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ABSTRACT 

 

We developed MSIsensor-pro (https://github.com/xjtu-omics/msisensor-pro), 

an open-source single sample microsatellite instability (MSI) scoring method 

for research and clinical applications. MSIsensor-pro introduces a multinomial 

distribution model to quantify polymerase slippages for each tumor sample 

and a discriminative sites selection method to enable MSI detection without 

matched normal samples. For samples of various sequencing depths and 

tumor purities, MSIsensor-pro significantly outperformed the current leading 

methods in terms of both accuracy and computational cost. 

 

MAIN TEXT 

Microsatellite instability (MSI) is a form of hypermutation of the microsatellites in 

malignancies due to a deficient DNA mismatch repair (MMR) system1-3. Significant 

proportions of tumor samples with MSI status are observed in colorectal cancer (CRC), 

stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC)4,5. 

Given that MSI is an important molecular phenotype of cancers and a key biomarker for 

cancer immunotherapy6-8, two gold standards, MSI-PCR and MSI-IHC, are widely used for 

clinical MSI identification9. However, both methods are laborious, time-consuming and 

expensive9,10. Recently, several next-generation-sequencing (NGS)-based methods have been 

developed, which show much better time and cost efficiency and are highly consistent with 

the gold standards3-5,11-15. For instance, MSIsensor11, an FDA-approved MSI detection 

solution of MSK-IMPACT16, achieved 99.4% concordance and high sensitivity17. However, 

these NGS methods do have limitations, such as requiring matched normal samples as control 

(sometimes inaccessible), being computational expensive, and being affected by low 

sequencing depths and low tumor purities9.  

A hallmark of MSI is the enrichment of insertions or deletions in microsatellite regions 

initiated by polymerase slippages2,18 (Supplementary Fig. 1), an enzymatic process that we 

argue is described using a multinomial distribution (MND) model (Supplementary Fig. 2), 

providing promising improvements of MSI detection efficacy on NGS data. Here, we report a 

novel MSI calling method, MSIsensor-pro, which addresses the limitations of current NGS-

based MSI detection tools by applying MND model to capture the intrinsic properties of 
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polymerase slippages in a single sample. We demonstrate that MSIsensor-pro is an ultrafast, 

accurate and normal sample-free MSI calling method. Moreover, it outperforms all current 

MSI detection methods and is robust for samples with various sequencing depths, tumor 

purities and target sequencing regions. 

To quantitatively describe the polymerase slippages present in a single sample, we first 

examined the allele length distributions of 27,200 microsatellites in 1,532 normal samples 

from the Cancer Genome Atlas (TCGA)19 (Supplementary Table 1,2, Methods). The 

distributions flattened (the variances became larger and the modes deviated from expectation) 

with the increase in the repeat length of microsatellites on the reference genome (Fig. 1a), 

suggesting that the polymerase slippage was an iterative process. We argue that polymerase 

slippages are independently accumulative in the DNA replication process and could be 

modeled by a MND model. Here, we used p and q to denote the probabilities of hysteresis 

synthesis (causing deletions) and presynthesis (causing insertions), respectively, for each 

replication unit (Supplementary Fig. 2). We next estimated the parameters p and q of each 

microsatellite to quantify the polymerase slippage in a given allele length distribution. 

To explore the characteristics of parameter p and q in MND model, we applied MND model 

to 1,532 TCGA normal samples. We totally obtained 11,666 microsatellites with sufficient 

read coverage (>20) in more than half of the samples for subsequent study (Supplementary 

Table 1-2, Methods). We found that the average probability of hysteresis synthesis, p, is 

significantly larger (P-value <0.05, Wilcoxon rank-sum test) than the average probability of 

presynthesis, q (Supplementary Fig. 3) in these sites, indicating that polymerase slippages 

tend to cause more deletions than insertions at microsatellites, confirming previous reports4,18. 

To evaluate the power of our MND model on describing the polymerase slippages in DNA 

replication, we simulated the allele length distributions at each microsatellite site with their 

corresponding computed p and q values and compared them with the observed ones from 

sequencing data. We found that the simulated allele length distributions were consistent with 

the observed ones at 91.97% microsatellites and the similarities of two distributions 

decreased with increasing repeat length (Fig. 1b, Supplementary Figs. 4, 5 and Methods), 

confirming the MND model is capable of describing the polymerase slippages at 

microsatellite sites.. 

Based on the MND model, we developed a method called MSIsensor-pro to detect MSI. We 

applied our MND model to 1,532 TCGA tumor samples with clinical MSI status and 

obtained their p and q values for each microsatellite. We found that the MSI samples have 
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significantly larger p values than do MSS samples (P-value < 2×1016), while q values in the 

MSI and MSS samples are not discriminative (Fig. 1c, d and Supplementary Figs. 6-9). Thus, 

it is conceivable that the higher incidence of polymerase slippages, and therefore, the greater 

instability of microsatellites in MSI instead of MSS, is attributed to more deletions, rather 

than insertions. Therefore, the parameter p evaluates the stability of each microsatellite site. 

MSIsensor-pro classifies the i-th microsatellite as unstable when its p is larger than μi+3σi, in 

which μi and σi are the mean and standard deviation, respectively, of p in 1,532 normal 

samples at the i-th microsatellite. The fraction of unstable sites in a given microsatellite set is 

used to score MSI in a tumor sample (Supplementary Fig. 10 and Methods). 

To assess the performance of MSIsensor-pro in terms of the accuracy and computational cost, 

we compared this method against MSIsensor11, mantis13 and mSINGS12; the first two 

methods require tumor-normal-paired samples and the last method requires tumor-only 

samples (Supplementary Tables 1-2 and Supplementary Note). First, we applied MSIsensor-

pro to 1,532 TCGA tumor samples based on 11,666 preselected microsatellites to detect MSI 

and then compared its MSI detection accuracy with those of the other three methods on the 

same samples using the area under receiver operating characteristic curve (AUC). We noticed 

that even without matched normal samples, MSIsensor-pro’s AUC values were comparable 

to those of MSIsensor and mantis but much higher than those of mSINGS (Fig. 2a, 

Supplementary Table 3).  

The sequencing data of samples with low coverage and low tumor purities are common 

challenges for robust MSI detections in clinical applications17. To prove the robustness of 

MSIsensor-pro on various sequencing depths and tumor purities, we evaluated the 

performances of all four methods on 178 CRC samples (78 MSI and 100 MSS) of both 

original forms and various sequencing depths, as well as tumor purities. Multiple sequencing 

depths (5x, 10x, 20x, 40x, 60x and 80x) resulted from simulating and downsampling the 

original data, while various tumor purities (5%, 10%, 20%, 40%, 60% and 80%) were 

simulated by mixing the tumor and matched normal samples (Methods). Across samples of 

diverse depths and tumor purities, the AUCs of MSIsensor-pro, MSIsensor and mantis were 

all much higher than those of mSINGS, while MSIsensor-pro, requiring only a tumor sample, 

achieved performance comparable to MSIsenor and mantis, which both required normal-

tumor-paired samples to call MSI (Fig. 2b, Supplementary Table 4-7). These results confirm 

the robustness of MSIsensor-pro and indicate MSIsensor-pro can achieve high accuracy on 

samples with low sequencing depth (e.g. 20x) or low tumor purity (e.g. 40%). In addition, to 
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evaluate the computational performances of all four methods, we called MSI for a TCGA 

sample TCGA-AD-A5EJ (35Gb tumor and 12Gb normal bam files) using the four methods 

on a Linux machine running Ubuntu18.04 OS with Intel(R) Core (TM) i5-7500 CPU@3.40 

GHz and 32 GB Memory. MSIsensor-pro and MSIsensor required only 4 and 15 minutes, 

respectively, performances which were significantly faster than mSINGS (94 minutes) and 

mantis (119 minutes). In addition, MSIsensor-pro consumed much less memory than 

MSIsensor, mSINGS and mantis (Fig. 2a and Supplementary Fig 11, 12). 

While MSIsensor-pro exhibited satisfactory all-around performance in detecting MSI using 

the 11,666 preselected microsatellites, these sites seemed to have an unequal contribution to 

the MSI classifications. We therefore evaluated the contribution of each microsatellite based 

on MND parameter p and identified 7,698 sites (Supplementary Table 8) with strong 

contributions (AUC>0.75), which were defined as discriminative microsatellite (DMS) sites 

(Supplementary Fig. 13, Supplementary Table 8 and Methods). When DMS sites were used, 

MSIsensor-pro exhibited slight improvement compared to MSI detection using all 11,666 

sites and prevailed over all other methods for the 1,532 TCGA samples. Using DMS sites, 

MSIsensor-pro’s performance was further enhanced with respect to sequencing data of low 

depths, especially for depths below 40x (Fig. 2b and Supplementary Table 4-5). For data of 

different tumor purities, on DMS sites, MSIsensor-pro exhibited performance comparable to 

other tumor-normal-paired methods for tumor purities of over 40%. However, for lower 

tumor purities (< 40%), although the performances of all methods decreased, the performance 

of MSIsensor-pro on DMS sites remained the best of all the examined methods (Fig. 2b and 

Supplementary Table 6-7). 

Since only a portion of all 11,666 sites (DMS sites) was sufficient for high performance MSI 

calling by MSIsensor-pro, we wondered whether an even smaller subset of DMS sites would 

be adequate for MSIsensor-pro to achieve similar performance, which shall reduce the time 

and cost in practical clinical applications. We assessed the MSI calling performance of 

MSIsensor-pro on microsatellite sets from single and combined tumor samples containing the 

top 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1,000 DMS sites based on their contributions. We 

found that even with only 1 top site, MSIsensor-pro had AUC values ranging from 0.92 to 

0.96 (Fig. 2c, Supplementary Table 9-10). The performance improved with the increase in 

top sites and reached a plateau when using the top 20 sites (0.98 AUC). Despite being useful, 

these top sites would likely suffer from practical issues such as low sequencing coverage. 

Therefore, by testing the MSIsensor-pro performance on various numbers of randomly 
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selected DMS sites, we sought to identify small panels of DMS sites that are potentially 

effective enough for robust MSI calling. Indeed, we found that the AUC values of MSI 

detection steadily increased with growing numbers of randomly selected DMS sites. When as 

few as 50 random sites were used, the AUC was approximately 0.98 and remained stable. 

Taken together, MSIsensor-pro could be applied to various target sequencing panels with as 

few as 50 sites, (Fig. 2d, Supplementary Fig. 14 and Supplementary Table 9-10), indicating 

MSIsensor-pro’s potential to score MSI with circle tumor DNA or stool DNA. We examined 

the properties of DMS sites and found that they were closer to splicing sites and located in 

genes with higher expression than the rest of the sites (Supplementary Fig. 15-17), indicating 

their potential roles in tumorigenesis. 
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Fig. 1 

 

Fig. 1 | Multinomial distribution model of polymerase slippages. a, Allele length 

distribution of homopolymers in normal samples. The gray vertical lines represent 

the repeat lengths in the human reference genome (GRCh38). b, The fitness of the 

MND model for polymerase slippages. The points inside the shaded area (P-

value<0.05) represent sites unfit for the MND model, and the values on the top of 

boxplot represent the percentage of sites fitted MND model. c,d, The dot plots of 

parameters p (c) and q (d) in the MND model between MSI and MSS samples 

(n=1,532). The color of the points is scaled according to the number of sites. The 

points near the diagonal lines represent sites undistinguishable between MSI and 

MSS. MSI samples have significantly larger p values than MSS samples (c), while q 

in MSI and MSS was not discriminative (d). 
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Fig. 2: 

 

Fig. 2 | MSI calling accuracy and runtime. a, AUCs, peak RAM and runtimes (wall-

clock time) of four MSI detection methods for 1,532 TCGA samples. b, AUCs of four 

MSI detection methods across various sequencing depths (left) and tumor purities 

(right) in 78 MSI and 100 randomly selected MSS CRC samples from TCGA. d,e, 

AUCs of MSIsensor-pro with diverse sets of detected sites for 1,532 TCGA samples. 

The AUCs approach a plateau with the top 20 contributing sites (d) and 50 random 

DMS sites (e). Black points and error bars (random select 10 times) represent the 

means and standard errors, respectively (e).
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Online Methods:  

Data and preprocessing. Whole exome sequencing data and clinical MSI status of a total of 

1,532 tumor-normal pairs were downloaded from TCGA19 (http://cancergenome.nih.gov/). 

The sequencing data were aligned against human reference genome (GRCh38), and MSI was 

determined using the gold standards20. The scan module (default parameters) in MSIsensor11 

was used to retrieve the microsatellite regions in the human reference genome. Then, the 

allele distribution of each microsatellite for each sample was extracted and used in 

subsequent analyses. 

Multinomial distribution model for polymerase slippage. To detect MSI without matched 

normal samples, we evaluated the stability of microsatellites using single samples. Based on 

the characteristics of allele distributions of microsatellites in normal samples 

(Supplementary Fig. 1, 2), we argued that the polymerase slippage during DNA replication 

is an iterative process and that each step is independently accumulative. Therefore, we use 

multinomial distribution to model the slippage process in microsatellite sites. We use variable 

x  to denote hysteresis synthesis ( 0x = ), presynthesis ( 2x = ) and normal synthesis ( =1x ) of 

each step of repeat unit synthesis, and the corresponding probabilities are denoted by p , q  

and 1 p q− − , respectively. Then, x  is subject to a multinoulli distribution, and its probability 

distribution function is as follows:  
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Thus, for a microsatellite site with n repeats on the reference genome, we assume that y  is 

the repeat length observed from the data. Therefore, we have:  
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Here, NDpro and NIpro denote the probability of acquiring the observed repeat length 

with minimum steps, while  Δ is the probability of using more steps. Since  Δ is much smaller 

and difficult to calculate, we ignore it in practice to save computational resources. For a 

microsatellite region spanned by m  reads, we denote the observed repeat length as

1 2 ,, ,i my y y y… …  and its distribution as 1 2, }{ , ,i mY y y y y= … … . Based on Y, we use the 

maximum likelihood estimation to compute p  and q  in equation (6). 
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Finally, p  and q  can be estimated as follows:  
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The values of p  and q  are positively correlated with the magnitude of polymerase slippages.  

Validation of the MND model. To evaluate how well parameters p and q in MND mimic 

polymerases slippage for microsatellites with various repeat lengths, we randomly select 

27,200 microsatellites from normal control samples of three cancer types in TCGA and 

estimate the parameters p and q of each site. Then, the calculated parameters p and q, also 

known as the probabilities of deletion and insertion, are used to simulate allele length 

distribution. The sites with no significant difference (P-value > 0.05, Kolmogorov-Smirnov 

test) between real and simulated distribution are defined as fitted sites. Then, the percentage 

of fitted sites to all test sites is used to evaluate the fitness of the MND model. To investigate 

the polymerase slippages in tumor samples, we estimate p and q for 1,532 TCGA tumor 

samples and compare the difference between MSI and MSS samples5. We found that p is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.899633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899633


discriminative between the MSI and MSS samples, while q is not, indicating that parameter p 

is an effective metric for MSI classification. 

MSI calling of MSIsensor-pro. We use the parameter p (probability of deletion) in the MND 

model to evaluate the stability of microsatellites. To distinguish unstable sites from stable 

sites, we determine the mean (μi) and standard deviation (σi) of parameter p in the i-th 

microsatellite site in normal samples. Specifically, a microsatellite is classified as unstable 

when its p value is larger than μi+3σi. Here, 1,532 normal control samples from three cancer 

types are used to build the baseline. The MSI score, defined as the percentage of unstable 

sites within all detected sites in a sample, is used for MSI calling. 

Discriminative microsatellite (DMS) site selection. To find discriminative sites for MSI 

calling, we compute the contribution of each site to MSI classification. For a given 

microsatellite site, the parameter p is used for MSI classification, and then the AUC is 

calculated to evaluate the contribution of this site to MSI calling. Finally, the sites with AUC 

values greater than 0.65 are defined as DMS sites and are used for MSI calling. In this study, 

340 TCGA samples are used to discover DMS sites, and the remaining 1,192 samples are 

used to test the performance of MSIsensor-pro.  

MSIsensor-pro performance evaluation. To assess the performance of MSIsensor-pro, we 

benchmark MSIsensor-pro against MSIsensor11, mantis15 and mSINGS12 using 1,532 TCGA 

tumor samples. The MSI score is used for MSI classification, and AUC is used to evaluate 

the performance of each method (Supplementary note 1). The CPU usage, memory and 

runtime of these methods are tested on a TCGA sample, TCGA-AD-A5EJ, by a Linux 

machine running Ubuntu18.04 OS with Intel(R) Core (TM) i5-7500 CPU@3.40 GHz and 32 

GB memory.  

To compare the performances of the four methods on samples with low sequencing depths 

and low tumor purities, we use 178 CRC tumor-normal paired samples in TCGA to simulate 

test data. We downsample the raw sequencing data to 5x, 10x, 20x, 40x, 60x and 80x 

sequencing depths and mix different proportions of tumor and normal sequencing data to 

generate various tumor purities ranging from 5% to 80%. We call MSI for all simulated data 

and calculate the AUC for each method. To assess the performance of MSIsensor-pro with 

fewer sites, we select microsatellite sets containing the top 1, 2, 5, 10, 20, 50, 100, 200, 500, 

and 1,000 DMS sites for MSI calling. In addition, we randomly select various numbers of 
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microsatellites from DMS sites for MSI calling to examine how many sites are sufficient for 

MSI calling by MSIsensor-pro. 

Code availability. MSIsensor-pro source code is freely available at https://github.com/xjtu-

omics/msisensor-pro with help documentation and demo data for testing.  

Data availability. Primary sequencing data, gold standard MSI status and RNA expression 

data are downloaded from TCGA Research Network (http://cancergenome.nih.gov/). All 

results generated by this study are available within the article and in the Supplementary Data, 

or are available from the authors upon request. 
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