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The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsi-
cally stochastic steps: random receptor generation by VDJ recombination, and selection based on
the recognition of random self-peptides presented on the major histocompatibility complex. These
processes lead to a large receptor variability within and between individuals. However, the charac-
terization of the variability is hampered by the limited size of the sampled repertoires. We introduce
a new software tool SONIA to facilitate inference of individual-specific computational models for the
generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individu-
als, separating and quantifying the variability of the two processes of generation and selection in the
population. We find not only that most of the variability is driven by the VDJ generation process,
but there is a large degree of consistency between individuals with the inter-individual variance of
repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the
same generation and selection statistics as all TCRs.

I. INTRODUCTION

Most organisms live in a similar environment, facing
common pathogenic threats. However, the adaptive im-
mune system, based on the stochastic VDJ recombina-
tion process, is a naturally diverse system, supporting
both repertoire variability within the individual, and
variability across the population [1]. Quantifying both
types of variability, and understanding how they sup-
port a robust immune response, are still open questions.
Determining the variability under normal healthy con-
ditions is a crucial step for understanding the immune
system in compromised situations such as infections, au-
toimmune diseases, and cancer.

The adaptive immune system reacts specifically
against a variety of different threats to the organism.
This is achieved by maintaining a large ensemble of T
cells, each having a different receptor that binds distinct
subsets of antigens. The adaptive immune system main-
tains this diversity by generating a large repertoire of cells
with different receptors [2–4] and then selecting them ac-
cording to their binding properties. The first step of se-
lection occurs in the thymus. Cells carrying receptors
that bind too strongly or too weakly to the host’s own
proteins do not pass this selection [5, 6]. The remaining
cells are let out into the periphery and undergo selection
for binding of foreign antigen which results in cell prolif-

eration. In all cases, T cell receptors (TCR) bind to anti-
gen fragments presented as short peptides on the major
histocomptability complex (MHC) of presenting cells [7].
Each human individual has 6 types of MHC molecules en-
coded by the very polymorphic human leukocyte antigen
(HLA) locus. All of these processes — receptor genera-
tion, selection, and peptide presentation — are stochastic
in nature and depend on the host’s genetic background.

High-throughput T cell repertoire sequencing
(RepSeq) provides a census of the T cell repertoire
found in a blood or tissue sample [8–11]. These samples
are generally indicative of the true repertoire, and
comparing them over a population yields similarities
predicted based on MHCs, pathogenic history and
general properties of the generation process [12, 13].
Due to the large diversity of possible TCRs, different
samples, even ones taken from the same individual under
the same conditions, will often differ substantially due
to statistical noise. As a result, characterization of a
repertoire sample is often more reliably done by statisti-
cally modeling the underlying generation and selection
processes instead of working with raw TCR sequences
and read counts. In this paper we take such an approach
to characterize the diversity of the human T-cell receptor
beta chain (TRB) repertoire. This approach allows us
to disentangle the two processes of generation and
selection, and to quantify their relative contribution to
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the overall variability across individuals. Our results
provide a quantification of natural TCR diversity which
is essential for studying adaptive immunity in clinical
contexts.

II. RESULTS

A. Data source and modeling strategy
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FIG. 1: Analysis pipeline. (A) We analyzed data from T-
cell receptor beta (TRB) repertoires of 651 donors collected
by Emerson et al. [14]. For each person i = A,B,C, ...
we define a personalized TRB generation model P i

gen, and

a personalized thymic selection model Qi(σ), as both pro-
cesses are expected to vary across individuals as a function
of their genetic background, in particular their HLA type.
The generation model allows us to evaluate the probability
of generating each receptor sequence σ in each individual i.
Qi(σ) tells us how likely a given receptor amino-acid sequence
σ is to pass thymic selection in a given individual. Com-
bined together, the two models give the probability of a given
TRB amino acid sequence in the repertoire of a given per-
son P i

post(σ) = Qi(σ)P i
gen(σ). (B) To learn these models,

for each individual we separated sequences into productive
and nonproductive sequences. Nonproductive sequences are
free of selection effects and were used to learn the generation
model, Pgen, using the IGoR software [15]. Most productive
sequences are subject to selection and were used to learn the
selection model, Q, by matching the statistics of the data with
those of sequences generated synthetically with Pgen (using
the OLGA software [16]) and weighted by Q. Once the model
is learned, the probabilities of amino-acid TRB sequences pre-
and post-selection can be calculated using OLGA and SONIA.

We analyzed previously published RepSeq data from

a large cohort study [14] consisting of TRB nucleotide
sequences from blood samples of 651 healthy individu-
als. Sample sizes ranged from 50,000 to 400,000 unique
CDR3 amino acid beta chains. For each individual i, we
learned an individual-specific generation model, which
describes the probability of generating a given amino-
acid sequence σ by VDJ recombination, P igen(σ), and an

individual-specific selection model, Qi(σ), defined as the
fitness of each sequence upon thymic selection. The re-
sulting probability distribution of receptor sequences is
P ipost(σ) = Qi(σ)P igen(σ) (Fig. 1A). To learn these mod-
els, TRB nucleotide sequences were divided into produc-
tive and non-productive sequences, where productive se-
quences are defined as being in frame with no stop codon.
The pipeline is summarized in Fig. 1B. We applied the
IGoR algorithm [15] to non-productive TRBs of each in-
dividual to learn P igen(σ). Productive sequences were

used to learn individual-specific selection models Qi(σ)
as in Ref. [17], by comparing them with simulated pro-
ductive sequences generated from the individual specific
generation models. A new software package, SONIA, was
developed to perform the Qi(σ) inference. For each se-
quence in each individual the algorithm computes two
probabilities: its generation probability, P igen, and its

post-selection probability in the periphery, P ipost. We
then use them to estimate the intra- and inter-person
variability.

B. Individual variability of VDJ recombination
statistics

The model of VDJ recombination, Pgen, assigns a prob-
ability to each VDJ recombination scenario [4], where a
scenario is a particular choice of the various recombi-
nation events: germline gene choice (V, D, and J), the
number of deletions to those germline genes at the V-
D and D-J junctions, and the number and identities of
the untemplated, inserted nucleotides at each of the junc-
tions (called N1 for the V-D junction, and N2 for the D-J
junction). A detailed description of the model is given in
the Methods section. Each recombination scenario deter-
mines a particular nucleotide sequence. The generation
probability of a sequence is then the sum of all recombi-
nation scenarios that result in that sequence. Since the
scenario is a hidden variable of the observed nucleotide
sequence, we can use the Expectation Maximization al-
gorithm to infer the maximum-likelihood estimator of the
model parameters [4] using IGoR [15].

Productive sequences then translate into an amino-
acid sequences σ, and we denote by Pgen(σ) the probabil-
ity of generation of σ conditioned on it being productive,
equal to the sum of the generation probabilities of all
possible nucleotide variants divided by the probability to
generate a productive sequence (an abuse of notation rel-
ative to the strict definition of Pgen with no conditioning
on being productive).

We find that the generation models learned from dif-
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FIG. 2: Distribution of the individual P i
gen model parameters over 651 individuals. All plots are violin plots with the mean and

standard deviation shown by error bars. (A) Insertion length distributions of the N1 and N2 junctions. (B) Markov transition
probabilities for the inserted nucleotide identities at the N1 (red) and N2 (blue) junctions. The N2 transition probabilities are
organized in a reverse complementary fashion to the N1 transition probabilities. (C) V gene family usages. (D) Joint D and J
gene usages. (E) Deletion profiles for individual J genes.

ferent individuals in our cohort, P igen, are consistently
similar to each other, with more variation in the gene
usage than in the junctional diversity statistics (Fig. 2).
The distributions of the number of inserted N1 and N2
nucleotides vary little (Fig. 2A). The biases of the un-
templated inserted nucleotides, governed by a Markov
model where the choice of each inserted base pair de-
pends stochastically on the previous insertion [4], is also
conserved across individuals (Fig. 2B). Note that these
probabilities are also similar for the N1 and N2 inser-
tions provided that N2 is read in the anti-sense. Like-
wise, gene specific deletion profiles have very low variabil-
ity (Fig. 2E). By contrast, gene usage shows greater yet
moderate inter-individual variability (Fig. 2C-D). Over-
all, these results confirm the large level of reproducibility
of the generation process over a large cohort.

We then asked whether these small individual varia-
tions in the recombination statistics were correlated as
a result of shared biological mechanisms or genetic fac-
tors. We found that the numbers of insertions at the two
junctions were highly correlated with each other (Pear-
son’s r = 0.79), meaning that individuals that tend to
have longer N1 insertions also tend to have longer N2 in-
sertions on average (Fig. 3A). N1 insertions were also
slightly longer by ∼ 0.17 insertions on average. The
variance of the number of insertions calculated over the
repertoire of one individual is extremely correlated to its
mean (Pearson’s coefficients of 0.88 and 0.87, Fig. 3B),
suggesting a single individual-specific parameter control-
ling both N1 and N2 length distributions. This param-
eter is likely linked to the activity of the Terminal De-
oxynucleotidyl Transferase (TdT) enzyme responsible for
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FIG. 3: Correlations between model parameters across individuals. (A) Mean number of N1 (VD junction) versus N2 (DJ
junction) insertions (each point is an individual). (B) Variance (across sequences) versus mean number of insertions at both
junctions (each point is an individual). (C) Distribution of Pearson correlation coefficients between any two usage probabilities
P (V ) or P (J) across individuals. (D) Rescaled standard deviation of Pearson coefficients of parameter combinations over
various recombination events. Values are rescaled by the standard deviation of the shuffled distribution (≈ 0.39 in all cases).

N insertions [18].

To quantify other correlations we calculated Pearson’s
correlation coefficient over the population between com-
binations of various parameters. In order to determine
significance and account for the finite cohort size we also
compute a ‘shuffled’ Pearson’s coefficient for each param-
eter combination by scrambling the individuals to de-
stroy correlations. Fig. 3C shows the normalized distri-
bution of Pearson’s correlation for the combinations of
the marginal distributions of V, D, and J usages. Corre-
lations between V−V , J−J , and V−J marginals all show
substantial excess of positive and negative values rela-
tive to the shuffled control. Full parameter co-variations
are shown in Figs. S1-S3. To determine which types of
parameters co-vary the most, we computed the rescaled
standard deviation of the Pearson’s correlation coeffi-
cients of all combinations of parameter types (Fig. 3D).
This analysis reveals that V gene usage co-varies with it-
self, D and J usages are also correlated with each other,
as well as N1 length with N2 length, and the insertion
biases at N1 and N2 with each other.

C. Learning models of thymic selection with
SONIA

After VDJ recombination, new T cells go through an
initial selection process in the thymus before being re-
leased as naive T cells to the periphery. Positive thymic
selection selects for functionally useful receptors, while
negative selection removes T cells that recognize self-
peptides to avoid auto-immunity. Thymic selection skews
the statistics of the repertoire of TRB sequences in quan-
tifiable ways. This can be seen by comparing the length
distribution of the Complementarity Determining Region
3 (CDR3, running from a conserved cysteine near the end
of V segment through a conserved phenylalanine near
the beginning of the J segment) of productive sequences
drawn from the generation model to observed sequences
(Fig 4A). We observe a substantial narrowing of the
distribution post-selection, eliminating sequences much
longer or shorter than 14-15 amino acids [17].

To characterize these differences more systematically,
we use a statistical model of selection to account for
differences between the repertoire generated from the
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FIG. 4: Thymic selection models of 651 individuals. (A) Length distribution of the Complementarity Determining Region
3 (CDR3) of TRB before (as predicted by the Pgen model, in blue), and after (data, in red) thymic selection. Violin plots
show variability across individuals. (B) Schematic of the two SONIA model architectures used in this article. Both models
have selection factors for the joint choice of V and J , qV J , and for the CDR3 length L, qL. The LengthPosition model has
selection factors defined for each amino acid at each position i and length L, qi,L. The Left+Right model factorizes those
factors into two contributions depending on the position of the amino acid from the left and right, respectively. (C) Amino-acid
selection factors qi,L of the LengthPosition model as a function of position i and L for each of the 20 amino acids. These
factors are consistent with previous reports on a smaller cohort [17]. (D) Model prediction for the frequencies of all features of
the LengthPosition model (V,J joint usage, CDR3 length, and amino acid usage at each position and length). The Left+Right
model reproduces all the probabilities despite not having learned them directly. (E) Model parameters of the Left+Right
model, for right (log10 qi,left(aa)) and left (log10 qi,right(aa)) displayed as sequence logos for 6 individuals. The first row shows
the sequence logos for the amino acid usage from the generation model alone (consistent across individuals), with the usual
convention that the total height of the logo is equal to the Shannon entropy of amino acid usage at this position, and the
relative height of each letter is proportional to its usage. (F,G) Distributions of selection factors for V and J genes, qV J , over
the population (averaged over one of them, as selection factors as defined for the joint usage of V and J).
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raw VDJ recombination (pre-selection) and the observed
repertoire of productive sequences (post-selection). Since
selection acts on the functionality of a receptor we restrict
ourselves to productive amino acid sequence statistics.
Mathematically, we require that the post-selection distri-
bution, Ppost = Q(σ)Pgen(σ), agrees with the statistics
of productive sequences in the frequency of a select set of
features, f ∈ F , while remaining as close as possible to
Pgen (where distance is measured by the Kullback-Leibler
divergence,

∑
σ Ppost(σ) ln(Ppost(σ)/Pgen(σ))). This is

done by choosing the sequence-specific selection factors
Q(σ) which can be shown to take the form (see Methods):

Q(σ) =
1

Z

∏
f∈F(σ)

qf , (1)

where F(σ) ⊂ F is the subset of features present in se-
quence σ. Solving for the factors qf that match the fre-
quencies of features in the data is equivalent to maximum
likelihood estimation (MLE).

Features may be the presence of a given amino-acid
at a given position, the use of a particular V or J gene,
a particular CDR3 length, or any combination thereof.
For example, some of the features of the TRB desig-
nated by (CASSGRQGVATQYF, TRBV06-05, TRBJ02-
05) are ‘CDR3 length 14’, ‘S in position 2 from the left’,
‘Y in position -2 from the right’ and ‘V gene is TRBV06-
05’.

To facilitate the definition and learning of such selec-
tion models, we introduce the software package SONIA.
SONIA allows for a flexible definition of model features
and infers the selection factors qf using MLE. The input
to SONIA is a list of selected amino acid sequences and,
if needed, their V and J gene choice. By default SONIA
uses Pgen as provided by an IGoR inferred model (using
OLGA as a generation engine [16]), but it can also take
as an input a custom sample of pre-selection sequences.
This can be useful for identifying selection pressures dur-
ing immune challenges using different choices of pre and
post-selection repertoires (see Methods for details).

We applied SONIA using two models corresponding to
two choices of feature sets. In the LengthPosition model
[17], features include all possible choices of combinations
of V and J genes, all possible CDR3 lengths, as well as
amino acids usage at each position and length (Fig. 4B,
top). This choice allows for great flexibility at the cost of
many parameters. The LengthPosition model replicates
the results of Ref. [17] (Fig. 4C).

The number of parameters can be reduced by not-
ing that selection pressures on amino acids near the 5’
(left) or 3’ (right) end of the CDR3 appear to depend
only on their relative position to that end, regardless
of CDR3 length (Fig. 4C). The Left+Right model ex-
ploits that regularity by defining features of amino-acid
usage at positions relative to the 5’ end of the CDR3 (de-
noted by a positive index), or to its 3’ end (denoted by
a negative index). This model has much fewer param-
eters, since features are defined for left and right posi-
tions regardless of CDR3 length, and can be written as a

special parametrization of the LengthPosition model, in
which each amino acid contributes to the selection factor
through the product of a left and a right factor (Fig. 4B,
bottom).

To evaluate the accuracy of the Left+Right model, we
computed its predictions for the frequencies of amino
acid usages at each position and length (Fig. 4D, see
also Fig. S4 for overall amino-acid usage). These statis-
tics are by construction matched by the LengthPosition
model but not necessarily by the Left+Right model, and
thus provide a good test of the validity of the param-
eter reduction it affords. While predictions from VDJ
generation model (blue dots) do not reproduce the em-
pirical frequencies well, highlighting the need of a se-
lection model, both the LengthPosition (red dots) and
the Left+Right (black dots) models match the data well.
As the Left+Right model captures the observed behavior
with fewer parameters, we will work with this model for
the remainder of the paper.

Fig. 4E displays the selective pressures on the CDR3
amino acid composition (qi,left and qi,right) from the left
and right positions across a choice of 6 (out of 651) in-
dividuals, in the form of sequence logos. These selective
factors are mostly conserved across individuals. Fig. 4F
and Fig. 4G show the selection factors for the V and
J genes (qV J) averaged over one of the two segments.
Again, the pattern is mostly concordant across the pop-
ulation, but with some substantial differences for a few
genes that have greater variability. Thus, much as in
the generation process, individual variability in the selec-
tion process is moderate and concentrates on gene usage
rather than CDR3 statistics.

D. Population variability

To quantify more precisely the variability of the gen-
eration and selection processes across 651 individuals,
we computed the distributions of log10 Pgen, log10Q, and
log10 Ppost for each individual (see Methods). Figs. 5A-C
show the results as a density map over the entire pop-
ulation, indicating strong consistency between individ-
uals. The distributions over sequences from the model
(obtained by sampling from Ppost using importance sam-
pling, black curve) agree very well with those obtained
from the data (red). By contrast, sequences generated
from Pgen, without selection factors (blue) fail to repro-
duce the data.

The shift to high Q values from the pre- to the post-
selection model is present by construction in the distribu-
tion of the Q (Fig. 5B), because the post-selection ensem-
ble should be enriched in high selection factors. However,
a similar shift to higher probabilities from pre- to post-
selection is indicative of a correlation between the gener-
ation probability, Pgen, and the selection factor, Q (Table
I, Fig. S5). This correlation suggests that evolution has
shaped VDJ recombination to favor sequences that are
likely to pass thymic selection, as previously argued [17].

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.899682doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899682


7

25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0
log10(Pgen)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Pr

ob
ab

ilit
y 

De
ns

ity
Distributions over
productive sequences
Distributions over
generated sequences
Mean Q-weighted distributions
over generated sequences

Normalized Density

10 1 100 101 102

4 3 2 1 0 1 2 3 4
log10(Q)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y 
De

ns
ity

25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0
log10(Ppost)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
De

ns
ity

30 25 20 15 10 5
log10(Model Probability)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y 
De

ns
ity

Pscenario distributions
Pnt

gen distributions
Paa

gen distributions
Ppost distributions

Normalized Density

10 1 100 101 102

12.011.511.010.510.09.59.08.58.0
log10 (Model Probability)

4

6

8

10

12

14
Va

r(l
og

10
(M

od
el

Pr
ob

)) Productive sequence Pgen

Generated sequence Pgen

Productive sequence Ppost

Generated sequence Ppost

25 30 35 40 45 50 55
Entropy (bits)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ob

ab
ilit

y 
De

ns
ity

S(Pscenario) = 51.97 ± 0.80 bits
S(Pnt

gen) 45.94 ± 0.73 bits
S(Paa

gen) 35.54 ± 0.53 bits
S(Ppost) 31.38 ± 0.35 bits

A B

C D

E F

FIG. 5: (A-C) Distributions of Pgen, Q, and Ppost calculated over many sequences for each individual. Shown are the post-
selection productive TRBs from each individual (red), and pre-selection sequences generated from the individual’s VDJ gener-
ation model P i

gen (blue). The distributions for all individuals are visualized using a density map indicating the local density of
probability distribution curves over the cohort. (D) Density maps of the model distributions for the VDJ recombination sce-
narios, Pscenario, the nucleotide sequences, P nt

gen, the productive amino-acid sequences upon generation, Pgen, and post-selection
amino-acid sequences Ppost, over the population. The same convention for the density map is used. Error bars for (A-D)
are the standard deviation over the population. (E) Distributions of the Shannon entropies of Pscenario, P nt

gen, Pgen, and Ppost

over the population. (F) Mean vs variance of log10 Pgen and log10 Ppost over both productive and generated sequences for each
individual. The linear relation suggests a single parameter explaining variability in the population.

Fig. 5D summarizes the distributions of probabilities
P in different probability ensembles of decreasing diver-
sity: raw VDJ recombination scenarios (black), gener-
ated nucleotide sequences (green), pre-selection produc-
tive amino acid sequences (blue, same as the blue curves
in Fig. 5A), and post-selection productive amino acid se-
quences (red, the mean of which is the black curve in
Fig. 5C). The negative of the mean of log10(P ) is, up to
a ln(2)/ ln(10) factor, equal to the Shannon entropy of
the distribution expressed in bits, 〈− log2(P )〉P . Fig. 5E
shows the distribution of these entropies across the pop-

ulation. The width of the distributions of log10 P is
strongly correlated with their means across individuals
and also from pre-selection to post-selection (Fig. 5F),
suggesting again a single parameter driving individual
variability, possibly the average number of N insertions.

We also plot the Ppost distributions of TRBs from the
VDJdb database that are known to be specific to hu-
man viruses [19] (Fig. 6). There does not appear to
be a substantial shift in the post-selection probability of
these viral-specific sequences as compared to productive
TRBs from blood. A similar absence of bias was previ-
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TABLE I: Intra-individual variation

Seqs Quantity Intra-indiv Var %

Gen seqs Var log10 Pgen 7.05 ± 0.49 78.2%

Var log10Q 0.407 ± 0.016 4.52%

Cov (log10 Pgen, log10Q) 0.778 ± 0.069 2×8.64%

Var log10 Ppost 9.01 ± 0.63 100%

Data seqs Var log10 Pgen 4.67 ± 0.53 86.9%

Var log10Q 0.185 ± 0.009 3.44%

Cov (log10 Pgen, log10Q) 0.258 ± 0.033 2×4.81%

Var log10 Ppost 5.37 ± 0.56 100%

ously reported for the distribution of generation probabil-
ities [16], suggesting that the VDJ recombination process
is not explicitly skewed towards generating these viral-
specific sequences. Our results further show that thymic
selection also does not seem to be biased to select for
sequences specific to these viral epitopes.

E. Quantifying overall variability and its
contribution due to generation and selection

The overall variability in the TRB repertoire can be
characterized both between and within individuals in the
population, by calculating the variance of the distribu-
tion of log10 Ppost, which gives a measure of the typi-
cal fold-variation. Since log10 Ppost(σ) = log10 Pgen(σ) +
log10Q(σ), this variance can be decomposed as:

Var(log10 Ppost) =Var(log10 Pgen) + Var(log10Q)

+ 2Cov(log10 Pgen, log10Q).
(2)

To quantify the range of repertoire variability within
an individual we calculate the variances and covariance of
log10 P

i
gen, log10Q

i, log10 P
i
post over the data sequences,

and synthetic sequences for each individual. Table I sum-
marizes the average of these variances over the 651 indi-
viduals. 80% of the variation comes from the genera-
tion process, with the remainder mostly stemming from
a strong correlation between selection and generation, as
previously discussed (Fig. 5A and C, SI Fig. 5).

Variations in the probabilities of given sequences across
individuals (averaged over sequences, see Methods for de-
tails) are much lower (Table II), highlighting the high
level of consistency in the population. The total vari-
ance of 0.091 in log10 Ppost corresponds to relative vari-

ations of 10±
√
0.091 ∈ (−50%,+100%) in the probability

of sequences. While those differences are substantial in
absolute terms, they are 1.6% of the variance over se-
quences within an individual (≈ 5.4, see Table I). Much
of this variance again stems from VDJ generation.

To further characterize variability, we learned ‘consen-
sus’ or ‘universal’ models from sequences sampled ran-
domly from each individual. To this end we inferred

TABLE II: Inter-individual variation

Seqs Quantity Inter-indiv Var %

Gen seqs Var log10 Pgen 0.121 95.5%

Var log10Q 0.0175 13.7%

Cov (log10 Pgen, log10Q) -0.00586 2× -4.62%

Var log10 Ppost 0.127 100%

Data seqs Var log10 Pgen 0.0792 87.0%

Var log10Q 0.0132 14.5%

Cov (log10 Pgen, log10Q) -0.000697 2×-0.766%

Var log10 Ppost 0.0910 100%

a consensus VDJ generation model (P univ
gen ) from out-

of-frame sequences, and a consensus Left+Right SONIA
model (Quniv and P univ

post ) from the productive sequences
(Methods). We then compared each individual model
to the universal model using the Jensen-Shannon diver-
gence, an information-theoretic measure of distance be-
tween probability distributions expressed in bits and di-
rectly comparable to entropies (Methods). The distri-
butions of JSD(P igen, P

univ
gen ) and JSD(P ipost, P

univ
post ) over

the cohort highlight the consistency of these models with
most individuals having < 0.3 bits JSD from both P univ

gen

and P univ
post (Fig. 7). This should be compared to the

associated entropies of > 30 bits for either distribution
(Fig. 5E).

III. DISCUSSION

By applying distinct computational procedures to the
nonproductive and productive sequences of the TCR
repertoires of a large cohort of 651 donors, we were able
to learn individual-specific models of repertoires, sepa-
rating the processes of generation and thymic selection.
This allowed us to quantify precisely the variability of
each process within the population.

We found that the TRB generation process varied only
moderately between individuals, with two main drivers:
gene usage and average length of untemplated insertions.
Because insertions contribute a lot to the generation
probability, the latter is the main driver of variability in
the distribution of Pgen itself. V,D, and J gene usage vari-
ability may be due to variations in the regulatory signals,
both genetic and epigenetic, that control the operation of
the Recombination-Activating Gene (RAG) protein that
initiates the recombination process [20]. It may also be
due to variations in gene copy numbers of the gene seg-
ment, as was observed in the related case of the IgH locus
[21]. Variations in the mean number of insertions could
be attributed to differences in expression of TdT as well
as other proteins involved in the non-homologous end
joining pathway [22].

We found that the inferred selection models were also
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FIG. 6: Distribution of TRB sequences from the VDJdb database specific to human viruses [19] compared to the productive
sequences from the blood of 651 individuals. A) log10(Quniv) distribution for each individual’s productive data sequences
(gray heatmap) and for viral-specific TCRs from the VDJdb database. B) log10(P univ

post ) distributions. The VDJdb log10(P univ
post )

distributions are Gaussian-smoothed for clarity. Quniv and P univ
post are ‘universal’ models learned from sequences randomly drawn

from all individuals.
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FIG. 7: Normalized distributions of the Jensen-Shannon di-
vergence (JSD) of each individual from the universal model
for both Pgen and Ppost.

variable between individuals, but the magnitude of these
variations remains limited, which may be surprising con-
sidering that different individual’s repertoires are subject
to different selective pressures due to diverse HLA back-
grounds. Overall, the ratio of the total variability across
individuals to the variability across sequences within an
individual (measured by the variance of the logarithm of
the sequence probability) was only 1.6%, of which about
85% came from variations in the generation process, and
15% from the selection process. We also found that se-
quences that were previously identified to be specific to
human viruses did not differ in their generation or selec-
tion probability from generic sequences from blood, find-
ing no evidence in our models for an evolutionary mech-
anism to favor such viral-specific sequences (as suggested
in [23]), neither in the process of VDJ recombination, nor
through thymic selection.

Thymic selection of naive T cells was found to be well
captured by a model where selection acts independently
on each amino acid, regardless of the sequence context.
The variability in the inferred parameters for the selec-
tion models is not large in the population, identifying re-
producible features in different individuals. This suggests
that the main statistical effects of thymic selection cap-
tured by our model are mostly universal, probably driven
by positive selection for amino acids that makes a folding
functional receptor. The effect of HLA specific positive
and negative selection, on the other hand, might not be
well captured by this kind of a model, which focuses on
finding broad sequence features rather than specific se-
quences to harness more statistical power, although vari-
ations in the V and J selection factors may reflect HLA
types. Our approach thus complements the strategy of
looking for associations of particular TCRs with HLA
type, which was previously applied to the same dataset
[12]. An obvious limitation of this and other studies of
that dataset is that it comprises a restricted subset of the
human population.

While in this study we used SONIA for the purpose
of comparing peripheral to pre-selection repertoires, the
software is written to be flexible in several ways. First,
if can be used to infer selection factors between any two
repertoires (observed or generated), by inferring selection
factors that match the statistics of the two samples. Sec-
ond, SONIA can go beyond selection pressures on single
amino acids, allowing features of pairs or motifs of amino
acids. Finally, SONIA can be applied to other chains
than TRB, notably the alpha chain of the TCR (TRA)
as well as immunoglobulin IgH.

SONIA’s flexibility opens up the possibility of using
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SONIA to find statistical correlations in various biologi-
cal or clinical contexts. SONIA could be applied to sam-
ples that are known to have responded to some perturba-
tions, for example after vaccination or infection [24, 25].
In such a context clone sizes may be crucial to identify the
underlying changes. To facilitate this, SONIA can also
infer selection factors from read-count weighted reper-
toires. A major challenge in the field of immune reper-
toire profiling remains to decipher the specificity of the
TCR-pMHC interaction. Vaccine design, immunother-
apy and therapy for autoimmune conditions would all
greatly benefit from the ability to find or design TCRs
with known specificity. In the last couple of decades
experimental methods have been developed for identi-
fying TCRs specific to given antigens [26–29]. Based
on accumulated TCR binding data [19], computational
methods have been proposed recently that can find clus-
ters of similarly reactive TCRs [25, 28–30], or to pre-
dict TCR specificity to a given epitope using machine-
learning techniques [31–34]. SONIA could be used to
learn flexible models of these antigen-specific TCR sub-
sets and to study their organization. It could also be ap-
plied to identify specific selective pressures in particular
subsets, defined by HLA specificity, pathogenic history,
clinical status, T-cell phenotype (naive, effector, memory,
CD4, CD8, regulatory T cells), or to differentiate distinct
samples from the same individual, such as blood, tissue,
or tumor samples.

IV. METHODS

A. Data

The data used for the inference of both the VDJ gener-
ation models and the subsequent selection models are the
Adaptive Biotechnologies sequenced TRB repertoires of
Emerson et. al. [14]. An initial quality control pass was
done over the 664 individuals to ensure at least 10,000
unique out of frame sequences to be used to infer the VDJ
generation model. 651 individuals passed this threshold
and all were used in the subsequent analyses.

All analyses were done on unique nucleotide reads, dis-
carding any cell count information. This is done to en-
sure that each sequence is reflective of a single recom-
bination event, which is an important restriction when
modeling VDJ recombination and thymic selection. For
some selection modeling purposes (e.g. modeling antigen
exposure), cell counts may be incorporated.

In practice, amino-acid sequences are reduced to the
choice of V and J, and the full amino acid CDR3 se-
quence.

Sequences were determined to be productive and used
in the selection analysis if they had a non-zero Pgen. Be-
yond being an in-frame sequence without stop codons,
this requires that a sequences retains the conserved
residues defining the CDR3 region (Cysteine on the 5′

end, Phenylalanine or Valine on the 3′ end) as well as

aligning to non-pseudo V and J genes.

B. Generation model

The generation model is defined at the level of the re-
combination scenarios in order to reflect the underlying
biology of VDJ recombination. Each recombination sce-
nario is defined by the gene choice (V , D, and J); dele-
tions/palindromic insertions for each gene (dV , dD, d′D,
and dJ); and the sequence of non-templated nucleotides
at each junction (m1, . . . ,m`V D

and n1, . . . , n`DJ
). The

probability of a recombination scenario is given in the
factorized form:

Pscenario = PV(V )PdelV(dV |V )PDJ(D,J)

× PdelD(dD, d
′
D|D)PdelJ(dJ |J)

× PinsVD(`VD)p0(m1)

[
`V D∏
i=2

SVD(mi|mi−1)

]

× PinsDJ(`DJ)q0(n`DJ
)

[
`DJ−1∏
i=1

SDJ(ni|ni+1)

]
.

(3)

This model factorization, originally from Murugan et al,
has been shown to capture the relevant correlations be-
tween the different recombination events in TRB [4].

The probability of a nucleotide sequence x is given by:

P nt
gen(x) =

∑
scenario→x

Pscenario, (4)

and the probability of a productive amino-acid sequence
is:

Pgen(σ) =
1

F

∑
x→σ

P nt
gen(x), (5)

where F =
∑

scenario|prod Pscenario is the total probabil-

ity that a random recombination event is productive (in-
frame, no stop codons, preserves conserved residues, and
does not use pseudo-genes as germline gene choices). F
can be computed directly from a generative model using
OLGA [16].

C. Selection model

To minimize the Kullback-Leibler distance be-
tween Ppost and Pgen while enforcing the constraints∑
σ:f∈F(σ) Ppost(σ) ≡ Ppost(f) = Pdata(f) for each f ,

we extremize the following Lagrangian:

∑
σ

Ppost(σ)

ln

(
Ppost(σ)

Pgen(σ)

)
−

∑
f∈F(σ)

λf − µ

 , (6)
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where λf are Lagrange multipliers constraining the fre-
quencies of f , while µ ensures the normalization of Ppost.
This extremization yields the form of Ppost:

Ppost(σ) = Pgen(σ) exp

 ∑
f∈F(σ)

λf

 . (7)

Defining qf = eλf , and Z = e−µ, we obtain Eq. 1. Given
that form, the Lagrange multipliers must be adjusted to
satisfy the constraints. Doing so is equivalent to maxi-
mizing the likelihood of the data under the model:

L =
1

N

∑
σ∈data

lnPpost(σ|{λf}), (8)

where N is the number of data sequences. This can be
shown by noting that the gradient of the log-likelihood,

∂L
∂λf

=
1

N

 ∑
σ∈data:f∈F(σ)

1

− Ppost(f)

= Pdata(f)− Ppost(f),

(9)

cancels when the constraints are satisfied.

D. SONIA implementation

SONIA is a python software built to define and in-
fer feature-defined selection models. SONIA has built in
procedures for defining and identifying sequence features
of CDR3 sequences. SONIA also ships with the prepack-
aged selection models of LengthPosition and Left+Right
features. With a feature model defined, SONIA takes as
an input a list of productive amino acid CDR3s, along
with any aligned V/J genes. This list of observed CDR3s
can be either reduced to unique sequences (useful when
learning thymic selection and the background statistics
are based on unique sequences) or sequences taken with
their clonality to account for a non-flat clone size distri-
bution. As an optional input, SONIA can read in baseline
CDR3 and aligned V/J genes to use as the background
that the selection model is learned from. Alternatively,
OLGA’s sequence generation machinery [16] is built into
SONIA so a generation model can be specified and back-
ground sequences automatically generated.

SONIA has built-in methods to compute the fea-
ture marginals over the data sequences, background se-
quences, and the selection model. These marginals are
use to fit the selection model iteratively using Tensor-
Flow keras [35, 36] with the Kullback-Leibler divergence
as a loss function. We checked the convergence of the
algorithm and its satisfying of the constraints after con-
vergence (Fig. S6)

An inferred SONIA model can be used to compute
overall selection factors Q of any sequence. In combi-
nation with OLGA, SONIA can compute Ppost and to
generate selected sequences through rejection sampling.

E. Distributions of probabilities

We produced the distributions of Pgen, Q, and Ppost

shown in Fig. 5A-C by comparing the productive data
sequences of each individual to a synthetic sample of
productive sequences generated from P igen of that indi-
vidual using OLGA [16]. The number of generated se-
quences for each individual were matched to the number
of productive data sequences. For each dataset, we cal-
culated P igen using OLGA, and Qi and P ipost using SO-
NIA’s Left+Right model. The Q-weighted curves are de-
termined by weighting each generated sequence by its
selection factor Qi and then renormalizing.

For Fig. 5D, we used 300,000 scenarios, nucleotide, and
amino acid sequences were generated from each individ-
ual’s VDJ generation model. Again, we used OLGA to
compute the various generation probabilities P i, where
P i is P iscenario, P i,ntgen , or P igen. Entropy was estimated as

−〈log2 P
i〉 over the respective generated sample. For the

post-selection ensemble (P ipost), the distributions were

weighted by Qi computed by SONIA, and the entropy
was calculated as −〈Q(σ) log2[Pgen(σ)Q(σ)]〉 over the
generated amino acid sequences.

F. Inference and Probability computation

Overall workflow is summarized in Fig. 1B. VDJ
generation models were all inferred using IGoR [15].
Amino acid Pgen distributions were all computed using
OLGA [16] according to the specified IGoR model
parameters. All generated sequences were drawn from
the corresponding VDJ generation model using OLGA.
Lastly, selection models were all inferred, and evaluated
using SONIA. The code for all processes is available on
GitHub:
IGoR: https://github.com/qmarcou/IGoR
OLGA: https://github.com/zsethna/OLGA
SONIA: https://github.com/statbiophys/SONIA

G. Quantifying variability

To produce the variances and covariances of Table I
we took the productive data sequences from each in-
dividual along with an equivalent number of synthetic
sequences drawn from the individual’s VDJ generation
model. For each sequence we computed P univ

gen , Quniv,

and P univ
post using the consensus models. The variance and

covariance of each quantity was computed over both the
data sequences and generated sequences for each individ-
ual. These variances and covariances were then averaged
over the individual cohort to yield the numbers in Table I.
Error bars are the standard deviation over the cohort.

For Table II, we learned a consensus VDJ generation
model P univ

gen from nonproductive sequences sampled ran-
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domly from all individuals. 300,000 productive sequences
were drawn from P univ

gen to serve as a generated sequence
pool. For data sequences we used 326,000 productive se-
quences sampled randomly from all individuals. We cal-
culated for each sequence σ the individual specific P igen,

Qi, and P ipost for each individual, then calculated the
variances and covariances over i. Finally we averaged
the results over the sequences σ from each pool.

The Jensen-Shannon divergence between two distribu-
tion P1 and P2 is defined as:

JSD(P1, P2) =
1

2

∑
σ

[
P1(σ) ln

P1(σ)

P̄ (σ)
+ P2(σ) ln

P2(σ)

P̄ (σ)

]
,

(10)

with P̄ = (P1 + P2)/2.
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FIG. S1: Rescaled Pearson coefficients for length insertion distributions. (A) N1-N1 correlations. (B) N2-N2 correlations.
(C) N1-N2 correlations. The N1 and N2 distributions are highly correlated over the 651 individual cohort. Rescaling is
done by normalizing by the standard deviation of correlation coefficients obtained by shuffling individuals for the two features
independently.
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FIG. S2: Rescaled Pearson coefficients for J-J correlations across the 651 individual cohort. The dominant signal comes from
correlations derived from the arrangement of the D and J genes on the chromosome. As genes of the J1 family cannot recombine
with the D2 gene, variations in the D usages result in an overall shift in the J1 and J2 gene family usages. This accounts for the
strong positive correlation within each J gene family and strong negative correlation between the J1 and J2 families. Rescaling
as in S1.

V genes (ordered as on chromosome)
TRBJ2-7

TRBJ2-6

TRBJ2-5

TRBJ2-4

TRBJ2-3

TRBJ2-2

TRBJ2-1

TRBJ1-6

TRBJ1-5

TRBJ1-4

TRBJ1-3

TRBJ1-2

TRBJ1-1

V genes (ordered as on chromosome)

V 
ge

ne
s (

or
de

re
d 

as
 o

n 
ch

ro
m

os
om

e)

20

15

10

5

0

5

10

15

20

Pe
ar

so
n 

Co
ef

fs
/s

td
(S

hu
ffl

ed
 P

ea
rs

on
 C

oe
ffs

)A B

FIG. S3: (A) Rescaled Pearson coefficients for V-J correlations across the 651 individual cohort. (B) Rescaled Pearson
coefficients for V-V correlations. V genes are ordered by position on the chromosome. While large V-J and V-V correlations
exist, no obvious chromosomal structure emerges. Rescaling as in S1.
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FIG. S4: Overall amino acid usage in the CDR3. The x-axis is the amino acid usage over the data sequences from a given
individual. The y-axis is the amino acid usage over sequences generated from the same individual’s VDJ generation model P i

gen

(colored dots, each point is an individual), or the same sequences weighted by the Qi factors from the individual’s Left+Right
selection model (black dots).
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FIG. S5: Scatter plots of log10(Quniv) vs log10(P univ
gen ) for (A) generated sequences drawn from P univ

gen and (B) data sequences

used to infer log10(Quniv). The color scale indicates the local probability density of the points (on a log scale). This visualizes
the correlation of Pgen and Q as described in Tab. I. Quniv and P univ

post are ‘universal’ models learned from sequences randomly
drawn from all individuals.
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FIG. S6: Convergence of the universal Left+Right model Quniv. (A) L1 convergence, per learning epoch, of the marginals (or
frequencies) between the data features and the model features. (B) Scatter plot of the feature marginals. The x-axis shows the
frequencies of features of the data, while the y-axis show the model prediction for the generation model (red) and for Q-weighted
Left+Right model (blue). The L1 distance in (A) measures the mean distance between the blue dots and the diagonal.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.899682doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899682

