
Towards Autonomous Intra-cortical Brain Machine Interfaces:
Applying Bandit Algorithms for Online Reinforcement Learning

Shoeb Shaikh1, Rosa So2, Tafadzwa Sibindi3, Camilo Libedinsky3 and Arindam Basu1

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— This paper presents application of Banditron - an
online reinforcement learning algorithm (RL) in a discrete state
intra-cortical Brain Machine Interface (iBMI) setting. We have
analyzed two datasets from non-human primates (NHPs) - NHP
A and NHP B each performing a 4-option discrete control task
over a total of 8 days. Results show average improvements
of ≈ 15%, 6% in NHP A and 15%, 21% in NHP B over
state of the art algorithms - Hebbian Reinforcement Learning
(HRL) and Attention Gated Reinforcement Learning (AGREL)
respectively. Apart from yielding a superior decoding perfor-
mance, Banditron is also the most computationally friendly as it
requires two orders of magnitude less multiply-and-accumulate
operations than HRL and AGREL. Furthermore, Banditron
provides average improvements of at least 40%, 15% in NHPs
A, B respectively compared to popularly employed supervised
methods - LDA, SVM across test days. These results pave
the way towards an alternate paradigm of temporally robust
hardware friendly reinforcement learning based iBMIs.

I. INTRODUCTION

With as many as 1 in 50 people suffering from paraly-
sis worldwide [1], Intra-cortical Brain Machine Interfaces
(iBMIs) have a great potential in restoring semblance of
a normal life for these embattled souls. iBMIs literally
transform thought into action. The input to this system is
neural signals recorded from the surface of the motor cortex
to drive effectors such as cursors [2], prosthetic limbs [3],
wheelchairs [4] and so on.

Current iBMI systems involve time-consuming daily cal-
ibration procedures [5], thereby lending inconvenience to
the end-users. These procedures are based on supervised
learning methods which require explicit measurement of
effector kinematic variables. The overall systems reported so
far often involve a neuro-engineer to be present to perform
these procedures and get the system up and running for the
end-user.

An alternative to supervised learning methods is
reinforcement learning (RL) wherein a model is updated
on the fly in response to a simple scalar reward [6]–[9] (see
Fig. 1). Briefly put, an RL agent takes states and rewards
as inputs and yields an output action at a given time-step.
States correspond to the binned spike firing rates sensed
from micro-electrode arrays whereas rewards are scalar
values obtained as a result of action taken at the previous
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time-step. The notion of learning involves maximizing the
score of total reward. This approach has the potential to
tackle the following existing problems,
• Daily calibration routines are not required as the algo-

rithm is updated online while being in use
• Explicit measurement of effector kinematic variables is

not required and a scalar reward signal is enough
• Bringing the above two points in fruition has the poten-

tial to take the neuro-engineer out of the loop

(a)

(b) (c)

Fig. 1. (a) Block level representation of Reinforcement Learning in context
of iBMIs. The iBMI controller emits an output action based on inputs -
Neural states and rewards. For an Agent (iBMI Controller) with N input
electrodes and C target labels, (b) represents architectural scheme of two
layer neural network based RL algorithms - AGREL and HRL, whereas (c)
depicts single layer neural network based RL algorithm - Banditron.

Encouraging RL based results have been reported in [6]
where authors have applied Q-learning in a discrete state
iBMI involving rats trained to control a prosthetic arm to
choose among two targets. However, Q-learning suffers from
generalization difficulty owing to the curse of dimension-
ality problem resulting from the large neural state-action
space. To address this issue, authors in [8] have proposed
Attention Gated Reinforcement Learning (AGREL) [10] as
an alternative and have found it to be convincingly better
than Q-learning in a cursor based center-out task involving
one NHP. In AGREL [8], authors resort to computation of
the instantaneous reward based on the distance of the cursor
from the target. [7], [11] on the other hand report a Hebbian
Reinforcement learning (HRL) algorithm based on a discrete
binary reward having values of only +1 or -1 in a two
target NHP based iBMI setup. However, state of the art RL
algorithms - AGREL and HRL suffer from generalization
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problems as they employ neural networks that are susceptible
to the local optimum problem [9]. To tackle this problem, we
propose applying Banditron - an online prediction algorithm
used popularly in sponsored advertising and recommender
systems [12].

II. REINFORCEMENT LEARNING ALGORITHMS

A. State of art RL algorithms applied in iBMIs

1) AGREL: It involves a three-layer neural network that
maps the input neural state to action space. Output of the
jth hidden layer node is given as,

Yj =
1

1 + exp
(
−
∑N
i=0 vijxi

) (1)

where N is the number of input electrodes, xi is the firing
rate appearing at the ith electrode, vij corresponds to the
input layer weights and x0 = 1 to account for input weight
bias.

Stochastic softmax rule is employed by AGREL to select
a winning neuron amidst C output neurons. Value of kth

output neuron, Zk, and its associated probability is given as,

Zk =
∑M
j=0 wjkYj

Pr (Zk = 1) =
exp

(∑M
j=0 wjkYj

)
∑C
k′=1 exp

(∑M
j=0 wjk′Yj

) (2)

where wjk represents the output layer weights, M is the
number of hidden nodes.

Instantaneous reward is given as,

δ =

{
1− Zc c = c′

−1 c 6= c′
(3)

where c and c′ are predicted and true actions respectively.
AGREL resorts to an instantaneous reward-based expan-

sive function, f(δ), to expedite learning,

f(δ) =

{
δ

1−δ , δ ≥ 0

δ, δ < 0
(4)

Randomly initialized weights are updated at every time-
step as follows,

∆wjk = βYjZcf(δ) (5)

∆vij = αxiYjf(δ) (1− Yj)
C∑
k=1

Zkw
′
kj (6)

where α and β are learning rates.
2) HRL: It employs a three-layer neural network similar

to AGREL with a different way of approaching learning. The
hidden node output is given as,

OutHi = tanh
([

~X bi
]
∗WHi

)
~X ε RN ; bi ε R1; WHi ε RN+1 (7)

where ~X represents the input feature vector, bi represents a
bias term and WHi stands for input weights.

The output nodes have action values given as,

AVj = tanh
(

[S(
−−−→
OutH) bh] ∗WOj

)
−−−→
OutH ε RM ; bh ε R1; WOj ε RM+1 (8)

where S() represents the sign function, bh represents a bias
term and WOj represent the output weights. Highest valued
output node is selected as the final output. Feedback reward
signal, f , is given as,

f =

{
+1 c = c′

−1 c 6= c′
(9)

where c and c′ are predicted and true actions respectively.
Randomly initialized weights are updated at every time-

step as follows,

∆WH = µH ∗ f
([

~X
bi

]
(S(
−−−→
OutH)−

−−−→
OutH)

)
+µH(1− f)

([
~X
bi

]
(1− S(

−−−→
OutH)−

−−−→
OutH)

) (10)

∆WO = µO ∗ f ∗
([ −−−→

OutH
bo

]
(S(
−→
AV )−

−→
AV )

)
+µO(1− f)

([ −−−→
OutH
bo

]
(1− S(

−→
AV )−

−→
AV )

) (11)

where
−→
AV ε RC is the action value output vector.

B. Proposed RL algorithm - Banditron

Algorithm 1: Banditron

Parameters: γ ∈ (0, 0.5)
Initialize W 1 = 0 ∈ RC×N
for t = 1, 2, . . . , T do

Receive ~xt ∈ RN
Set ŷt = arg maxr∈[C]

(
W t ~xt

)
r

∀r ∈ [C] define P (r) = (1− γ)1 [r = ŷt] + γ
C

Randomly sample ỹt according to P
Predict ỹt and receive feedback 1 [ŷt = yt]

Define Ũ t ∈ RC×N such that:

Ũ t
r,j = −→xt,j

(
1[yt=ỹt]1[ỹt=r]

P (r) − 1 [ŷt = r]
)

Update: W t+1 = W t + Ũ t

end for

Fig. 2. Banditron pseudocode [12]

At time-step t = 1, Banditron weight matrix starts out as
W 1 = 0 ∈ RC×N . Subsequently, at t = 1, 2, . . . , T, with
inputs, xt ε RN , Banditron employs current weight matrix
W t to yield,

ŷt = argmaxr∈[C]

(
W txt

)
r
,∀r ∈ [C] (12)

where [C] = 1, . . . , c. γ is a parameter that sets the
exploration-exploitation tradeoff. Accordingly, Banditron
leaves itself for exploration with probability 1 − γ and
uniformly picks a random label from [C] as ỹt which is the
final predicted label. Feedback signal is 1 if actual output, yt
equals final predicted value, ỹt and 0 otherwise. The weight
matrix is updated as,

W t+1 = W t + Ũ t (13)

where Ũ t represents the update matrix. True label (yt) is
not revealed, however, we implicitly obtain full information
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when, [yt = ỹt]. Thus, as seen in Fig. 2, update matrix Ũ t

is written as a function of randomized ỹt.
Banditron is a modification of simple linear perceptron and

hence is capable of learning only linearly separable patterns
[12]. However, non-linear methods have shown superior
performance over linear methods in iBMIs [13], [14]. Thus,
with this evidence we introduce non-linearity in the form
of obtaining feature vector - ft ε RM as non-linear random
projection (RP) of xt given as,

ft = g(Wrandxt) (14)

where Wrand ε RN×M is the fixed random projection
weights, g(.) corresponds to the activation function which in
our case is sigmoid. Learning proceeds in the same manner
as described in Fig. 2 with ~ft serving as input instead of ~xt.
We henceforth refer to this variant of Banditron with input
~ft as Banditron−RP .

III. METHODS

A. Behavioural task and data acquisition

Fig. 3. NHP A was trained to move a robotic wheelchair through a 3-
directional joystick [4] (CC-BY license).

NHP A was trained to control a robotic wheelchair through
a 3-directional joystick as shown in Fig. 3. The experiment
consisted of four tasks - a) Moving forward by 2 m, b)
turning left by 90°, c) turning right by 90° and d) staying still
for 5 seconds. The experiment was carried out in the form
of trials wherein a movement related trial was considered
successful if NHP A reached the target within 15 seconds.
NHP B on the other hand was trained to control a similar
joystick to manipulate a cursor on screen. A trial in this
experiment corresponded to a square-shaped target being
shown at top, right or left positions relative to the centre
of the screen. A trial was considered successful if the NHP
managed to move the cursor from the centre of the screen to
the target area and stay in it for 1.5 seconds within a total
elapsed time of 13 seconds.

Both NHPs A and B had a total 64 electrodes sensing raw
neural data from the motor cortex area. Threshold crossings
[15] at each of the input electrodes were used to compute
the resultant firing rates in time-bins of 500 ms. Firing rates
were used as inputs to the iBMI system.

B. Analysis Methodology

We have used a total of 8 days of experimental data
with 3 recorded sessions for analysis in both NHPs.
The iBMI decoder takes binned firing rates as an input
and outputs one among the following discrete actions -
Right, Forward, Left or Stop every 100 ms. State of

the art methods used in iBMIs are supervised learning
based methods. Hence, we present comparison of popular
supervised learning methods in BMIs - Linear Discriminant
Analysis (LDA) and Support Vector Machines (SVM) [16]
against RL methods - AGREL, HRL and Banditron. We
present comparison of two variants of supervised models -
fixed and retrained. fixed supervised models are trained
on the first session of Day 1 whereas retrained supervised
models are trained on the first session of the respective test
day across both NHPs. Do note that the RL methods do not
require a separate training session and are trained on the fly
across the test sessions in both NHPs with a binary reward
at the end of every prediction. Reported RL methods are
initialized from scratch every single day. The test sessions
compared are consistent across all the reported methods.

IV. RESULTS

A. Hyperparameter tuning

Algorithms - SVM, HRL, AGREL, Banditron and
Banditron-RP have hyper-parameters that require tuning. For
SVM we have tuned the hyperparameters based on the train-
ing set, while using bayesian optimization function bayesopt
provided in MATLAB2019. HRL, AGREL, Banditron and
Banditron-RP are RL algorithms and thus do not employ
an explicit training set to tune weights. However, they have
hyper-parameters to be tuned and we have chosen these based
on Day 1′s first session data in both NHPs.

B. Decoder Results

(a)

(b)

Fig. 4. Decoded results over 8 days for different models in (a) NHP A and
(b) NHP B. Shaded bands represent variance over 20 random instantiations
in RL algorithms.

Banditron yields an average improvement of 6.01%,
14.5% in NHP A and 20.98%, 14.97% in NHP B over
AGREL, HRL respectively. Furthermore, Banditron com-
pares favorably with retrained supervised models while yield-
ing average improvement of at least ≈ 5% in NHP A
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while reaching up to 95% level of performance. Do note
that the comparison is not an even one as the training
methodology differs. Retrained supervised algorithms are
fixed after training on session 1 of a given day with full
label information. RL algorithms on the other hand do not
have an explicit training session but are updated with a binary
feedback throughout the test set. Supervised learning based
results, thus, are presented not for direct comparison but for
establishing state of the art context for the presented RL
methods.

The non-linear variant of Banditron, Banditron-RP per-
forms as good as Banditron in NHP A and yields improve-
ment of ≈ 6% in NHP B. Statistical comparison of Banditron
against HRL and AGREL yield p-values of 0.0078, 0.0078
in NHP A and 0.0078, 0.0391 in NHP B respectively for a
Wilcoxon signed-rank test. This shows that the improvements
afforded by Banditron are statistically significant (p < 0.05)
over HRL, AGREL.

C. Computational Complexity Comparison

We consider an iBMI system with N inputs and C option
discrete control for computation. The number of multiply-
and-accumulate operations (MACs) required during predic-
tion for single layer classifiers such as LDA, Banditron can
be given as,

MACPredict linear = N × C (15)

For single hidden layer neural network based approaches
such as HRL, AGREL with M hidden nodes and a bias term
in both input-hidden (WHi) and hidden-output weight (WO)
matrices, the number of MACs required during prediction is
given as,

MACPredict NN = M(N + 1) + C(M + 1) (16)

MACPredict Banditron−RP = M ×N +N × C (17)

We have ignored the number of MACs required to implement
the activation function for the sake of simplicity.

RL algorithms are recursively updated and MACs ex-
pended by single-layer Banditron and multi-layer neural
network systems - AGREL, HRL and Banditron-RP can be
formulated as below,

MACUpdate AGREL = 4 +M(N + 6) (18)

MACUpdate HRL = 5 + 2(M + C) (19)
+ 2(M + 1)(N + C + 2)

MACUpdate Banditron−RP = 2×M (20)

For a single layer Banditron based network, number of
MACs required per update is given as,

MACUpdate Banditron = 2×N (21)

Do note that state of the art supervised schemes such as
LDA, SVM are trained at the beginning of the day/session
and are held fixed without being updated iteratively.

Consider a case of a N = 64 input electrode iBMI
system driving a 4-option (C = 4) discrete control similar
to reported experiments in this paper. For neural networks

based approaches HRL and AGREL, let us assume number
of hidden nodes to be M = 80. With these assumptions,
we can arrive at the Table. I comparing number of MACs
and memory requirement across algorithms. Note that we
have considered a linear version of SVM in the below
reported table and we consider weights to be 16-bits across
all algorithms.

TABLE I
COMPUTATIONAL COMPLEXITY ACROSS DIFFERENT MODELS

Algorithms MACs MACs Memory
update prediction (kB)

LDA, SVM - 256 N×C×Wres = 0.5

AGREL 5604 5524 [M(N+1) +
C(M+1)]Wres = 10.8

HRL 11513 5524 [M(N+1) +
C(M+1)]Wres = 10.8

Banditron 64 256 N×C×Wres = 0.5

Banditron-RP 160 5440 [M(N+C)]Wres = 10.6

MAC = multiply and accumulate, Number of input channels, N = 64,
Number of hidden layer nodes, M = 80, Number of outputs, C = 4,
Weight resolution(Wres) = 16bits.

V. DISCUSSION

A. Comparison

It seems counter-intuitive that a single layer network ar-
chitecture - Banditron outperforms two layer neural network
architectures - AGREL, HRL. The reason for Banditron’s
superior performance is its amenability to learn in an online
setting [12]. Multi-layer neural network based approaches
like HRL, AGREL suffer from convergence issues when
trained in an online manner. They are typically trained in
batches over multiple epochs [8].

B. Reward Signal

Currently, we are using an ideal binary feedback signal
processed in a post-hoc fashion. Research has shown this
signal to be present in real-time in biological signal sources
in the brain such as nucleus accumbens [17], primary motor
cortex [18], [19]. Alternatively, one can also derive these
signals from other signal sources such as EEG [20], ECoG
[21]. Certainly, more work is needed to a) fetch a reliable
source of reward signal and b) study the reward signal’s
impact on the iBMI system with regards to its frequency
and accuracy.

VI. CONCLUSION AND FUTURE WORK

We have presented Banditron as an alternative computa-
tionally friendly technique to existing state of the art RL-
iBMI techniques with statistically significant improvements
across two NHPs. Furthermore, validation of Banditron has
also been presented against supervised learning techniques.

We will explore teasing out reward signal from a biological
source such that future iBMI systems are fully autonomous
and co-adaptive in the true sense. Applying RL-algorithms in
a continuous state iBMI setup is a goal we wish to undertake
in future.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.899641doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899641
http://creativecommons.org/licenses/by-nc/4.0/


REFERENCES

[1] Armour, Courtney-Long, Fox, Fredine, et al., “Prevalence and causes
of paralysis-united states, 2013.” American journal of public health,
vol. 106 10, pp. 1855–7, 2016.

[2] Pandarinath, Nuyujukian, Blabe, Sorice, et al., “High performance
communication by people with paralysis using an intracortical brain-
computer interface,” eLife, p. e18554, 2017.

[3] Collinger, Wodlinger, Downey, Wang, et al., “High-performance neu-
roprosthetic control by an individual with tetraplegia.” Lancet (Lon-
don, England), no. 9866, pp. 557–64, 2013.

[4] Libedinsky, So, Xu, Kyar, et al., “Independent mobility achieved
through a wireless brain-machine interface,” PLoS ONE, vol. 11,
no. 11, pp. 1–13, 2016.

[5] Brandman, Burkhart, Kelemen, Franco, et al., “Robust Closed-Loop
Control of a Cursor in a Person with Tetraplegia using Gaussian
Process Regression,” Neural Computation, vol. 30, no. 11, pp. 2986–
3008, 2018.

[6] DiGiovanna, Mahmoudi, Fortes, Principe, et al., “Coadaptive
Brain–Machine Interface via Reinforcement Learning,” IEEE Trans-
actions on Biomedical Engineering, vol. 56, no. 1, pp. 54–64, Jan.
2009.

[7] Pohlmeyer, Mahmoudi, Geng, Prins, et al., “Using Reinforcement
Learning to Provide Stable Brain-Machine Interface Control Despite
Neural Input Reorganization,” PLoS ONE, vol. 9, no. 1, 2014.

[8] Wang, Wang, Xu, Zhang, et al., “Neural Control of a Tracking
Task via Attention-Gated Reinforcement Learning for Brain-Machine
Interfaces,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 23, no. 3, pp. 458–467, May 2015.

[9] Zhang, Member, Libedinsky, So, et al., “Clustering Neural Patterns
in Kernel Reinforcement Learning Assists Fast Brain Control in
Brain-Machine Interfaces,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 4320, no. c, pp. 1–10, 2019.

[10] Roelfsema and Ooyen, “Attention-gated reinforcement learning of in-
ternal representations for classification,” Neural Computation, vol. 17,
no. 10, pp. 2176–2214, 2005.

[11] Mahmoudi, Pohlmeyer, Prins, Geng, et al., “Towards autonomous neu-
roprosthetic control using Hebbian reinforcement learning,” Journal of
Neural Engineering, vol. 10, no. 6, p. 066005, Dec. 2013.

[12] Kakade, Shalev-Shwartz, and Tewari, “Efficient bandit algorithms for
online multiclass prediction,” Proceedings of the 25th International
Conference on Machine Learning, pp. 440–447, 2008.

[13] Sussillo, Stavisky, Kao, Ryu, et al., “Making brain-machine interfaces
robust to future neural variability,” Nature Communications, pp. 1–12.

[14] Shaikh, So, Sibindi, Libedinsky, et al., “Towards Intelligent Intra-
cortical BMI (i2BMI): Low-power Neuromorphic Decoders that out-
perform Kalman Filters,” IEEE Transactions on Biomedical Circuits
and Systems, pp. 1–1, 2019.

[15] Trautmann, Stavisky, Lahiri, Ames, et al., “Accurate estimation of
neural population dynamics without spike sorting,” Neuron, vol. 103,
no. 2, pp. 292 – 308.e4, 2019.

[16] Lotte, Bougrain, Cichocki, Clerc, et al., “A review of classification al-
gorithms for EEG-based brain–computer interfaces: a 10 year update,”
Journal of Neural Engineering, vol. 15, no. 3, p. 031005, apr 2018.

[17] Prins, Sanchez, and Prasad, “Feedback for reinforcement learning
based brain-machine interfaces using confidence metrics,” Journal of
Neural Engineering, vol. 14, no. 3, 2017.

[18] Marsh, Tarigoppula, Chen, and Francis, “Toward an Autonomous
Brain Machine Interface: Integrating Sensorimotor Reward Modula-
tion and Reinforcement Learning,” Journal of Neuroscience, vol. 35,
no. 19, pp. 7374–7387, 2015.

[19] Benyamini, Nason, Chestek, and Zacksenhouse, “Neural Correlates of
error processing during grasping with invasive brain-machine inter-
faces,” in 2019 9th International IEEE/EMBS Conference on Neural
Engineering (NER). IEEE, Mar., pp. 215–218.

[20] Kreilinger, Neuper, and Müller-Putz, “Error potential detection dur-
ing continuous movement of an artificial arm controlled by brain–
computer interface,” Medical & biological engineering & computing,
vol. 50, no. 3, pp. 223–230, 2012.

[21] Milekovic, Ball, Schulze-Bonhage, Aertsen, et al., “Error-related elec-
trocorticographic activity in humans during continuous movements,”
Journal of neural engineering, vol. 9, no. 2, p. 026007, 2012.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.899641doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899641
http://creativecommons.org/licenses/by-nc/4.0/

	INTRODUCTION
	REINFORCEMENT LEARNING ALGORITHMS
	State of art RL algorithms applied in iBMIs
	AGREL
	HRL

	Proposed RL algorithm - Banditron

	METHODS
	Behavioural task and data acquisition
	Analysis Methodology

	RESULTS
	Hyperparameter tuning
	Decoder Results
	Computational Complexity Comparison

	DISCUSSION
	Comparison
	Reward Signal

	CONCLUSION AND FUTURE WORK
	References

