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Summary: We observed and explained the spontaneous directional motion of vesicles 

on both the concave and convex surfaces of a cone. 

 

Directional motion of a vesicle on conical surfaces 

Ge Zhenpeng
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Abstract The spontaneous directional motion of vesicles on both the outer and inner 

surfaces of a conical substrate is observed in this work. We showed that the motion is 

ultra-fast and the maximum velocity can be as high as 2.14 nm/μs. The driving force 

behind is attributed to the reduction of the bending energy along the conical surface, 

which possesses high curvature gradient. 

Introduction 

Vesicle is an essential component in cell biology and perform a variety of functions. 

The directional transport of vesicles play critical roles in many physiological 

processes, such as endocytosis[1], exocytosis[2], axonal growth[3] and nerve 

growth[4] as well as the delivery of mRNA vaccines. The directional transport of 

vesicles is long-term believed to be ATP-dependent, which involves the cooperation 

of cytoskeleton and different motor proteins[5, 6]. 

In this work, we revealed a novel spontaneous mode of directional motion of 

vesicles, which purely driven by the curvature gradient. Specially, we discovered that 

a vesicle can spontaneously move from the highly-curved end to the flat end on the 

outer surface (Fig1 (a)), while moves in the reverse direction in the inner surface of a 

cone (Fig1 (b)). 

 
Fig 1. A schematic representation of the directional motion of vesicle on (a) outer surface (b) 

inner surface of the conical substrate. All figures are taken from simulations. 

 

Methods 

The solvent-free force field from Cooke[7, 8] was adopted for vesicles in this work. 

In this model, each lipid molecular contains one head bead and two tail beads. The 
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interactions between the beads are governed by a combination of Weeks-Chandler-

Andersen potential[9], attractive potential as well as additional bonding and bending 

terms. The unit simulation timescale is τ ≈ 10 ns, which is estimated upon lipid 

self-diffusion simulations. The unit length is σ ≈ 1 nm, which is estimated by 

comparing the thickness of a bilayer from experiments and simulations. 

The substrate is built by first constructing a cube with the face-centered cubic 

structure and then cutting it into a conical shell. The half-angle is set to be 
𝜋

10
 and 

𝜋

6
, 

separately, to mimic different curvature gradient. The length between adjacent beads 

in the cube is set to be 1σ. The interaction between the substrate and vesicle is 

modeled as the same with that of the tail-tail interaction in vesicles, which has the 

following form. 

v(r) = {

−𝜖,                 𝑟 < 𝑟𝑐

−𝜖 𝑐𝑜𝑠2
𝜋(𝑟 − 𝑟𝑐)

2𝑤𝑐
, 𝑟𝑐 < 𝑟 < 𝑟𝑐 + 𝑤𝑐  

0,               𝑟 > 𝑟𝑐 + 𝑤𝑐 

 

We change 𝜖 from 0.05 to 1.0 to study the effect of binding strength between the 

vesicle and substrate with a higher 𝜖 corresponding to stronger binding strength. The 

diameter of the vesicle in this study is set to be 6 nm, which ensures its stability in 

solution. 

 

Table 1. The results of the systems studied in this work. 

 

Results and discussions 

The directional motion of vesicles is observed on both the outer and inner surface of 

the conical substrate. We will describe them in detail separately. 

Outer surface 

As mentioned earlier, the half-angle of the conical substrate is set to be 
𝜋

10
 and 

𝜋

6
, 

separately. For each system, we changed 𝜖 to mimic different binding strength 

between the vesicle and the substrate. 

In the system with half-angle being 
𝜋

10
, directional motion was observed when 𝜖 = 
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0.1 and 0.2. As shown in Fig 2, the maximum climbing height is ~69 nm when 𝜖 is 

0.1, which is much larger than that (~47 nm) when 𝜖 is 0.2. The maximum velocity 

in the former system is also larger than the latter, which is 2.14 and 1.56 nm/μs, 

separately.     

 

 
Fig 2. The relationship between simulation time and Z coordinate of the vesicle when the 

vesicle is on the outer surface and the half-angle of the cone is 
𝜋

10
 . 

 

Fig 3. The relationship between simulation time and Z coordinate of the vesicle when the 

vesicle is on the outer surface and the half-angle of the cone is 
𝜋

6
 . 

In another system with half-angle being 
𝜋

6
 (Fig 3), we built more sub-systems with 

𝜖 ranging from 0.1 to 1.0. We oberserved vesicle direntional motion when 𝜖 = 0.1 

and 0.2. When 𝜖 = 0.1, the vesicle climbed to a higher position compared to the case 

when 𝜖 = 0.2, which is consistent with the observation in the system with half-angle 

being 
𝜋

10
. We observed the step-wise climb of the vesicle for both 𝜖 = 0.1 and 0.2. 

The vesicle first took very short time to climb and then “rest” there for a relatively 

longer time and then climb again. This process may repeat for several times.  
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Fig 4. The rupture of vesicles on (a) outer surface and (b) inner surface of a conical surface. 

The vesicle ruptured and became a flat and round disc when 𝜖 = 0.3 or larger (Fig 

4 (a)). What’s interesting is that ruptured disc also directionally moved towards the 

top flat region of the conical substrate. The maximum height of the disc when 𝜖 = 

0.4 and 0.5 is a little bit larger than that of 𝜖 = 0.3 and 1.0. The disc climbed faster 

when 𝜖 = 0.3 compared to other systems.     

Inner surface 

 
Fig 5. The relationship between simulation time and Z coordinate of the vesicle when the 

vesicle is on the inner surface and the half-angle of the cone is 
𝜋

10
. 

 When the half angle is 
𝜋

10
, the vesicle directionally moved from the top to the bottom 

of the inner surface (Fig 5). The vesicle takes fewer time when 𝜖 = 0.05 compared to 

that when 𝜖 = 0.1 or 0.2. 
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Fig 6. The relationship between simulation time and Z coordinate of the vesicle when the 

vesicle is on the inner surface and the half-angle of the cone is 
𝜋

6
. 

When half angle is 
𝜋

6
, we also have more sub-systems with 𝜖 ranging from 0.05 to 

0.5 (Fig 6). The vesicle directionally moves on the inner surface when 𝜖 = 0.05, 0.1 

and 0.2. When 𝜖 = 0.1, the vesicle takes the shortest time to reach the bottom of the 

substrate. When 𝜖 = 0.2, the vesicle cannot reach the bottom during our simulation 

time. 

When 𝜖 is equal to or larger than 0.3, the vesicle ruptures to a flat round disc and 

moves downwards with a very short distance to maximize the contact area with the 

substrate (Fig 4 (b)). 

Driving force 

These observations can be well explained by the elastic theory developed by 

Helfrich[10] and Canham[11], in which the membrane is described as a ultra-thin 

sheet with the following energy terms: 

𝐸𝑏𝑒𝑛𝑑 = ∫ [
1

2
𝑘(𝑐1 + 𝑐2 − 𝑐0)2 + �̅�𝑐1𝑐2] 𝑑𝐴 

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
1

2
𝐾𝑠

(𝐴 − 𝐴0)2

𝐴0
 

where 𝑐1 and 𝑐2 are the two principle curvatures at a given point on the membrane 

surface and 𝑐0 is the spontaneous curvature of the membrane; 𝑘, �̅� and 𝐾𝑠 are the 

bending modulus, the saddle-splay modulus, and the stretching modulus; and 𝐴 and 

𝐴0 represent the current and the equilibrium areas of the membrane, respectively. The 

spontaneous curvature 𝑐0 can result from an asymmetric composition of the 

membrane, eg, the upper and lower leaflets of the bilayer may contain different lipid 

species[12]. In our simulations, 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ equals 0 because there is no osmotic 

pressure in our solvent free model. 

The interaction between the substrate and the membrane is proportional to the 

contact area with the following term: 
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𝐸𝑎𝑑ℎ = −𝑤𝐴𝑎𝑑ℎ 

where 𝑤 represents the binding strength between the substrate and membrane. So the 

total energy is 

𝐸𝑡𝑜𝑡 = −𝑤𝐴𝑎𝑑ℎ + ∫ [
1

2
𝑘(𝑐1 + 𝑐2 − 𝑐0)2 + �̅�𝑐1𝑐2] 𝑑𝐴  

 

I 

Fig 7. A schematic representation of a vesicle adhering to (a) the curved part and (b) flat part 

of outer surface of the substrate.  

 

The motion of the vesicle is driven the demand to minimize 𝐸𝑡𝑜𝑡. There exists 

large bents at the contact point with the substrate on the vesicle when the vesicle 

adheres to the high-curved part on the outer surface (Fig 7), which costs high bending 

energy. So the vesicle moves directionally from the high-curved part to the flat part. 

But when the binding strength is too high, the vesicle ruptures to maximize the 

contact area with the substrate.  

 

Fig 8. A schematic representation of a vesicle adhering to (a) the curved part and (b) flat part 

of inner surface of the substrate.  

 

When the vesicle is on the inner surface of the substrate, the vesicle costs less 

bending energy adhering on the high-curved part (Fig 8 (a)) compared to the flat part 

(Fig 8 (b)). So the vesicle moves directionally from the flat part to the more curved 

part. Similarly, when the binding strength is too high, the vesicle ruptures to maximize 

the contact area with the substrate. 

Conclusions 

In this wok, we observed the directional motion of a vesicle on both the outer and 

inner surface of a conical substrate. The motion is spontaneous and purely driven by 

the curvature gradient of the substrate. Besides the curvature gradient, the behavior of 

the vesicle is also affected by the adhesion strength between the vesicle and substrate. 

Upon certain threshold, the vesicle will rupture. We showed that all these 

phenomenon can be well explained by the elastic theory. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.01.09.899997doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.899997


 

7 
 

References 

1. Peng, A., et al., Differential motion dynamics of synaptic vesicles undergoing 

spontaneous and activity-evoked endocytosis. Neuron, 2012. 73(6): p. 1108-1115. 

2. Trifaró, J.M., S. Gasman, and L. Gutierrez, Cytoskeletal control of vesicle transport and 

exocytosis in chromaffin cells. Acta Physiologica, 2008. 192(2): p. 165-172. 

3. Goldberg, D.J. and D.W. Burmeister, Stages in axon formation: observations of growth of 

Aplysia axons in culture using video-enhanced contrast-differential interference contrast 

microscopy. The Journal of cell biology, 1986. 103(5): p. 1921-1931. 

4. Ng, Y.K., X. Lu, and E.S. Levitan, Physical mobilization of secretory vesicles facilitates 

neuropeptide release by nerve growth factor‐differentiated PC12 Cells. The Journal of 

physiology, 2002. 542(2): p. 395-402. 

5. Welte, M.A., et al., Developmental regulation of vesicle transport in Drosophila embryos: 

forces and kinetics. Cell, 1998. 92(4): p. 547-557. 

6. Howard, J., Mechanics of motor proteins and the cytoskeleton. 2001. 

7. Cooke, I.R. and M. Deserno, Solvent-free model for self-assembling fluid bilayer 

membranes: stabilization of the fluid phase based on broad attractive tail potentials. The 

Journal of chemical physics, 2005. 123(22): p. 224710. 

8. Cooke, I.R., K. Kremer, and M. Deserno, Tunable generic model for fluid bilayer 

membranes. Physical Review E, 2005. 72(1): p. 011506. 

9. Weeks, J.D., D. Chandler, and H.C. Andersen, Role of repulsive forces in determining the 

equilibrium structure of simple liquids. The Journal of chemical physics, 1971. 54(12): p. 

5237-5247. 

10. Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments. 

Zeitschrift für Naturforschung C, 1973. 28(11-12): p. 693-703. 

11. Canham, P.B., The minimum energy of bending as a possible explanation of the 

biconcave shape of the human red blood cell. Journal of theoretical biology, 1970. 26(1): 

p. 61-81. 

12. Ge, Z. and Y. Wang, Computer simulation and modeling techniques in the study of 

nanoparticle-membrane interactions, in Annual Reports in Computational Chemistry. 

2016, Elsevier. p. 159-200. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.01.09.899997doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.899997


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.01.09.899997doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.899997

