 

priming is viewed as a source of false splice variants. Modern oligo-dT primers used in our 

study reduce internal priming by adding a random addition of two non-T bases to the 3’ end to 

anchor them to the polyA tail. However, stretches of ‘A’ bases within an exon followed by non-A 

bases can circumvent anchoring oligo-dT primers. These observations suggest that coverage of 

ultra-long transcripts can benefit from internal priming in long-read sequencing if the gene 

contains enough exons that support it. Other large genes such as Obscurin (27 kb transcript) do 

not have enough exons that support internal priming for complete coverage (data not shown). 

Internal priming also produces reads that do not represent complete mRNA transcripts, creating 

a source of variability in exon coverage across the length of the gene that may be problematic 

for exon-based analyses using short-read RNA-Seq. 
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Figure 1. IGV screenshots of reads tiled across mouse nebulin due to internal oligo-dT priming. 

A) Screenshot of full-length reads (blue/purple lines) tiled across the entire nebulin gene. 

Nebulin is on the anti-sense DNA strand and is oriented in the right (5’) to left (3’) direction. The 

mouse nebulin transcript (NM_010889.1) can be up to 22.4kb, or 2x the maximum read length 

(10kb). Red arrow, the first location upstream of the 3’-end to map several reads due to internal 

priming. B) Zoomed image of exon 137 showing reads produced from cDNAs generated by 

internal priming of oligo-dTs. Reference sequence shows consecutive ‘A’ bases followed by 

A.

B.
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A A C G G A G C A A G A A A A A G T A T A A A A A G A A A C A T A A A G T G G A
K G R E K E Y K E K Y K V
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non-A bases downstream of where the reads align. Purple lines are coding/exon regions of a 

reads. Thin connecting blue lines signify intronic sequences that were spliced out. The black 

lines, dots, and arrowheads are indel errors. 

 

Observing splice transcripts across samples 

 

To survey splice differences between tissues, nebulin transcripts were scanned for variable 

regions. The 3’ region of nebulin is known to be differentially spliced between muscle types, and 

our long-read sequencing data confirms those reports(Donner et al. 2004). A stretch of exons 

between 137 and 152 was highly variable (Figure 2), and three novel exons were detected 

(between exon 147 and 148 of transcript NM_010889.1) that are unannotated in the RefSeq 

mouse database. Two of these were annotated in the more comprehensive mouse Gencode 

mouse database (mm10, release M10), but were part of two short nebulin transcripts. One of 

three exons between 147 and 148 was unannotated (u-002). These three exons are conserved 

and expressed in 3 out of 4 human nebulin transcripts (RefSeq). Four exons between exon 85 

and 86 of NM_010889.1 (or exons 2, 3, 4 and 5 of ENSMUST00000028320.13) were expressed 

in all Soleus and EDL transcripts and also conserved in human (data not shown). These results 

suggest that long-read isoform sequencing is able to resolve complex splice isoforms in highly 

repetitive genes such as nebulin. 
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Figure 2. EDL Sashimi plot showing extensive alternative splicing of EDL and Soleus transcripts 

between exons 152-137 of nebulin. Three exons between exons 147 and 148 are not annotated 

in the RefSeq mouse database. Two of these exons highlighted in red can be found in the more 

comprehensive Gencode M10 mouse database. One exon (u-002, green box) is not annotated in 

either database. 

 

Identifying unannotated exons and quantifying differential exon usage. 

 

To identify unannotated exons and compare differential exon usage between tissues, we first 

selected for genes with at least 10 cluster reads produced from the IsoSeq method. This threshold 

resulted in 686 out of 48,440 genes that were adequately covered for further analysis. To reduce 

the complexity of the splice analysis, we collapsed the gencode (release M10) annotation file 

using a python script included in the DEXSeq R package, `dexseq_prepare_annotation.py`. This 

produced a collapsed annotation file containing one meta transcript per gene (Supplementary 

Figure S3A and S3B). Different components of the transcript were renamed as unique exonic 

parts. See DEXSeq manual for details. 
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Next, we developed the exCOVator script to perform a preliminary exon-based analysis 

(exons are treated independently from their neighbors) to determine exon usage between very 

large transcripts that are not fully covered by the IsoSeq maximum read-length. The script 

identifies unannotated exons and calculates percent spliced-in (PSI) values for each exon from 

multiple samples at once using the HT-Seq python library (Supplementary Figure S3C and S3D). 

Unannotated exons are identified by screening reads for exons missing from the meta transcript 

of the collapsed annotation file. This identified 1,218 unannotated exons that were added into the 

meta transcripts of the collapsed gencode annotation file. Using this new collapsed annotation 

file, sample cluster reads that matched the annotated exonic parts were counted. The full-length 

read counts from each cluster read was extracted and used for PSI calculations for each exonic 

part. Finally, the full-length PSI was compared across samples. We selected for exonic parts that 

were at least 20% difference in PSI between at least two out of three samples to reduce artifactual 

differences. This resulted in 2,631 unique exonic parts differentially spliced in 433 genes between 

at least two of the three muscle samples. 

For this study, we focused only on analyzing three large muscle structural genes: 1) Nrap, 

that produces ~6kb transcripts which fall within average read-lengths, 2) nebulin, that produces 

~22kb transcripts that are over twice as long as the maximum read length and 3) titin, that 

produces 106kb transcripts that are over 10 times the read-length. 

 

Novel muscle type specific splicing patterns in nebulin related anchoring protein 

 

Differential usage of exon 12 of Nrap was observed between all three muscle tissues. Lu et al. 

described the expression and alternate splicing of Nrap in skeletal and cardiac muscle during 

development(Lu et al. 2008), and identified two splice variants: 1) Nrap-s, a splice transcript of 

Nrap that includes exon 12 (relative to RefSeq annotation NM_008733.4) and is exclusively 

expressed in skeletal muscle and 2) Nrap-c, a splice transcript that is missing exon 12 and is 
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exclusively expressed in cardiac muscle. The present analysis confirms their findings that there 

is no expression of exon 12 in Nrap transcripts in cardiac tissue (0/567 reads). In contrast to 

their findings, our data suggests that Nrap-c is not exclusively expressed in cardiac tissue. Both 

Nrap-s and Nrap-c splice isoforms are expressed in skeletal muscle and there is a 53% higher 

usage of exon 12 among the transcripts in the predominantly fast-twitch EDL (576/862 reads; 

67% PSI) compared to the slow-twitch soleus muscle (377/2621 reads; 14% PSI; shown as 

exonic part 38; Figure 3A and 3B).  

To validate the findings, we performed RT-PCR and Sanger Sequencing using the same 

primers in the publication(Supplementary Table 2)(Lu et al. 2008), and total RNA extracted from 

muscles of two independent mice (Figure 3). Our RT-PCR results confirm the IsoSeq analysis 

data, showing: 1) low usage of exon 12 in soleus transcripts (more 444 bp product than 549 bp), 

2) high usage of exon 12 in EDL transcripts (more 549 bp product than 444bp) and 3) no usage 

of exon 12 in cardiac transcripts (single 444 bp product). Sanger sequencing of the excised 

bands further confirmed the splice products (Figure 3D). By corroborating the findings of the 

prior study, the present results establish that PacBio long-read IsoSeq can be used as a semi-

quantitative analysis approach for differential exon usage between samples. Additionally, the 

IsoSeq data extends the prior data and show differential exon usage of exon 12 among different 

skeletal muscle types, as both Nrap-s and Nrap-c transcripts are expressed in fast and slow 

skeletal muscle at varying amounts. Not only is there alternative splicing of Nrap transcripts 

between cardiac, and skeletal muscles, but also within skeletal muscle types. This suggests that 

Nrap-s and Nrap-c are misnomers. 
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Figure 3. Nrap has differential usage of exon 12 (exonic part 038) in all three mouse muscles. A) 

Nrap gene graph (cropped) produced by ̀ exCOVator.py`. Bottom stacked bar graph showing total 

full-length (FL) read coverage of all exonic parts (EP) for the gene. Top line graph, displaying the 

ratio of FL reads matching EP sequence / total FL reads that cover the EP coordinates. B) Sashimi 

plot exported from the integrated genomics viewer (IGV) displaying differential splicing of exon 

12. C) Agarose gel showing RT-PCR validation products generated from primers that target exons 

9-14 (549 bp; includes exon 12 and 444 bp excludes exon 12). The gel shows differential exon 

usage between soleus, EDL and heart of two independent mice. NT= no transcript control. D) 

Sanger sequencing of products excised from gel in panel C. Top half shows sequences aligned 

using the IGV BLAT tool. Cardiac band 1, and EDL and soleus band 2 are missing exon 12. 
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Nebulin exon 138 is differentially used between slow and fast skeletal muscle 

 

Our preliminary observations and exCOVator found multiple differentially used exons between 

137 and 152 of nebulin (NM_010889.1; Figure 2, 4A and 4B). We used exon 138 to validate 

differential exon usage in this region (Figure 4C and 4D). The results showed a single RT-PCR 

product at ~500 bp in soleus muscles, suggesting that exon 138 is present and that there is a 

consistent retention of all exons between 135 and 139 in the majority of transcripts in the soleus 

muscle (Figure 4C). The EDL muscles had two product sizes, a ~500 bp product similar to the 

soleus and a smaller ~400 bp product missing exon 138. These results suggest differential exon 

usage of 138 in skeletal muscles which is excluded from a subset of EDL transcripts, but not in 

the soleus. 

Cardiac muscle has low expression of nebulin(Bang and Chen 2015). However, we 

identified a prominent single ~500 bp product similar in size to the product in the soleus (Figure 

4C). This product could be the result of the higher sensitivity of RT-PCR compared to IsoSeq. 

However, the soleus band is overloaded making size determination more ambiguous. It is 

possible that some sensitivity was lost by selecting for cDNAs > 5kb prior to IsoSeq. Sanger 

sequencing of the amplicon products show that the cardiac splice product is identical to what is 

found in the EDL and soleus (Figure 4D), which rules out possible mis-priming to nebulette, a 

nebulin gene family member that is highly expressed in the heart. 
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Figure 4. Differential usage of exon 138 of mouse nebulin (NM_010889). A) Nebulin gene graph 

(cropped) produced by `exCOVator.py`. Bottom stacked bar graph displays full-length (FL) read 

coverage of all exonic parts (EP) for the gene. Top line graph displays the ratio of FL reads that 

match the EP sequence / total FL reads that cover the EP coordinates. B) Sashimi plot exported 

from the integrated genomics viewer (IGV) displaying differential splicing of exon 138. C) Agarose 

gel showing RT-PCR validation products of nebulin exon 138. Shows differential exon usage 

between soleus, EDL and heart. NT= no transcript control. Cardiac shows similar banding pattern 

as Soleus, however few reads were detected during sequencing. Primers were designed to target 

exon 135 and 139. D) Sanger sequencing of products cut from agarose gel seen in panel C. Top 

portion shows sequences aligned in IGV using the BLAT tool. Only the EDL band 2 (E2 from 

panel C) is missing exon 138 sequence. 
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Titin, cardiac specific unannotated cassette exon 191 

 

The IsoSeq analysis results shows that titin exonic part 129 or exon 191 (NM_011652.3) is 

almost always used in transcripts of soleus (34/35 FL reads; 97% PSI) and EDL (357/361 FL 

reads; 99% PSI) muscles, but is missing from 64% of the transcripts in cardiac muscle (84/232 

FL reads; 36% PSI; Figure 5A and 5B). Both Gencode and RefSeq databases show this exon to 

be constitutively expressed. Therefore, the present data suggest titin exon 191 may be an 

unannotated cassette exon that is specifically removed from a subset of cardiac muscle 

transcripts. RT-PCR data shows that exon 191 is retained in Soleus and EDL transcripts by the 

presence of a single product matching the predicted size of 852 bp (Figure 5C). However, the 

cardiac sample shows three different RT-PCR products. The 615 bp product is predicted to only 

be missing exon 191. The 882 bp product contains all exons between 190 and 194. The product 

in between at ~780 bp is an unknown splice product. Attempted Sanger sequencing of the 

unknown product resulted in truncated sequences and remains ambiguous (Figure 5D; Cardiac 

Band 2). This is likely because the product is a heteroduplex between the smaller 615 bp and 

larger 882 bp splice products. Overall, these data confirm that titin exon 191 is an unannotated 

cassette exon that is only removed from a subset of mouse cardiac transcripts. 
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Figure 5. Titin exon 191, found to be an undocumented cassette exon that is spliced out in a 

subset of mouse cardiac transcripts. A) Exon coverage graph of titin gene (cropped). Top line 

graph, red arrow points to exonic part (EP) 129 or exon 191 of NM_011652.3 (N2-A). Bottom 

stacked bar graph, red arrow points to coverage of EP 129 in all three tissues. B) Sashimi plot 

showing the same data in the integrated genomics viewer (IGV). C) Agarose gel / RT-PCR 

validation. Primers target exon 189-194 with predicted product sizes of 882 bp (with exon 191, 

C1) and 615 bp (without exon 191, C3). Soleus and EDL transcripts all include exon 191. 

Cardiac has both predicted bands and one extra unknown band in the middle (C2) that is likely 

a heteroduplex. NT = no template control. Primers target exon 190 and 194. D) Sanger 

sequencing data of bands from figure 5C.  Exon 191 is missing only from cardiac band 3 (C3) 

and is present in all other tissues. 
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Annotation and quantification of transcript structures 

 

One of the strengths of long-read sequencing is the ability to phase multiple neighboring exons 

to determine transcript splice patterns within the same read. However, the exon-based 

approach used here to identify and quantify differentially used exons does not account for 

phasing. To address this, we developed another tool, exPhaser, to quantify and annotate 

splicing patterns of larger transcript structures. The exPhaser script takes in a bed file of exons 

and sample files (bams) and determines the splicing pattern of input exons within each sample 

read. Then it outputs a table of FL-read counts for each splicing pattern, and all transcript 

annotations that match the pattern. As exon input for exPhaser, cassette exons were selected 

that defined the isoform according to known annotations and exCOVator output (e.g. novel 

exons and differentially used exons). We also filtered out unannotated isoforms with < 10 FL-

reads or after visually determining in IGV that they were read/alignment errors. 

 

Phasing of full-length Nrap transcripts 

 

Most reads aligned to Nrap span the entire length of the transcripts, therefore we annotated and 

counted all transcripts by phasing all known cassette exons: 2, 12, 17, 37, 38, 39, and 40 

(NM_008733; Figure 6A). The differential expression of each transcript reflected the results of 

the exCOVator output (Figure 3 and 6A). The primary transcript expressed in cardiac tissue is 

ENSMUST00000095947 (excludes only exon 12) at 97.5% (541/555 FLreads). In the EDL 

muscle, ENSMUST00000040711 is expressed at 33.5% (280/837 FL reads) and 

ENSMUST00000073536 (all exons) at 66.5% (557/837 FL reads). The soleus expresses more 

of ENSMUST00000040711 at 85.6% (2,177/2,544 FL reads) and ENSMUST00000073536 at 
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13.2% (335/2,544 FL reads). Additionally, we identified a rare transcript 

ENSMUST00000095947 (excludes exon 2 and 12) exclusively expressed in cardiac at 2.5% 

(14/555 FL reads) and soleus muscle at 1% (26/2544 FL reads).  

 

Figure 6. Quantifying mouse Nrap, titin and nebulin transcript isoforms that include a validated 

exon in different muscles using exPhaser. A) NRAP transcript structures with exon numbering 

based on NM_008733. B) Titin transcript structures with exon numbering based on NM_011652. 

Some splice patterns could not be uniquely mapped to a single annotation. C) Nebulin transcript 

structures with exon numbering based on NM_010889. Blue squares are isoform defining 

exons. Red squares are in red were validated using RT-PCR and Sanger Sequencing.  
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After analyzing differential exon usage using exCOVator, the results showed that differential 

splicing of nebulin only occurred in the 3’ half of the transcript. We also surveyed other regions 

upstream known to be alternatively spliced such as exons 65-67 and 83-87. No differential 

splicing was detected between EDL and Soleus in these exons.  

Differential splicing of the 3’ end of nebulin transcripts occurred in 14 exons between 

122-152 of NM_011652 (Figure 2 and 6C). These exons code for nebulin peptides found within 

the Z-disk and 3’ end of the super repeat region. This includes two mutually exclusive exons 

located between exons 122-124, and twelve cassette exons between exons 137-152. After 

phasing all 14 differentially spliced exons and additional flanking exons, we found all transcripts 

structures expressed in the three muscles were not annotated in RefSeq or Gencode (M10) 

databases. This was because most reads contained a combination of one or more of the exons 

from other annotated transcripts or the unannotated exon. Corroborating our exon-based 

analysis, the transcripts expressed in the EDL have more exons spliced out between exons 

137-152 (Figure 4A). This includes differential splicing of exons 138, 140, 143, 146, 147, 143*** 

(of ENSMUST00000075301), u-002, 3* (of ENSMUST00000137410), 148, 150, and 151. Only 

9% (14/155 FL reads) of EDL reads retain all exons between 137 and 152. In contrast, the 

Soleus retained all of the listed exons in 89.6% (733/817 FL reads) of transcripts. It is known 

that the width of the sarcomeric Z-disk in fast-twitch muscle (e.g. EDL) is narrower compared to 

slow-twitch muscle (e.g. Soleus). Alternative splicing of the Z-disk region of nebulin transcripts 

of EDL and Soleus correlate with Z-disk width observations. 

In addition, we analyzed the splicing pattern of two mutually exclusive nebulin exons 

referred in the literature as exon 127¨ and 128¨ (Figure 6C)(Donner et al. 2006). Translated to 

our exon numbering using NM_010889, exon 127¨ = 123 and exon 128¨ is not annotated in 

RefSeq mm10, but instead annotated as exon 7**** of ENSMUST00000148356 in the mouse 

Gencode database. Our phasing results show that transcript structures in the EDL all include 
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exon 7**** (155/155 FL reads).  On the other hand, the Soleus expresses a mixture of 

transcripts that contain exon 7**** and exon 123, but with slightly more transcripts expressing 

exon 7**** at 63% (514/817 FL-reads) than exon 123 at 37% (303/817 FL reads) which agrees 

with previous studies(Donner et al. 2006).  

Based on RefSeq annotation NM_001271208, alternative splicing of human nebulin 

occurs in exons 63-66 (66-69 of NM_010889 in mouse), 82-105 (83-87), 143-144 (124-7**** of 

ENSMUST00000148356), and 169-173 (4 exons between 148-149 and 149 itself)(Donner et al. 

2004, 2006; Lam et al. 2018). We found alternative splicing of all of these exons to be 

conserved in mouse except for exons 63-66 (data not shown) and 82-105 (Supplementary 

Figure S4) that are constitutively expressed.   

 

Phasing multiple transcript structures of titin 

 

For titin, we could not phase all differentially spliced exons at once because they are too far 

apart to be contained within the length of a single read. To illustrate this, we compared the 

expression of titin N2-A (NM_011652, principle skeletal isoform) vs N2-B (*NM_028004, 

principle cardiac isoform) transcripts between the three muscle types, using the N2-A isoform 

for exon numbering unless noted. The N2-B transcript excludes exons 47-167 of N2-A, but 

includes an alternate exon 45*. Initially, we sought to phase transcripts using exon 45* (N2-B 

specific), 46, 47 (N2-A specific) and 168. However, the distance between exon 45* and 168 in 

N2-A transcripts is much greater than the 10kb maximum read length. Therefore, we phased the 

skeletal and cardiac specific exons using two groups of exons (Figure 7A and 7B). In the 

skeletal muscle isoform analysis, we phased exons 45*, 46, 47, 48, 49, and 50. Results 

confirmed that N2-A is the primary isoform expressed in skeletal muscle (Soleus: 19/19 FL 

reads and EDL: 160/160 FL reads) and that cardiac muscle did not express exons 47-50 

(202/202 FL reads; Figure 7A). In the parallel cardiac isoform analysis, we phased exons 45* 
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46, 47, 167, 168, and 169. Those data showed all transcripts expressed in cardiac muscle were 

missing exons 47 and 167, but included exons 45*, 46, 168, and 169 aligning with titin isoform 

N2-B (Cardiac: 190/190, EDL: 0/0, and Soleus: 0/0 FL reads). 

Next, we phased four other sets of differentially used exons in titin including exon 191, 

exon 312, exon 45‡ of ENSMUST00000099980 and exons 11, 12 and 13 (Figure 7E). First, we 

phased exon 191, the validated cassette exon that is only removed from a subset of cardiac 

muscle transcripts (Figure 6B). The cardiac phasing data were similar to the RT-PCR results 

(Figure 5) with 32.3% (64/198 FL reads) of transcripts having exon 191 spliced-in. In both 

skeletal muscles, exon 191 is found in all transcripts (EDL: 281/281, Soleus: 21/21 FL reads) 

suggesting it is a cassette exon that is only removed from cardiac muscle transcripts. Further, 

mouse exon 191 is in-frame and conserved in human as exon 191/312 of NM_133378 or as 

exon 243 based on the Locus Reference Genomic (LRG) coordinates used for clinical reporting. 

To determine if alternative splicing of exon 191 is also conserved in humans, we consulted the 

Cardiodb website for titin expression in human heart, and the comprehensive short-read RNA-

Seq study by Savarese et al on 11 different human skeletal muscle types(Savarese et al. 2018; 

Roberts et al. 2015). In heart, 59% of exon 191 is spliced-in in left ventricle tissue of dilated 

cardiomyopathy (DCM) patients (84 end-stage patients), and 69% in the GTEx data set (left 

ventricle tissue, 105 samples). The two exons flanking 191 are almost constitutively expressed 

with a spliced-in rate of 96-100% in DCM patients and GTEx. Savarese et al. show that exon 

191 (LRG exon 243) is constitutively expressed across 11 adult skeletal muscle types. These 

data corroborate our findings that exon 191 is a cassette exon that is only spliced out from a 

subset of cardiac and not from skeletal muscle transcripts. However, it also suggests that there 

are slight differences in splicing of exon 191 in mouse compared to human. These 

discrepancies could be due to differences in tissue sampling locations. The human heart studies 

used the left ventricle in their sequencing experiments. In comparison, we used the apex of the 

mouse heart which includes the lower portions of the left and right ventricles.  
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Second, we phased the penultimate exon of titin, exon 312, along with adjacent 

neighbors. The results showed that exon 312 is always included in cardiac transcripts (375/375 

FL reads; Figure 7C). In contrast, EDL and Soleus muscles splice out exon 312 in 25% 

(249/997 FL reads) and 1.2% (25/2061 FL reads) of transcripts respectively. The phasing and 

exon-based analysis (data not shown) suggests that exon 312 of titin is a cassette exon that is 

spliced out specifically from skeletal muscle transcripts. It is also preferentially spliced out of 

transcripts in the fast EDL compared to the slow Soleus muscle. According to Cardiodb and 

GTEx, exon 312 (LRG exon 363) is 99% spliced-in in human left ventricle tissue. Data from 

Savarese et al. show that exon 312 is 91% spliced-in across different skeletal muscles. 

Additionally, the exon is in-frame in both species. These data support that alternative splicing of 

exon 312 is conserved and that it is a cassette exon that is only removed from a subset of 

skeletal muscle transcripts. 

There are some notable differences between exon 312 in mouse and humans that do 

not affect the conclusions. The human equivalent of exon 312 (LRG exon 363) is larger with an 

additional 7 bp on 3’ end and 53 bp on the 5’end of the exon. However, the extended human 

exon 312 remains in-frame because its flanking exons are also different lengths and 

accommodate for the discrepancy. 

Third, we phased the alternative 3’ exon 45‡ of ENSMUST00000099980. After manually 

inspecting the reads in IGV, we noted numerous partial reads of the large exon 45‡ (data not 

shown). Therefore, we decided to phase the exon (only 50 bp of 5’ end) and its upstream 

neighbor, exon 45 of NM_011652. The phasing results show that exon 45‡ is expressed in 3.6% 

(7/27 FL reads) of all cardiac muscle transcripts, 13.9% (27/194 FL reads) of EDL transcripts 

and 35.5% (97/118 FL reads) of Soleus transcripts. Our data suggests that 

ENSMUST00000099980 is a relatively minor isoform expressed in all three muscles but is 

expressed higher in skeletal compared to cardiac muscle.  
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In humans, the paralog of ENSMUST00000099980 in mouse is the novex-3 

(ENST00000360870/NM_133379), the minor small cardiac isoform of titin. The alternative 3’ 

exon is conserved in humans as exon 46 of NM_133379 (48 LRG) and has a 22% sequence 

difference compared to exon 45‡ in the mouse paralog. According to Cardiodb, exon 46 is 

expressed in 9.4% and 7.3% of human left ventricle transcripts in the DCM and GTEx 

respectively. The GTEx data was calculated by taking the ratio of the alternative 3’ exon vs the 

primary end exon (364 LRG). Their result is close to our 18% expression of exon 45‡ found in 

mouse cardiac tissue. On the other hand, Savarese et al. describe exon 46 as only 2% spliced-

in in adult skeletal muscles compared to our 13.9% and 35.5% in mouse EDL and Soleus 

transcripts, respectively. However, this discrepancy may be due to a combination of species 

differences, location of cardiac tissue sampled and the poor reliability of percent spliced-in (PSI) 

calculations on 3’ exons using short-read data. 

Lastly, we phased exons 11, 12 and 13 of titin (and their neighboring exons 10 and 14) 

and observed that the most highly expressed transcripts in each of the three tissues have not 

previously been annotated (Figure 7E). Our results show that there are extensive differences in 

the usage of exons 11, 12 and 13 in the three muscle types. Exon 11 is not used in any titin 

transcripts expressed in the two skeletal muscles and is likely that the N2-A annotation may be 

incorrect. In contrast, cardiac muscle makes extensive use of exon 11, which appears in 86.7% 

of expressed transcripts. Exons 12 and 13 seem to be co-expressed within skeletal muscle, but 

only in less than half of Soleus (40.8%) and very rarely in EDL (1.7%) transcripts. Exon 12 is 

rarely used in heart (9.5%), but exon 13 is expressed in more than half (69.6%) of expressed 

transcripts. This suggests that peptides coded by all three exons are dispensable for titin’s 

function in fast skeletal muscle since 98.3% of transcripts in EDL do not express these exons. 

There is also similar expression of exon 13 in slow skeletal and cardiac muscle. However, slow 

skeletal muscle includes exon 12 in more transcripts than cardiac muscle with the inverse 

expression pattern seen for exon 11. 
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All three exons are conserved in humans and retain the same numbering. Savarese et al 

show that exon 11 is constitutively spliced out in human which agrees with our mouse data. 

They also show exon 12 to have an average of 54% inclusion and exon 13 with a 79% inclusion 

in skeletal muscle transcripts. Our soleus muscle data agrees with theirs, showing a similar 

exon inclusion rate of 40.8%. However, in the EDL muscle, exon 12 is only found in 1.7% of 

transcripts which is a large discrepancy. Our mouse exon 13 results also conflict with their 

human data. We found exon 13 to be co-expressed in transcripts with exon 12, sharing the 

same inclusion rate of 1.7% in EDL is vastly lower than their average of 79% inclusion in 

skeletal muscle. It’s likely that these discrepancies are due to the averaging of values across 

multiple skeletal muscles in the Savarese et al study. 

Exon 11 is expressed in left ventricle tissue at 59% in DCM and 69% in GTEx according 

to Cardiodb. This agrees with our analysis that cardiac tissue includes exon 11 in 86.7% of 

transcripts, the highest inclusion rate out of our three muscle tissues. The database reports that 

exon 12 is included in 79% of left ventricle transcripts in the DCM study and 75% in GTEx. 

These inclusion rates of exon 12 are much higher than our study in which the exon is included 

in only 9.5% of mouse cardiac transcripts. Exon 13 is expressed in 96% of DCM and 95% of 

GTEx transcripts, but only 72.5% in mouse cardiac transcripts. We see some agreement 

between species such as exon 11 being included exclusively in transcripts expressed in heart, 

but the other two exons seem to be included at higher rates in humans. These differences could 

also be due to species specific splicing or different sampling locations of the heart. 
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Figure 7. Phasing of additional titin exons and quantification of transcript structures using 

exPhaser. Exons are numbered by NM_011652/ENSMUST00000111846 (N2-A, principle 

skeletal long isoform) unless noted.  A) Quantifying transcript structures focusing on N2-A 

isoform defining exons (47, 48, 49, 50) and some N2-B a cardiac defining exon (45*). B) 

Quantifying transcript structures focusing on N2-B (cardiac) isoform defining exons (45, 46,168, 

169) and two N2-A defining exons (47 and 167).  C) Exon 312 of titin spliced out in skeletal 

muscle transcripts, an unannotated skeletal muscle specific isoform. D) Phasing of exon 45‡ of 

ENSMUST00000099980 an alternate 3’ terminal exon that is differentially used in all three 

tissues. E) Phasing of exons 11,12 and 13 showing that the most abundant isoforms in each 

tissue are unannotated. Transcript structures listed with multiple ID’s cannot not be uniquely 

annotated using the exons provided. 
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DISCUSSION 

 

Our work here has developed a unique approach to identify and quantify novel isoforms of ultra-

long transcripts between samples using long-read sequencing and the IsoSeq approach. On its 

own, IsoSeq has so far only been used for isoform discovery purposes. Use of our exon-based 

(exCOVator) approach enables quantifying differential exon usage and identifying novel exons 

in large structural protein transcripts. We showed this for three such proteins of specific 

importance in muscle: titin, nebulin and Nrap, without resorting to additional short-read data.  

This reduces cost, but more importantly, we specifically show that this method is useful for 

transcripts with highly complex and repetitive sequences, which are difficult to resolve using 

short-read sequencing and other molecular assays. Using our exon phasing (exPhaser) 

approach, we determined splicing patterns between cassette exons to generate transcript 

structures. The exon pattern of these structures was mapped to known annotations for 

identification and used to count reads to quantify their expression in each sample. 

Nrap transcript sizes (~5kb) are within our 6kb average read length making them an 

ideal test sample for our study. There are also fewer known splice isoforms, with one described 

as unique to cardiac (Nrap-c) and another to skeletal muscle (Nrap-s)(Mohiddin et al. 2003; Lu 

et al. 2008). These isoforms were validated by our exon-based analysis. We found that Nrap-c 

(exon 12 excluded) was indeed the only isoform expressed in heart (Figure 3). We also 

confirmed that Nrap-c is not exclusively expressed in cardiac muscle, but is differentially 

expressed in skeletal muscles as well, with higher expression of Nrap-c in the slow-twitch 

Soleus than in the fast-twitch EDL muscle (Figure 3C). Nrap-s (includes exon 12) was also 

differentially expressed in the two skeletal muscle types with an inverse pattern to Nrap-c. This 

muscle type difference went undetected in previous studies using a mixture of lower limb 

muscles(Lu et al. 2008). By phasing every known cassette exon in Nrap, we quantified all 

known Nrap isoforms in the three muscle types. Doing so also increased our sensitivity for rare 
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transcript isoforms, leading to the detection of an isoform exclusively expressed in heart and 

soleus muscles (Figure 6A). This rare transcript lacks both exon 12 and exon 2, the latter being 

one of two exons that code for the N-terminal LIM domain known to interact with proteins that 

link the actin cytoskeleton to the cell membrane(Zhang et al. 2001). The LIM domain is also 

responsible for Nrap’s role in myofibrillogenesis during development(Carroll et al. 2001). 

Alternative splicing of exon 2 may modulate the binding affinity of the Nrap LIM domain to these 

myofibrillar and linker proteins. 

At 22 kb, nebulin is over twice the length of IsoSeq’s maximum read length. This 

resulted in reads of partial nebulin transcripts. However, internal priming enabled tiled coverage 

across the entire length of the transcripts. We only detected alternative splicing of the 3’ half of 

the gene encoding the super repeat and Z-disk regions of the protein. As these alternatively 

spliced exons are close enough in proximity, they fit within a single read and were phased 

together. In silico translation of mouse nebulin used an older and more inclusive annotation 

containing 166 exons which is most similar to ENSMUST00000238749.1 in Gencode release 

M22 with 165 exons(Buck et al. 2010). However, this transcript is likely not accurate as it 

includes both exons 127 and 128, which are expressed in a mutually exclusive manner(Donner 

et al. 2006; Lam et al. 2018). Thus, we used the only mouse nebulin RefSeq annotation 

(NM_010889.1/ENSMUST00000036934.11) that contains 157 exons as a reference and below 

we clarify the annotation further. 

Using our exon-based analysis on IsoSeq data, we detected differential splicing of 

multiple nebulin exons between 122-152 (NM_010889.1). Exons 13-132 (13-137 of 

ENSMUST00000238749.1) code for the super repeat region and exons 134-157 (139-165) 

code for the Z-disk region of nebulin in mouse. The majority of differential splicing of nebulin 

was detected within the Z-disk region which included an unannotated exon u-002 (Figure 1, 4A, 

and 6C). Exon u-002 is in-frame and conserved in human nebulin transcripts (see footnote). In 
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the fast-twitch EDL, most of the exons of the Z-disk region are removed while the slow-twitch 

soleus included the majority of exons at a higher percentage.  

The Z-disk plays a key role in contractile force transmission within and across 

sarcomeres. Differential splicing of the nebulin Z-disk region correlates with Z-disk width being 

thinner in white muscles and thicker in red muscles(Rowe 1973). Independent observations also 

found that the slow soleus and fast tibialis cranialis muscles corroborate our splicing data, 

suggesting that nebulin may have a functional role regulating Z-disk width(Buck et al. 2010).  

We also detected alternative splicing of exon 127 and 128 (ENSMUST00000238749.1), 

which are located in the super repeat region right outside of the Z-disk anchorage point. They 

are expressed in a mutually exclusive manner, are conserved in humans (NM_001271208), and 

code for peptides with different charge and hydrophobicity, suggesting distinctive functional 

roles(Donner et al. 2006; Lam et al. 2018). In humans, these exons show developmentally 

regulated inclusion(Lam et al. 2018). The peptides in the super repeat region of nebulin are 

binding sites for kelch-like family member 40 (KLHL40), loss of which causes a nemaline-like 

myopathy(Garg et al. 2014). In turn, KLHL40 is suggested to stabilize nebulin and Leimodin 3 

(LMOD3, another protein implicated in nemaline myopathy) by acting like a chaperone and 

maintaining proper folding of these two proteins during muscle contraction(Garg et al. 2014). 

Using exPhaser we identified and quantified multiple novel nebulin transcripts in both the 

Z-disk and 3’ end of super repeat region (Figure 6C). Thus, our phasing data presents a catalog 

of more rigorous splice combinations. It is worth noting that none of the current nebulin 

transcripts annotated in RefSeq and Gencode release M10 (see footnote), are expressed in the 

EDL and Soleus muscles. 

Titin transcripts (~106 kb) are over tenfold longer than maximum IsoSeq read lengths. 

This did not thwart the ability to determine differential exon usage through our exon-based 

exCOVator analysis. However, the maximum read length put limitations on the exPhaser 

analysis. The phasing analysis required breaking up the exons into multiple groups based on 
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proximity. We then quantified transcripts known to be cardiac and skeletal muscle specific in 

mouse. This helped uncover multiple novel splicing patterns expressed in specific muscle types. 

Using this strategy together with Cardiodb, TITINdb and other resources(Savarese et al. 2018; 

Roberts et al. 2015; Laddach et al. 2017), we compared our mouse findings to human studies to 

determine if alternative splicing of these exons are conserved. 

Cardiac specific cassette exon 191 (NM_133378, N2-A) in human (243 LRG) codes for 

one of multiple immunoglobulin-like (Ig-like) domains in the highly extensible I-band region of 

titin(Linke 2017). Ig-like domains can quickly unfold and refold, a property important for muscle 

elasticity and passive stiffness(Rief et al. 1997). This is especially relevant in heart where 

stiffness can affect the ejection fraction. It’s possible that this cassette exon is differentially 

spliced to adjust the length of the I-band region of titin and stiffness of sarcomeres in the 

heart(Opitz et al. 2004).  

 Exon 312 in mouse or 363 (LRG) in human is the penultimate exon of titin. This c-

terminal region integrates into the M-band of the sarcomere, functions as a scaffold and 

proposed to play a role in mechanosensitivity(Linke 2017; Zacharchenko et al. 2015). Exon 363 

(LRG) codes for the N-terminal portion of the final Ig domain M10 (TitinDb). Mutations in M10 

cause two types of muscular dystrophies (OMIM) as it is important for interacting with obscurin 

and myospryn in the M-line(Sarparanta et al. 2010). Specific alternative splicing of exon 363 

(LRG) in skeletal muscle may alter titin’s protein interactions in the M-line. 

 Alternative 3’ exon 45 (exon 48 LRG) is part of the smallest titin isoform conserved in 

humans as Novex-3. The isoform is known to interact with obscurin in the I-band and a variety 

of proteins in the Z-disk(Bang et al. 2001). It is speculated to play a role in myofibrillar signaling 

during muscle development and cardiac disease(Bang et al. 2001). Novex-3 is expressed in all 

striated muscles, but not smooth muscles(Bang et al. 2001). It is interesting that we found it 

expressed more in skeletal muscle compared to cardiac muscle as it is often labeled as a 

cardiac isoform.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898627
http://creativecommons.org/licenses/by/4.0/


 30 

 Exons 11, 12 and 13 of titin are conserved in humans with the same numbering (LRG).  

They code for z-repeat domains 4, 5, and 6 respectively in the N-terminal region of titin 

imbedded in the Z-disk. These exons are variably spliced in human and may be involved in 

assembling Z-disks of variable width(Gautel et al. 1996). Titin’s Z-repeats interact with alpha-

actinin in the Z-disk, and have been proposed to be important for Z-disk organization, assembly 

and force transmission between adjacent sarcomeres(Joseph et al. 2001). Alternative splicing of 

these exons seems to correlate with Z-disk width much like the Z-disk region of nebulin; 

transcripts produced by the fast EDL muscle excludes more exons compared to Soleus. In 

addition, exon 11 of titin is also always spliced out in skeletal muscle in a similar manner to 

humans(Savarese et al. 2018). 

IsoSeq is generally recommended for transcript isoform discovery rather than for 

quantitative measures. In contrast, we found that counting full-length reads extracted from 

uncollapsed cluster reads was quantitative based on our validations. However, there are false 

positives caused by spurious reads that require manual inspection in a genome browser. 

Recent improvements to sample preparation and data processing in IsoSeq 3 (SmrtLink v8) 

allow improved read length and data quality. The use randomized primers could also open the 

door for more evenly distributed coverage for ultra-long transcripts but would require some 

changes in the data processing pipeline. 

Our study analyzed alternative splicing at a bulk tissue level, but it is unknown if the 

alternatively spliced transcripts are expressed by different muscle fibers in the muscle or by the 

same fiber. Use of single-cell isoform sequencing approaches that combine single-cell RNA-seq 

with IsoSeq would be needed to answer these questions(Gupta et al. 2018). Further, new 

methods for isolating intact ultra-long transcripts and converting them to cDNA would improve 

alternative splicing analysis of large structural genes. Improved direct RNA sequencing methods 

being developed may also help circumvent this limitation(Garalde et al. 2018). 
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We successfully applied our strategy to study three important muscle structural genes 

that produce complex, repetitive, ultra-long transcripts. It is difficult at best, to assess the 

alternative splicing of these transcripts with short-read data, and current long-read analysis 

approaches, are also not yet optimized. Our strategy provides a potential solution to these 

issues and enables simultaneous ultra-long transcript isoform discovery and quantitation, 

opening the door to differential expression analysis of difficult transcripts. 

 

FOOTNOTE 

 

Our analysis was based on Gencode release M10 (Ensembl 85) which matches the latest 

Gencode genome reference used to map the IsoSeq data.  At the time of writing, we checked 

the latest genode annotation (release M22, Ensembl 97) to make sure that our findings were up 

to date.  We found no annotation changes that would affect our analysis of titin and Nrap.  

However, we found that two new inferred transcripts (ENSMUST00000238749.1 and 

ENSMUST00000238288.1) were added to nebulin in Gencode release M22 that contain all 

exons found to be missing in the RefSeq annotation NM_010889.1 (including the unannotated 

u-002). The three exons between 147 and 148 labeled as 3*, u-002 and 143** in figure 6C are 

annotated in M22 as 153, 154, and 155 of ENSMUST00000238749.1 respectively.  The two 

mutually exclusive exons labeled as 7*** and 123 in figure 6C are 127 and 128 of 

ENSMUST00000238749.1 respectively. The four exons found between 85 and 86 in 

NM_010889.1 are annotated in release M22 as exons 71,72,73 and 74 of 

ENSMUST00000238749.1.  In the phasing results (figure 6C), the nebulin “UNANNOTATED 7” 

transcript matches the current annotation ENSMUST00000238288.1 (exon 128 spliced out). 

Interestingly, this is still not the highest expressed transcript in the Soleus (UNANNOTATED 8 

at 53.2% of 817 FL-reads). The annotation ENSMUST00000238749.1 (containing all exons) is 

not expressed in any of the muscles further supporting that exons 127 and 128 are mutually 
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exclusive and the annotation is likely incorrect but would be useful as a meta or inferred 

complete transcript similar to NM_001267550.1 (ENST00000589042). 

 

METHODS 

Animals and tissue harvesting 

Six-week old C57BL/6 (WT) male mice (JaxLabs) were euthanized using CO2 followed by 

cervical dislocation. EDL, Soleus and cardiac muscles from the same animal were excised. For 

cardiac muscle, only 10 mg of the apex was acquired. The excised muscles were immediately 

flash frozen in 2-methybutane (Sigma) in liquid nitrogen and stored at -80°C for further 

processing. 

 

RNA isolation and purification 

 

The cardiac apex was processed individually, while the left and right EDL, and Soleus from the 

same mouse were pooled by muscle type for processing. The muscles were thawed to -20°C, 

cut into 2 mm cubes, placed into pre-chilled T-prep devices (COVARIS, Cat# 520097) and 

crushed into a fine powder using the impactor (COVARIS, Cat# 500305) following 

manufacturer’s protocol. Afterwards, 600μl of lysis buffer from the MirVana RNA Isolation kit 

(Thermo Fisher: AM1560) was added to each T-prep device, the homogenate transferred into 

fresh tubes and total RNA was extracted following the MirVana protocol.  

DNA was removed using the Turbo DNA-free kit (ThermoFisher, #AM1907). Purification 

by ethanol precipitation was performed by mixing 0.1x volume of 3M sodium acetate 

(ThermoFisher, #AM9740) and 3x volume of 100% molecular grade ethanol into the RNA 

samples. The mixture incubated overnight at -20°C and centrifuged at 10,000g at 4°C for 20 

minutes. The supernatant discarded, and RNA pellet rinsed with 400μl of fresh 70% ethanol and 
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centrifuged again. This wash step was repeated twice before the RNA pellet was left to dry at 

room temperature for 5 minutes. The pellets were resuspended in nuclease-free water and 

assessed for purity using a NanoDrop 2000. All samples had 260/280 ratios > 1.8 and 260/230 

> 2.0 

Assessing RNA quantity and quality.  RNA was quantified using a Qubit Fluorometer 

(v2.0) and RNA broad range assay kit (ThermoFisher, #Q10210). Quality of total RNA was 

assessed on an Agilent BioAnalyzer 2100 using the RNA 6000 Nano kit (Agilent, # 5067-1511). 

All samples had a RIN > 7.6. The purified total RNA samples were stored in - 80°C. 

 

IsoSeq library generation and sequencing 

 

Total RNAs from one mouse was reverse transcribed following PacBio’s IsoSeq procedure and 

checklist using Clonetech SMARTer PCR cDNA Synthesis Kit and BluePippin Size-Selection 

System (P/N100-377-100-04). Three starting reactions of 600ng-1μg total RNA were used per 

muscle sample for first stand cDNA synthesis. Custom 3’ primers containing barcodes were 

added during this step: soleus (dT_BC1), EDL (dT_BC2), and Cardiac (dT_BC3) following the 

IsoSeq Barcoding protocol. After first strand synthesis, the number of cycles chosen for large 

scale PCR were: 12 for soleus and EDL and 10 for cardiac samples.  

After amplification, cDNA libraries were pooled in equimolar amounts and the 

subsequent steps were performed according to protocol with modifications. During the 

BluePippin size selection step, 500ng of cDNA was loaded per lane of the gel cassette and only 

the 5-10kb size fraction were collected for further library generation. SMRTbell adapters were 

added using the SMRTbell Template Prep Kit 1.0 (#100-259-100). A second BluePippin size 

selection step was performed after SMRTbell templates were generated to remove small library 

fragments. 
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Single-molecule sequencing. Sequencing was performed according to PacBio RS II 

protocol. Briefly, DNA polymerase was bound using DNA/Polymerase Binding Kit P6 V2 (#100-

372-700). DNA P6 Control Complex (#100-356-500) was added and DNA Sequencing Reagent 

4.0 (#100-356-200) was loaded onto the system. During sequencing loading optimization (first 8 

SMRTcells), two concentrations were used on four cells each: 1.0nM and 1.2nM. The 1.2nM 

concentration resulted in a higher yield of total reads of interest and the concentration was used 

for the remaining SMRTcells. The pooled IsoSeq libraries were sequenced using a total of 24 

SmrtCells (#100-171-800) on the PacificBiosciences RSII machine (output statistics in Table 

S1). 

 

Data processing and alignment 

 

Raw data (bax.h5) was processed according to the official Iso-Seq protocol using SmrtAnalysis 

(v2.3) with a few modifications to help process the large amount of data. Briefly, the fasta files 

produced from individual SmrtCells after the circular consensus step (CCS) were merged into 

two fasta files composed of eight SmrtCells.  The two merged files were demultiplexed into the 

three muscle samples based on their barcodes yielding six total files. Barcodes numbers were 

converted to zero-based according to protocol (dT_BC1àBC0, BC1àdT_BC2, and 

dT_BC3àBC2). The six files were processed through classify and cluster steps in the IsoSeq 

method to produce fastq files. Fastq files belonging to each muscle were concatenated 

producing three large fastq files (e.g. soleus.fastq, edl.fastq, cardiac.fastq) ready for alignment. 

To allow for this type of merging, cluster numbers (c1, c2, c3 etc) from each fastq file’s read 

names were renumbered for each consecutive fastq file to avoid overwriting redundant cluster 

numbers. See mergeFastq.py script in github repository. Finally, the alignment steps were 

performed using STAR v2.5.0a and GENCODE primary mouse sequence and annotation 

(GRCm38) version M10 (Ensembl 85) released 2016-07-19. All data processing steps were 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898627
http://creativecommons.org/licenses/by/4.0/


 35 

performed on the Colonial One George Washington University HPC using the Slurm workload 

manager.  

 

Reverse-Transcription PCR and Sanger Sequencing 

 

Primers were designed using NCBI Primer-Blast (Table S2). RT-PCR reactions were performed 

using SuperScript III One-Step RT-PCR system (ThermoFisher, #12574030) following 

manufacturing protocol.  Samples used in validation (mouse 2 and 3) are independent from the 

sequenced sample (mouse1).  The amplification products were loaded into a 2% agarose gel 

made with 1x TBE buffer and 5μl ethidium bromide for electrophoresis and imaging.  

The RT-PCR products were excised from the agarose gel and purified using Qiagen gel 

purification kit and sent along with primers to Quintarabio for Sanger Sequencing. Alignments of 

the sequences were visualized in IGV after using the BLAT tool. 

 

Bioinformatics analysis 

 

Scripts for identifying novel exons, differential exon usage analysis, exon phasing and transcript 

structure quantification were created using python and the HT-Seq library.  For full details of the 

analysis approach see supplementary methods and the GitHub page (see data availability 

section). 

 

DATA ACCESS 

All raw and processed sequencing data generated in this study have been submitted to the 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession 

number GSE138362. All scripts, detailed notes, links and archived versions of PacBio protocols 
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used in this project are made available in our GitHub repository 

(https://github.com/puapinyoying/isoseq_manuscript_resources). 
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