
Running head: AUDITORY PREDICTION WITH MEMORY DECAY 1

PPM-Decay: A Computational Model of Auditory Prediction with Memory Decay

Peter M. C. Harrison1, Roberta Bianco2, Maria Chait2, & Marcus T. Pearce1, 3

1 Queen Mary University of London
2 University College London

3 Aarhus University

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.09.900266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.900266
http://creativecommons.org/licenses/by/4.0/


AUDITORY PREDICTION WITH MEMORY DECAY 2

Author Note

This is an unpublished preprint that has yet to undergo peer review (January 10, 2020).

Peter M. C. Harrison, School of Electronic Engineering and Computer Science, Queen

Mary University of London; Roberta Bianco, Ear Institute, University College London;

Maria Chait, Ear Institute, University College London; Marcus T. Pearce, School of

Electronic Engineering and Computer Science, Queen Mary University of London.

Peter Harrison is now at the Max Planck for Empirical Aesthetics, Frankfurt, Germany.

He was previously supported by a doctoral studentship from the EPSRC and AHRC Centre

for Doctoral Training in Media and Arts Technology (EP/L01632X/1).

Correspondence concerning this article should be addressed to Peter M. C. Harrison,

Max-Planck-Institut für empirische Ästhetik, Grüneburgweg 14, 60322 Frankfurt am Main,

Germany. E-mail: peter.harrison@ae.mpg.de

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.09.900266doi: bioRxiv preprint 

mailto:peter.harrison@ae.mpg.de
https://doi.org/10.1101/2020.01.09.900266
http://creativecommons.org/licenses/by/4.0/


AUDITORY PREDICTION WITH MEMORY DECAY 3

Abstract

Statistical learning and probabilistic prediction are fundamental processes in auditory

cognition. A prominent computational model of these processes is Prediction by Partial

Matching (PPM), a variable-order Markov model that learns by internalizing n-grams from

training sequences. However, PPM has limitations as a cognitive model: in particular, it has

a perfect memory that weights all historic observations equally, which is inconsistent with

memory capacity constraints and recency effects observed in human cognition. We address

these limitations with PPM-Decay, a new variant of PPM that introduces a customizable

memory decay kernel. In three studies – one with artificially generated sequences, one with

chord sequences from Western music, and one with new behavioral data from an auditory

pattern detection experiment – we show how this decay kernel improves the model’s

predictive performance for sequences whose underlying statistics change over time, and

enables the model to capture effects of memory constraints on auditory pattern detection.

The resulting model is available in our new open-source R package, ppm

(https://github.com/pmcharrison/ppm).
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AUDITORY PREDICTION WITH MEMORY DECAY 4

PPM-Decay: A Computational Model of Auditory Prediction with Memory Decay

Humans are sensitive to structural regularities in sound sequences (Agres, Abdallah, &

Pearce, 2018; Barascud, Pearce, Griffiths, Friston, & Chait, 2016; Bendixen, Schroger, &

Winkler, 2009; Cheung, Meyer, Friederici, & Koelsch, 2018; Garrido, Sahani, & Dolan, 2013;

Koelsch, Busch, Jentschke, & Rohrmeier, 2016; Rohrmeier et al., 2012; Tillmann &

Poulin-Charronnat, 2010; Wacongne et al., 2011; Winkler, Denham, & Nelken, 2009). This

structural sensitivity underpins many aspects of audition, including sensory processing

(Southwell & Chait, 2018; Turk-Browne, Scholl, Johnson, & Chun, 2010), auditory scene

analysis (Andreou, Kashino, & Chait, 2011; Schröger et al., 2014), language acquisition

(Erickson & Thiessen, 2015), and music perception (Pearce, 2018).

The Prediction by Partial Matching (PPM) algorithm is a powerful approach for

modeling this sensitivity to sequential structure. PPM is a variable-order Markov model

originally developed for data compression (Cleary & Witten, 1984) that predicts successive

tokens in symbolic sequences on the basis of n-gram statistics learned from these sequences.

An n-gram is a contiguous sequence of n symbols, such as “ABA” or “ABB”; an n-gram

model generates conditional probabilities for symbols, for example the probability that the

observed sequence “AB” will be followed by the symbol “A”, based on the frequencies of

different n-grams in a training corpus. Different values of n yield different operational

characteristics: in particular, small values of n are useful for generating reliable predictions

when training data are limited, whereas large values of n are useful for generating more

accurate predictions once sufficient training data have been obtained. The power of PPM

comes from combining together multiple n-gram models with different orders (i.e. different

values of n), with the weighting of these different orders varying according to the amount of

training data available. This combination process allows PPM to retain reliable performance

on small training datasets while outperforming standard Markov chain models with larger

training datasets.
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The PPM algorithm has been adopted by cognitive scientists and neuroscientists as a

cognitive model for how human listeners process auditory sequences. The algorithm has

proved particularly useful in modeling music perception, forming the basis of the Information

Dynamics Of Music (IDyOM) model of Pearce (2005) which has been successfully applied to

diverse musical phenomena such as melodic expectation (Pearce & Wiggins, 2006), emotional

experience (Egermann, Pearce, Wiggins, & McAdams, 2013), similarity perception (Pearce &

Müllensiefen, 2017), and boundary detection (Pearce, Müllensiefen, & Wiggins, 2010). More

recently, the PPM algorithm has been applied to non-musical auditory modeling, including

the acquisition of auditory artificial grammars (Agres et al., 2018) and the detection of

repeating patterns in fast tone sequences (Barascud et al., 2016).

These cognitive studies typically use PPM as an ideal- or rational- observer model.

Applied to a particular experimental paradigm, an ideal-observer model simulates a

theoretically optimal strategy for performing the participant’s task. This optimal strategy

provides a benchmark against which human performance can be measured; deviations from

this benchmark can then be analysed to yield further insights into human cognition. In

artificial experimental paradigms, where the stimuli are generated according to a prespecified

formal model, it is often possible to derive a “true” ideal-observer model that provably

attains optimal performance. However, in naturalistic domains (e.g. music, language) the

researcher does not typically have access to the true model that generated the stimuli, and so

it is not possible to construct a provably optimal ideal-observer model. Moreover, in certain

experimental paradigms (e.g. fast auditory pattern detection, Barascud et al., 2016) it is

unlikely that the participant’s cognitive processes reflect a strategy perfectly tailored to the

exact experimental task; instead, they are likely to reflect general principles that tend to

work well for naturalistic perception. PPM is typically applied in these latter contexts: it

does not constitute the provably optimal observer for most particular tasks, but it represents

a rational model of predictive processing that is assumed to approximate ideal performance

for a broad variety of sequential stimuli.
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However, the PPM algorithm suffers from an important limitation when applied to

cognitive modeling. All observed data are stored in a single homogenous memory unit, with

historic observations receiving equal salience to recent observations. This is problematic for

two reasons. First, it means that the model performs suboptimally on sequences where the

underlying statistical distribution changes over time. Second, it means that the model

cannot capture how human memory separates into distinct stages with different capacity

limitations and temporal profiles, and the way that these different stages interact to

determine cognitive performance (e.g. Atkinson & Shiffrin, 1968; Nees, 2016; Neisser, 1967).

While various sequence modeling approaches from the cognitive literature do incorporate

phenomena such as recency effects and capacity limits (Bröker, Bestmann, Dayan, &

Marshall, 2018; Harrison, 2011; Mattar, Kahn, Thompson-Schill, & Aguirre, 2016; Meyniel,

Maheu, & Dehaene, 2016; Norton, Fleming, Daw, & Landy, 2017; O’Reilly, 2013;

Skerritt-Davis & Elhilali, 2018, 2019; Squires, Wickens, Squires, & Donchin, 1976; Yu &

Cohen, 2008) these approaches are generally limited to low-order statistics and cannot

therefore match the predictive power of PPM. Conversely, more powerful sequence models

from the machine-learning literature are difficult to tailor to the idiosyncrasies of human

memory (e.g. hidden Markov models, Rabiner, 1989; long short-term memory recurrent

neural networks, Hochreiter & Schmidhuber, 1997).

Several partial solutions to this problem have been presented in the PPM literature.

Moffat’s (1990) implementation allocated a fixed amount of storage space to the trie data

structure used to store observed data, and rebuilt this tree from scratch each time this

storage limit was exceeded, after Cormack & Horspool (1986). This solution may be

computationally efficient but it has limited cognitive validity. Conklin & Witten (1995)

introduced a technique whereby two PPM models would be trained, a long-term model and a

short-term model, with the long-term model retaining training data from all historic

sequences and the short-term model only retaining training data from the current sequence.

The predictions from these two models would then be combined to form one probability
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distribution. This technique works well for capturing the distinction between the structural

regularities characterizing a domain (e.g. a musical style, a language) and the statistical

regularities local to a given item from the domain (e.g. a musical composition or a specific

text), but it cannot capture recency effects within a given sequence or distinguish between

historic sequences of different vintages.

Here we present a new version of the PPM algorithm that directly addresses these

issues of memory modeling. This new algorithm, termed “PPM-Decay”, introduces a decay

kernel that determines the weighting of historic data as a function of various parameters,

typically the time elapsed since the historic observation, or the number of subsequent

observations (Figure 1). It also introduces stochastic noise into memory retrieval, allowing

the model to capture analogous imperfections in human memory. We have developed an

open-source implementation of the model in C++, made available in the R package ppm,

that allows the user to configure and evaluate different variants of the PPM-Decay model on

arbitrary sequences.

We demonstrate the utility of this new algorithm in a series of experiments

corresponding to a variety of task domains. Experiment 1 simulates the prediction of

sequences generated from a prespecified statistical model, and shows that incorporating

memory decay improves the predictive performance of PPM for sequences when the

underlying model parameters change over time. Experiment 2 simulates the prediction of

chord sequences from three musical styles, and shows that a decay profile with a non-zero

asymptote is useful for capturing a combination of statistical regularities specific to the

current composition and statistical regularities general to the musical style. Experiment 3

models new empirical data from human listeners instructed to detect repeated patterns in

fast tone sequences, and shows that a multi-stage decay kernel is useful for explaining human

performance. Together these experiments speak to the utility of the PPM-Decay algorithm

as a cognitive model of symbolic sequence processing.
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Figure 1 . A simple decay kernel with an initial weight w0 = 1, an exponential decay with

half life t0.5 = 1 s, and an asymptotic weight w∞ = 0.2.

Experiment 1: Memory decay helps predict sequences with changing statistical

structure

The original PPM algorithm weights all historic observations equally when predicting

the next symbol in a sequence. This represents an implicit assertion that all historic

observations are equally representative of the sequence’s underlying statistical model.

However, if the sequence’s underlying statistical model changes over time, then older

observations will be less representative of the current statistical model than more recent

observations. In such scenarios, an ideal observer should allocate more weight to recent

observations than historic observations when predicting the next symbol.

Various weighting strategies can be envisaged representing different inductive biases

about the evolution of the sequence’s underlying statistical model. A useful starting point is

an exponential weighting strategy, whereby an observation’s salience decreases by a constant
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fraction every time step. Such a strategy is biologically plausible in that the system does not

need to store a separate trace for each historic observation, but instead can simply maintain

one trace for each statistical regularity being monitored (e.g. one trace per n-gram), which is

incremented each time the statistical regularity is observed and decremented automatically

over time. This exponential-weighting strategy can also be rationalised as an approximation

to optimal Bayesian weighting for certain types of sequence structures (Yu & Cohen, 2008).

We will now describe a proof-of-concept experiment to demonstrate the intuitive

notion that such weighting strategies can improve predictive performance in the PPM

algorithm. This experiment used artificial symbolic sequences generated from an alphabet of

five symbols, where the underlying statistical model at any particular point in time was

defined by a first-order Markov chain. A first-order Markov chain defines the probability of

observing each possible symbol conditioned on the immediately preceding symbol;

second-order Markov chains are Markov chains that take into account two preceding symbols,

whereas zeroth-order Markov chains take into account zero preceding symbols. Our

sequence-generation models were designed as hybrids between zeroth-order and first-order

Markov chains, reflecting PPM’s capacity to model sequential structure at different Markov

orders. These generative models took the form of first-order Markov chains, where each

first-order conditional distribution was sampled from a symmetric Dirichlet prior with

concentration parameter 0.1, and then averaged with a common zeroth-order distribution

sampled from the same Dirichlet prior. These models can be represented as two-dimensional

transition matrices, where the cell in the ith row and the jth column identifies the

probability of observing symbol j given that the previous symbol was i (Figure 2A).

Zeroth-order structure is then manifested as correlations between transition probabilities in

the same column, and can be summarised in marginal bar plots (Figure 2A).

Each sequence began according to an underlying statistical model constructed by the

above procedure, with the first symbol in each sequence being sampled from the model’s
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stationary distribution. At the next symbol, the underlying statistical model was either

preserved with probability .99 or discarded and regenerated with probability .01. The new

symbol was then sampled from the resulting statistical model conditioned on the

immediately preceding symbol. This procedure was repeated to generate a sequence totalling

500 symbols in length.

Individual experimental trials were then conducted as follows. The PPM-Decay model

was presented with one symbol at a time from a sequence constructed according to the

procedure defined above, and instructed to return a predictive probability distribution for

the next symbol. A single prediction was then extracted from this probability distribution,

corresponding to the symbol assigned the highest probability. Prediction success was then

operationalized as the proportion of observed symbols that were predicted correctly.

This experimental paradigm was used to evaluate a PPM-Decay model constructed

with an exponential-decay kernel and a Markov order bound of one. This kernel is

parametrized by a single half-life parameter, defined as the time interval for an observation’s

weight to decrease by 50%. This half-life parameter was optimized by evaluating the model

on 500 experimental trials generated by the procedure described above, maximizing mean

prediction success over all trials using Rowan’s (1990) Subplex algorithm as implemented in

the NLopt package (Johnson, 2019), and refreshing the model’s memory between each trial.

The resulting half-life parameter was 12.26. The PPM-Decay model was then evaluated with

this parameter on a new dataset of 500 experimental trials and compared with an analogous

PPM model without the decay kernel.

The results are plotted in Figures 2B and 2C. They indicate that the exponential-decay

kernel reliably improves the model’s performance, with the median percentage accuracy

increasing from 48.8% to 62.2%. The exponential-decay kernel causes the algorithm to

downweight historic observations, which are less likely to be representative of the current

sequence statistics, thereby helping the algorithm to develop an effective model of the
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current sequence statistics and hence generate accurate predictions. Correspondingly, we can

say that the exponential-decay model better resembles an ideal observer than the original

PPM model.

Experiment 2: Memory decay helps predict musical sequences

We now consider a more complex task domain: chord sequences in Western music. In

particular, we imagine a listener who begins with zero knowledge of a musical style, but

incrementally acquires such knowledge through the course of musical exposure, and uses this

knowledge to predict successive chords in chord sequences. This process of musical

prediction is thought to be integral to the aesthetic experience of music, and so it is of great

interest to music theorists and psychologists to understand how these predictions are

generated (Harrison & Pearce, 2018; Hedges & Wiggins, 2016; Pachet, 1999; Pearce, 2018;

Rohrmeier & Graepel, 2012).

Chord sequences in Western music resemble sentences in natural language in the sense

that they can be modeled as sets of symbols drawn from a finite dictionary and arranged in

serial order. Such chord sequences provide the structural foundation of most Western music.

For the purpose of modeling with the PPM algorithm, it is useful to translate these chord

sequences into sequences of integers, which we do here using the mapping scheme described

in Methods. For example, the first eight chords of the Bob Seger song “Think of Me” might

be represented as the integer sequence “213, 159, 33, 159, 213, 159, 33, 159”.

Here we consider chord sequences drawn from three musical corpora: a corpus of

popular music sampled from the Billboard “Hot 100” charts between 1958 and 1991

(Burgoyne, 2011), a corpus of jazz standards sampled from an online forum for jazz

musicians (Broze & Shanahan, 2013), and a corpus of 370 chorale harmonizations by J. S.

Bach (Sapp, 2005), translated into chord sequences using the chord labeling algorithm of
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Figure 2 . Illustrative plots for Experiment 1. A) Example sequence-generation models as

randomly generated in Experiment 1. The bar plots describe 0th-order symbol distributions,

whereas the matrices describe 1st-order transition probabilities. B) Repeated-measures plot

indicating how predictive accuracy for individual sequences (N = 500, hollow circles) increases

after the introduction of an exponential-decay kernel. C) Absolute changes in predictive

accuracy for individual sequences, as summarised by a kernel density estimator. The median

accuracy change is marked with a solid vertical line.

Pardo and Birmingham (2002; see Methods for details). These three corpora may be taken

as rough approximations of three musical styles: popular music, jazz music, and Bach
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chorale harmonizations. While we expect these three corpora each to be broadly consistent

with general principles of Western tonal harmony (Piston, 1948), we also expect each corpus

to possess distinctive statistical regularities that differentiate the harmonic languages of the

three musical styles (Broze & Shanahan, 2013; Clercq & Temperley, 2011; Rohrmeier &

Cross, 2008; Temperley & De Clercq, 2013). Figure 3 displays example chord sequences from

these three corpora, alongside their corresponding integer encodings.

We expect the underlying sequence statistics to vary as we progress through a musical

corpus. Sequence statistics are likely to change significantly at the boundaries between

compositions, but they are also likely to change within compositions, as the chord sequences

modulate to different musical keys, and travel through different musical sections. Similar to

Experiment 1, we might therefore hypothesize that some kind of decay kernel should help

the listener maintain an up-to-date model of the sequence statistics, and thereby improve

predictive performance.

However, unlike Experiment 1, the chord sequences within a given musical corpus are

likely to share certain statistical regularities. If the corpus is representative of a given

musical style, then these statistical regularities will correspond to a notion of “harmonic

syntax”, the underlying grammar that defines the harmonic conventions of that musical style.

An ideal model will presumably take advantage of these stylistic conventions. However, the

exponential-decay kernel from Experiment 1 is not well-suited to this task, because

observations from historic sequences continuously decay in weight until they make essentially

no contribution to the model. This is not ideal because these historic sequences will still

contribute useful information about the musical style. Here we therefore evaluate a modified

exponential-decay kernel, where memory traces decay not to zero but to a positive

asymptote (see e.g. Figure 1). Such a kernel should provide a useful compromise between

following the statistics of the current musical passage and capturing long-term knowledge of

a style’s harmonic syntax.
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Figure 3 . Sample chord sequences from A) the popular music corpus (“Night Moves”, by

Bob Seger), B) the jazz corpus (“Thanks for the Memory”, by Leo Robin), and C) the Bach

chorale harmonization corpus (“Mit Fried und Freud ich fahr dahin”, by J. S. Bach). Each

chord is labeled by its integer encoding within the chord alphabet for the respective corpus.

Each chord sequence corresponds to the first eight chords of the first composition in the

downsampled corpus. Each chord is defined by a combination of a bass pitch class (lower

stave) and a collection of non-bass pitch classes (upper stave). For visualization purposes,

bass pitch classes are assigned to the octave below middle C, and non-bass pitch classes to

the octave above middle C.
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We conducted our experiment as follows. For each musical corpus, we simulated a

listener attempting to develop familiarity with the musical style by listening to one chord

sequence every day, corresponding to one composition randomly selected from the corpus

without repetition, for 100 days. We supposed that the listener began each chord sequence at

the same time of day, so that the beginning of each successive chord sequence would be

separated by 24-hour intervals, and we supposed that each chord in each chord sequence

lasted one second in duration. Similar to Experiment 1, we supposed that the listener

constantly tried to predict the next chord in the chord sequence, but this time we

operationalized predictive success using the cross-entropy error metric, defined as the mean

negative log probability of each chord symbol as predicted by the model. This metric is more

appropriate than mean success rate for domains with large alphabet sizes, such as harmony,

because it assigns partial credit when the model predicts the continuation with high but

non-maximal probability. We used this metric to evaluate two decay kernels: the

exponential-decay kernel evaluated in Experiment 1, termed the “Decay only” kernel, and a

new exponential-decay kernel incorporating a positive asymptote, termed the “Decay +

long-term learning” model. We found optimal parametrizations for these kernels using the

same optimizer as Experiment 1 (the “Subplex” algorithm of Rowan, 1990), and compared

the predictive performance of the resulting optimized models to a standard PPM model

without a decay kernel. Each model was implemented with a Markov order bound of four,

which seems to be a reasonable upper limit for the kinds of Markovian regularities present in

Western tonal harmony (see e.g. Hedges, Roy, & Pachet, 2014; Landsnes et al., 2019;

Rohrmeier & Graepel, 2012).

Figure 4 describes the performance of these two decay kernels. Examining the results

for the three different datasets, we see that the utility of different decay parameters depends

on the musical style. For the popular music corpus, incorporating exponential decay

improves the model’s performance by c. 1.9 bits, indicating that individual compositions

carry salient short-term regularities that the model can better leverage by downweighting
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historic observations. Introducing a non-zero asymptote to the decay kernel does not

improve predictive performance on this dataset, indicating that long-term syntactic

regularities contribute very little to predictive performance over and above these short-term

regularities in popular music. A different pattern is observed for the jazz and Bach chorale

corpora, however. In both cases, the decay-only model performs no better than the original

PPM model, presumably because any improvement in capturing local statistics is penalized

by a corresponding deterioration in long-term syntactic learning. However, incorporating a

non-zero asymptote in the decay kernel allows the model both to upweight local statistics

and still achieve long-term syntactic learning, thereby improving predictive performance by c.

1.5 bits.

These analyses have two main implications. First, they show that more advanced decay

kernels are useful for producing a predictive model that better approximates ideal

performance in the cognitive task of harmony prediction. The nature of these improved

kernels can be related directly to the statistical structure of Western music, where

compositions within a given musical style tend to be characterized by local statistical

regularities, yet also share common statistical structure with other pieces in the musical style.

An ideal-observer model of harmony prediction ought therefore to recognize these different

kinds of statistical structure. Second, these analyses offer quantitative high-level insights into

the statistical characteristics of the three musical styles. In particular, the popular music

analyses found that long-term learning offered no improvement over a simple

exponential-decay kernel, implying that the harmonic structure of popular music is

dominated by local repetition. In contrast, both the jazz analyses and the Bach chorale

analyses found that both exponential decay and long-term learning were necessary to

improve from baseline performance, implying that chord progressions in these styles reflect

both short-term statistics and long-term syntax to significant degrees.
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Decay only
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Performance improvement (bits)

Figure 4 . Predictive performances for different decay kernels in Experiment 2. Each

composition contributed one cross-entropy value for each decay kernel; these cross-entropy

values are expressed relative to the cross-entropy values of the original PPM model, and then

summarised using kernel density estimators. Median performance improvements are marked

with solid vertical lines.

Experiment 3: Memory decay helps to explain the dynamics of auditory

pattern detection

The PPM model has recently been used to simulate how humans detect recurring

patterns in fast auditory sequences (Barascud et al., 2016). Barascud et al. used an

experimental paradigm where participants were played fast tone sequences derived from a
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finite pool of tones, with the sequences organised into two sections: a random section

(labelled “RAND”) and a regular section (labelled “REG”). The random section was

constructed by randomly sampling tones from the frequency pool, whereas the regular

section constituted a “frozen” sequence of frequencies from the pool which repeated

identically for several iterations. These two-stage sequences, termed “RANDREG” sequences,

were contrasted with “RAND” sequences which solely comprised one random section. The

participant’s task was to detect transitions from random to regular sections as quickly as

possible (see Methods for more details, and Figure 7 for an example trial).

These experimental stimuli were constructed according to a well-defined statistical

process, and it would be straightforward to derive a model that achieves provably optimal

performance on the task given a well-defined performance metric. However, Barascud et

al. reasoned that the cognitive mechanisms underlying fast auditory pattern recognition

would be unlikely to be tailored to exact repetition, because exact repetitions are uncommon

in naturalistic auditory environments. Instead, they supposed that human performance

would be better characterized by more generic regularity detection mechanisms, such as

those embodied in the PPM algorithm.

In particular, Barascud et al. (2016) suggested that listeners maintain an internal

predictive model of incoming tone sequences that is incrementally updated throughout each

sequence, and that listeners monitor the moment-to-moment surprise experienced by this

model. They modeled this process using PPM as the predictive model, and operationalized

surprise as the information content of each tone, defined as the tone’s negative log

probability conditioned on the portion of the sequence heard so far. The authors proposed

that listeners detect section changes based on the evolution of information content

throughout the stimulus; in particular, changes from random to regular precipitate a sharp

drop in information content, reflecting the transition from unpredictability to predictability.

Examining information content profiles produced by the PPM model, Barascud et al.
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(2016) concluded that an ideal observer should detect the transition from random to regular

sections by the fourth tone of the second occurrence of the regular tone cycle. Analyzing

behavioral and neuroimaging data, the authors found that participants reached this

benchmark when the cycle length was small (5, 10 tones) but not when it was large (15, 20

tones). In other words, the ideal-observer model replicated human performance well for short

cycle lengths, but some kind of cognitive constraints seemed to impair human performance

for large cycle lengths.

One candidate explanation for this impaired performance is the limited capacity of

auditory short-term memory. In order to detect a cycle repetition, the listener must compare

incoming tones to tones that occurred at least one cycle ago. To achieve this, the listener’s

auditory short-term memory must therefore span at least one cycle length. Short cycles may

fit comfortably in the listener’s short-term memory, thereby supporting near-optimal task

performance, but longer cycles may progressively test the limits of the listener’s memory

capacity, resulting in progressively worsened performance.

An important question is whether this memory capacity is determined by temporal

limits or informational limits. A temporal memory limit would correspond to a fixed time

duration, within which events are recalled with high precision, and outside of which recall

performance suffers. Analogously, an informational limit would correspond to a fixed number

of tones that can be recalled with high fidelity from short-term memory, with attempts to

store larger numbers of tones resulting in performance detriment.

Both kinds of capacity limits have been identified for various stages of auditory

memory. Auditory sensory memory, or echoic memory, is typically characterized by its

limited temporal capacity but high informational capacity. Auditory working memory has a

more limited informational capacity, and a temporal capacity that can be extended for long

periods through active rehearsal. Auditory long-term memory seems to be effectively

unlimited in both temporal and informational capacity (Atkinson & Shiffrin, 1968; Kumar et
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al., 2016; Nees, 2016; Neisser, 1967).

The auditory sequences studied by Barascud et al. used very short cycle lengths, of the

order of 1 s, and are therefore likely to fall within the remit of echoic memory. Given that

temporal limitations to echoic memory are well-documented in the literature, we might

expect these temporal limits to cause the impaired performances observed by Barascud et

al. However, some historic work does point to informational limits in echoic memory that can

constrain performance in perceptual tasks (Watson, 2016), and such informational limits

could also be responsible for Barascud et al.’s observations.

We conducted a behavioral experiment to test these competing explanations. We based

this experiment on the regularity detection task from Barascud et al., and created six

experimental conditions that orthogonalised two stimulus features: the number of tones in

the cycle (10 tones or 20 tones), and the temporal duration of each tone in the cycle (25 ms,

50 ms, or 75 ms). We reasoned that if performance were constrained by informational

capacity, then it would be best predicted by the number of tones in the cycle, whereas if

performance were constrained by temporal limits, it would be best predicted by the total

duration of each cycle. We were particularly interested in the pair of conditions with equal

cycle duration but different numbers of tones per cycle (10× 50 ms = 20× 25 ms); a

decrease in performance in the latter condition would be evidence for informational

constraints on regularity detection.

The behavioral results are summarized in Figure 5. Response accuracies are plotted in

Figure 5A in terms of the sensitivity metric from signal detection theory. Similar to

Barascud et al. (2016), response accuracy was close to ceiling performance across all

conditions, with the exception of the condition with the maximum-duration cycles (20 tones

each of length 75 ms), where some participants fell away from ceiling performance. Given

that accuracies were generally close to ceiling, we instead focus on interpreting reaction-time

metrics (Figure 5B). Here we see a clear effect of the number of tones in the cycle, with
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10-tone cycles eliciting considerably lower reaction times than 20-tone cycles. This is

consistent with the notion of an informational capacity to echoic memory. In particular,

comparing the two conditions with equal cycle duration but different numbers of tones per

cycle (10× 50 ms tones; 20× 25 ms tones), we see that increasing the number of tones

substantially impaired performance even when cycle duration stayed constant.

Figure 5B does not show a clear effect of tone duration. However, the figure does not

account for the repeated-measures structure of the data, meaning that between-condition

effects may be partly masked by individual differences between participants. To achieve a

more sensitive analysis, Figure 5C takes advantage of the repeated-measures structure of the

data, and plots each participant’s response time in the 50-ms and 75-ms conditions relative to

their response time in the relevant 25-ms condition. Here we again see null or limited effects

of tone duration, except in the case of the maximum-duration condition (20 tones each of

length 75 ms), where reaction times seem higher than in the corresponding 25-ms and 50-ms

conditions. We tested the reliability of this effect by computing each participant’s difference

in mean response time between the 25-ms and 75-ms conditions for the 20-tone cycles, and

subtracting the analogous difference in response times for the 10-tone cycles, in other words:

{RT(75 ms, 20 tones) − RT(25 ms, 20 tones)} − {RT(75 ms, 10 tones) − RT (25 ms, 10

tones)}

This number summarizes the extent to which increasing tone duration has a stronger

effect on reaction times for cycles containing more tones. Using the bias-corrected and

accelerated bootstrap (DiCiccio & Efron, 1996), the 95% confidence interval for this

parameter was found to be [2.08, 5.93]. The lack of overlap with zero indicates that the

effect was fairly reliable: increasing tone duration from 25-ms and 75-ms had a stronger

negative effect on reaction times for 20-tone cycles than for 10-tone cycles.

To summarize, then: the behavioral data indicate that performance in this
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regularity-detection task was primarily constrained by the number of tones in the repeating

cycles, rather than their duration. However, the data do suggest a subtle negative effect of

tone duration which may manifest for cycles containing large numbers of tones.

We now consider how these effects may be reproduced by incorporating memory effects

into the PPM model. Instead of the decay kernel solely operating as a function of time, as in

Experiments 1 and 2, it must now account for the number of tones that have been observed

by the listener. Various such decay kernels are possible. Here we decided to base our decay

kernel on the following psychological ideas, inspired by previous research into echoic memory

(Atkinson & Shiffrin, 1968; Nees, 2016; Watson, 2016):

1. Echoic memory operates as a continuously updating buffer that stores recent auditory

information.

2. While a memory remains in the buffer, it is represented with high fidelity, and is

therefore a reliable source of information for regularity detection mechanisms.

3. The buffer has a limited temporal and informational capacity. Memories will remain in

the buffer either until a certain time period has elapsed, or until a certain number of

subsequent events has been observed.

4. Once a memory leaves the buffer, it is represented in a secondary memory store.

5. Observations in this secondary memory store contribute less strongly to auditory

pattern detection, and gradually decay in salience over time, as in Experiments 1 and 2.

These principles, formalized computationally and applied to the continuous tone

sequences from the behavioral experiment, result in the decay kernels described in Figure 6.

In each case the buffer is limited to a capacity of 15 tones, which corresponds to a time

duration of 0.375 s for 25-ms tones, 0.75 s for 50-ms tones, and 1.125 s for 75-ms tones.

While the n-gram observation remains within this buffer, its weight is w0 = 1.0; once the

memory exits the buffer its weight drops to w1 = 0.6, and thereafter decays exponentially to

w∞ = 0 with a half life of t0.5 = 3.5 s. The precise parameters of this decay kernel come from
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Figure 5 . Behavioral results for Experiment 3. A) Participant d-prime scores by condition,

as summarized by violin plots and Tukey box plots. B) Participant mean response times by

condition, as summarized by violin plots and Tukey box plots. C) As B, except benchmarking

response times against the 25 ms conditions.
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manual optimization to the behavioral data.
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Figure 6 . Decay kernels employed in Experiment 3. The temporal duration of the buffer

corresponds to the buffer’s informational capacity (15 tones) multiplied by the tone duration.

Weight decay by itself is not sufficient to cause memory loss, because PPM computes

its predictions using ratios of event counts, which are preserved under multiplicative weight

decay. We therefore introduce stochastic noise to the memory retrieval component of the

PPM model, meaning that weight decay reduces the signal-to-noise ratio, and thereby

gradually eliminates the memory trace of the original observation. In our optimized model

this noise corresponds to a Gaussian with standard deviation σε = 0.8.

Applied to an individual trial, the model returns the information content for each tone

in the sequence, corresponding to the surprisingness of that tone in the context of the prior

portion of the sequence (Figure 7). Following Barascud et al. (2016), we suppose that the

listener identifies the transition from random to regular tone patterns by detecting the

ensuing drop in information content. We model this process using a non-parametric

change-detection algorithm that sequentially applies the Mann-Whitney test to identify

changes in a time series’ location while controlling the false positive rate to 1 in 10,000
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observations (Ross, Tasoulis, & Adams, 2011).
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Figure 7 . Example analysis of a single trial. The three panels plot each tone’s frequency,

change-point statistic, and information content respectively. “Phase change” denotes the

point at which the pattern changes from random tones to a repeating pattern of length 10.

This repetition starts to become discernible after 10 tones (“First repetition”), at which

point the sequence becomes fully deterministic. Correspondingly, information content (or

“surprise”) drops, and triggers change-point detection at “Detection of transition”.

All stimuli were statistically independent from one another, and so responses should

not be materially affected by experiences on previous trials. For simplicity and

computational efficiency, we therefore left the PPM-Decay model’s long-term learning weight
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(w∞) fixed at zero, and reset the model’s memory store between each trial.

We analyzed 6 different PPM-Decay configurations, aiming to understand how the

model’s different features contribute to task performance, and which are unnecessary for

explaining the perceptual data. Specifically, we built the proposed model step-by-step from

the original PPM model, first adding exponential decay, then adding retrieval noise, then

adding the memory buffer. We tested three versions of the final model with different buffer

capacities: 5 items, 10 items, and 15 items. We manually optimized each model

configuration to align mean participant response times to mean model response times,

producing the parameter sets listed in Table 1.

Original PPM. As expected, the original PPM model proved not to be sensitive to

tone length or to alphabet size (Figure 8A). Furthermore, the model systematically

outperformed the participants, with an average reaction time of 6.23 tones compared to the

participants’ mean reaction time of 12.90.

Adding exponential decay. Here we add time-based exponential decay, as in

Experiments 1 and 2. One might expect this feature to induce a negative relationship

between pattern-detection performance and cycle length. We do observe such an effect, but

only with a very fast memory-decay rate (half life = 0.26 s; Figure 8A). This robustness of

models without retrieval noise to memory decay can be rationalized by observing that, even

as absolute weights of memory traces decrease with memory decay, the important

information, namely the ratios of these weights, remains more or less preserved, and so the

pattern-detection algorithm continues to perform well. Further to this, the model is

problematic in that it substantially outperforms participants in the 10-tone conditions, and

exhibits no clear discontinuity in performance between the 10-tone conditions and the

20-tone conditions.

Adding retrieval noise. Retrieval noise increases the model’s sensitivity to memory
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decay, and means that the drop in performance from the shortest cycles (10 tones, 25

ms/tone) to the longest cycles (20 tones, 75 ms/tone) can be replicated with a more

plausible half-life of 1.65 s (Figure 8A). However, the model still fails to capture the

discontinuity in reaction times between 10-tone and 20-tone conditions, especially with tone

lengths of 25 and 50 ms.

Adding the memory buffer. We anticipated that a buffer with an informational

capacity limit between 10 tones and 20 tones should be able to replicate the behavioral

discontinuity between 10-tone and 20-tone conditions. The 10-tone cycles should largely fit

in such a buffer, resulting in near-ceiling performance in the 10-tone conditions; conversely,

the 20-tone cycles should be too big for the buffer, resulting in performance deterioration.

Figure 8B shows that such an effect does indeed take place with a 15-tone buffer. In

contrast, shorter buffers (5 tones, 10 tones) do not elicit this clear discontinuity between

10-tone and 20-tone conditions. The resulting model also replicates the insensitivity to tone

duration in the 10-tone conditions, and the adverse effect of increasing tone duration to 75

ms in the 20-tone condition that was hinted at in the behavioral data. It therefore seems

clear that a PPM-Decay model with a finite-capacity buffer can explain the main patterns of

reaction times observed in this experiment, in contrast to the original PPM model.

Discussion

PPM is a powerful sequence prediction algorithm that has proved well-suited to

modeling the cognitive processing of auditory sequences (Agres et al., 2018; Barascud et al.,

2016; Egermann et al., 2013; Pearce & Müllensiefen, 2017; Pearce et al., 2010; Pearce &

Wiggins, 2006). In these contexts, PPM has traditionally been interpreted as an ideal

observer, simulating an (approximately) optimal strategy for predicting upcoming auditory

events on the basis of learned statistics. This modeling strategy has proved very useful for

elucidating the role of statistical cognition in auditory perception (Barascud et al., 2016;
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Figure 8 . Modeling participant data (mean response times, white circles) with different

model configurations (mean simulated response times, solid bars). Error bars denote 95%

confidence intervals computed using the central limit theorem. A) Progressively adding

exponential weight decay and retrieval noise to the original PPM model. B) Progressively

adding longer buffers to the PPM-Decay model.

Pearce, 2018).

Here we introduced a customizable decay kernel to PPM, which downweights historic

observations as time passes and subsequent observations are registered in memory. This
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Table 1

Optimized model parameters for Experiment 3.

Model mmax tb nb w0 w1 t0.5 w∞ σε

Original PPM 4 0 0 0.0 1.00 ∞ 0 0.00
+ Exponential decay 4 0 0 0.0 1.00 0.26 0 0.00
+ Retrieval noise 4 0 0 0.0 0.65 1.65 0 0.50
+ 5-item buffer 4 ∞ 5 2.0 0.70 1.45 0 0.50
+ 10-item buffer 4 ∞ 10 1.5 0.40 1.90 0 0.35
+ 15-item buffer 4 ∞ 15 1.0 0.60 3.50 0 0.80

Note. Bold denotes parameters manipulated from the previous step. mmax

is the model’s Markov order bound. tb is the temporal buffer capacity, nb

the itemwise buffer capacity. w0 is the buffer weight, w1 is the initial

post-buffer weight, and w∞ is the asymptotic post-buffer weight. σε is the

scale parameter for the retrieval noise distribution.

decay kernel is useful for two primary reasons. First, it makes PPM a better approximation

to an ideal observer when the underlying sequence statistics change over time, as is common

in many real-world listening contexts. Second, it allows the model to capture the multi-stage

nature of human auditory memory, with its corresponding capacity limitations and temporal

profiles.

We applied this new PPM-Decay model in three experiments. The first experiment

analyzed sequences generated from a statistical model whose underlying parameters evolved

over time, and verified that PPM-Decay better approximates an ideal observer than PPM

when applied to such sequences. The second experiment simulated a musically naive listener

who gradually learns to predict chord progressions through exposure to compositions from

three musical styles: popular music, jazz music, and chorale harmonizations by J. S. Bach.

Again, we found that PPM-Decay better approximated an ideal observer than the original

PPM model. The ideal model configuration incorporated a recency effect, reflecting how the

underlying statistics of the chord progressions differ between compositions, and evolve during
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the course of individual compositions. However, the model’s decay kernel also incorporated a

positive asymptote, allowing the model to develop long-term knowledge of certain statistical

regularities that are shared between different compositions from the same musical style.

The third experiment revisited an auditory detection paradigm from Barascud et al.

(2016), where participants had to detect transitions between random and regular sections in

tone sequences that varied in alphabet size and tone length. Barascud et al. found tentative

evidence for auditory pattern detection being constrained by the capacity limitations of

echoic memory, but were unable to determine whether these results reflected temporal

limitations (e.g. echoic memory only spans two seconds) or informational limitations

(e.g. echoic memory can only hold up to 15 tones). We conducted a new behavioral

experiment using stimuli designed to distinguish these two possibilities, by varying tone

duration and the number of tones in the regular patterns independently. The resulting data

implied that human performance stayed constant as long as the relevant auditory input

could fit within a buffer of limited itemwise capacity. We formalized this explanation

computationally with our PPM-Decay model, and showed that the model could successfully

reproduce the observed behavioral data, in contrast to simpler model variants such as the

original PPM model (Barascud et al., 2016; Bunton, 1997; Pearce, 2005) or a PPM model

with solely exponential memory decay.

We anticipate that this PPM-Decay model should prove useful for other applications in

auditory modeling. The combination of the statistical power of PPM and the flexible decay

kernel makes the model well-suited to simulating online auditory statistical learning under

memory constraints and in changing statistical environments. A particularly relevant

application domain is music cognition, which has already made significant use of PPM

models without decay kernels (Di Giorgi, Dixon, Zanoni, & Sarti, 2017; Egermann et al.,

2013; Harrison & Pearce, 2018; Pearce & Müllensiefen, 2017; Pearce et al., 2010; Pearce &

Wiggins, 2006). Incorporating decay kernels into these models should be useful for capturing
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how recency effects and memory limitations influence the probabilistic processing of musical

structure. However, the PPM-Decay algorithm itself is relatively domain-agnostic, and

should be applicable to any sequential domain where observations can be approximated as

discrete symbols drawn from a finite alphabet. We anticipate that our publicly available R

package “ppm” should prove useful for supporting such work

(https://github.com/pmcharrison/ppm).

An important avenue for future work is to improve our understanding of the ideal

decay kernels for different modeling applications. When optimizing a decay kernel for

predictive performance on a corpus of sequences, we learn about the statistical structure of

that corpus, specifically the sense in which historical events of different vintages contribute

useful information about upcoming events. Such analyses are particularly relevant to

computational musicology, where a common goal is to quantify statistical processes

underlying music composition. When optimizing a decay kernel to reproduce human

performance, we learn about the predictive strategies actually used by humans, and the

sense in which they may be constrained by cognitive limitations. The optimized decay kernel

from Experiment 3 provides an initial model that seems to account well for the behavioral

data collected here, but further empirical work is required to constrain the details of this

model and to establish its generalizability to different experimental contexts.

A primary limitation of the PPM and PPM-Decay models is that they operate over

discrete representations, and do not model the process by which these discrete

representations are extracted from the auditory signal. This simplification is convenient

when modeling systems such as music and language, which are often well-suited to symbolic

expression, but it is problematic when modeling continuous stimulus spaces. One solution to

this problem is to adopt continuous-input models (e.g. Skerritt-Davis & Elhilali, 2018, 2019),

where discretization plays no part; however, such models typically struggle to capture the

kinds of structural dependencies common in music and language, and do not reflect the
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apparent importance of categorical perception in human auditory perception (e.g. Repp,

1984). One alternative way forward might be to prefix the PPM-Decay model with an

unsupervized discretization algorithm, such as k-means clustering (Steinley, 2006).

The PPM-Decay algorithm can become computationally expensive with long input

sequences. In the naive implementation, the algorithm must store an explicit record of each

n-gram observation as it occurs, meaning that the time and space complexity for generating

a predictive distribution is linear in the length of the training sequence. However, particular

families of decay kernels can support more efficient implementations. For example, a decay

kernel comprising the sum of N exponential functions can be implemented as a set of N

counters for each n-gram, each of which is incremented upon observing the respective

n-gram, and each of which is decremented by a fixed ratio at each timestep. This

implementation has bounded time and space complexity as regards the length of the training

sequence. Such approaches should be useful for speeding the application of the PPM-Decay

model to large datasets, and for improving its biological plausibility.

The PPM and PPM-Decay models assume that listeners process auditory stimuli by

computing transition probabilities from memories of n-gram observations. While n-gram

models seem to provide a good account of auditory processing (Barascud et al., 2016; Pearce,

2018), they may not be sufficient to explain all aspects of auditory learning. For example,

n-gram models struggle to explain how listeners can (albeit with some difficulty) learn

non-adjacent dependencies (Endress, 2010; Wilson et al., 2018) or recursive grammatical

structures (Rohrmeier & Cross, 2009; Rohrmeier et al., 2012). Some of these phenomena

might be explained by incorporating further modifications to the memory model; for

example, non-adjacent dependencies could be learned by combining n-gram modeling with

the abstraction method of Thiessen & Pavlik (2013). Other phenomena, such as the

acquisition of recursive grammars, might only be explained by alternative modeling

approaches. This remains a challenge for future research.
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Several alternative cognitive models of sequence prediction have explicitly Bayesian

formulations (e.g. Skerritt-Davis & Elhilali, 2018; Bröker et al., 2018; Meyniel et al., 2016).

This approach is appealing because it formally motivates the predictive algorithm from a set

of assumptions about the underlying sequence statistics. Such approaches can also be

applied to mixed-order Markov models such as PPM, but typically they come with

substantially increased computational complexity (Teh, 2006), which may prove impractical

for many cognitive modeling applications. Nonetheless, it would be worth examining how the

present approaches might be motivated as computationally efficient approximations to

Bayes-optimal models.

Methods

Model

Our PPM-Decay model embodies a predictive processing account of auditory regularity

detection. It supposes that listeners acquire an internal model of incoming sounds through

automatic processes of statistical learning, and use this model to generate prospective

predictions for upcoming auditory events. The model derives from the PPM algorithm

(Bunton, 1997; Cleary & Witten, 1984), but adds three psychological principles:

a) The memory salience of a given observation decays as a function of the timepoints of

subsequently observed events and the timepoint of memory retrieval.

b) There exists some noise, or uncertainty, in memory retrieval.

c) A limited-capacity memory buffer constrains learning and prediction. Contiguous

events (n-grams) must fit into this buffer to be internalized or to contribute to

prediction generation.

Each of these three features can be enabled or disabled in isolation. In ideal-observer

analyses, such as Experiments 1 and 2, it often makes sense to omit features b) and c),
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becaues they correspond to cognitive constraints that typically impair prediction. Here we

therefore omit these two features for the ideal-observer analyses (Experiments 1 and 2), but

retain them for the behavioral analyses in Experiment 3.

Many variants of PPM exist in the literature (Bunton, 1997; Cleary & Teahan, 1997;

Cleary & Witten, 1984; Moffat, 1990). Our formulation incorporates the interpolated

smoothing technique of Bunton (1997), but avoids techniques such as exclusion, update

exclusion, and state selection, because they do not generalize naturally to decay-based

models.

Domain. The model assumes that the auditory input can be represented as a

sequence of symbols drawn from a discrete alphabet; the cognitive processes involved in

developing this discrete representation are not addressed here. Let A denote the discrete

alphabet, let () denote an empty sequence, and let eN1 = (e1, e1, . . . , eN ) denote a sequence of

N symbols, where ei ∈ A is the ith symbol in the sequence, and eji is defined as

eji =


(ei, ei+1, . . . , ej) if i ≤ j,

() otherwise.

We suppose that this sequence is presented over time, and denote the timepoint of the ith

symbol as τi.

Now suppose that EN
1 is a random variable corresponding to a sequence of length N .

We consider an observer predicting each symbol of En
1 based on the previously observed

symbols. This corresponds to the probability distribution P (Ei = ei | Ei−1
1 = ei−1

1 ), which we

will abbreviate as P (ei | ei−1
1 ). The model is tasked with estimating this conditional

probability distribution.
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Learning. The model learns by counting occurrences of different sequences of length

n termed n-grams (n ∈ N+), where n is termed the n-gram order. As in PPM, the model

counts n-grams for all n ≤ nmax (nmax ∈ N+), where nmax is the n-gram order bound. A

three-symbol sequence (e1, e2, e3) contains six n-grams: (e1), (e2), (e3), (e1, e2), (e2, e3), and

(e1, e2, e3).

We suppose that n-grams are extracted from a finite-capacity buffer (Figure 9).

Successive symbols enter and leave this buffer in a first-in first-out arrangement, so that the

buffer represents a sliding window over the input sequence. The buffer has two capacity

limitations: itemwise capacity and temporal capacity. The itemwise capacity, nb, determines

the maximum number of symbols stored by the buffer; the temporal capacity, tb, determines

the maximum amount of time that a given symbol can remain in the buffer before expiry.

Generally speaking, itemwise capacity will be the limiting factor at fast presentation rates,

whereas temporal capacity will be the limiting factor at slow presentation rates. As n-grams

may only be extracted if they fit completely within the buffer, these capacities bound the

order of extracted n-grams. Correspondingly, we constrain nmax (the n-gram order bound)

not to exceed nb (the itemwise buffer capacity).

In PPM, n-gram observations are recorded by incrementing a counter. Our

PPM-Decay model also stores the ordinal position within the input sequence when the

observation occurred; this is necessary for simulating the temporal dynamics of auditory

memory. For each n-gram x, we define count(x) as the total number of observations of x,

and pos(x) as a list of ordinal positions in the input sequence when these observations

occurred, defined with respect to the final symbol in the n-gram. pos(x) is initialized as an

empty list; each time a new n-gram x is observed, the respective ordinal position is

appended to the list. count(x) is then represented implicitly as the length of pos(x).

The input sequence is processed one symbol at a time, from beginning to end.

Observing the ith symbol, ei, yields up to nmax n-gram observations, corresponding to all
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Figure 9 . Schematic figure illustrating the accumulation of observations within a memory

buffer with an itemwise capacity of 5. Weights for the n-gram “AB” are displayed as a

function of time, assuming a buffer weight (w0) of 1.5, an initial post-buffer weight (w1) of 1,

a half life (t0.5) of 1 second, and an asymptotic post-buffer weight (w∞) of 0.
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Table 2

n-grams learned from training

on the sequence (a, b, a).

x count(x) pos(x)
(a) 2 1, 3
(b) 1 2
(a, b) 1 2
(b, a) 1 3
(a, b, a) 1 3

n-grams in the buffer that terminate with the most recent symbol:

{eii−n+1 : n ≤ min(i, nmax)}. If the buffer component of the model is enabled, an n-gram

observation will only be recorded if it fits completely within the itemwise and temporal

capacities of the buffer; the former constraint is ensured by the constraint that nmax ≤ nb,

but the latter must be checked by comparing the current timepoint (corresponding to the

final symbol in the n-gram) with the timepoint of the first symbol of the n-gram. If the

current ordinal position is written posend, and the n-gram length is written size(x), then the

necessary and sufficient condition for n-gram storage is

timeend − timestart ≤ tb

where

timeend = τposend

timestart = τposstart

posstart = posend − size(x) + 1,

τi is the ith timepoint in the input sequence, and tb is the temporal buffer capacity, as before.

Table 2 describes the information potentially learned from training on the sequence (a, b, a).
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Memory decay. In the original PPM algorithm, the influence of a given n-gram

observation is not affected by the passage of time or the encoding of subsequent observations.

This contrasts with the way in which human observers preferentially weight recent

observations over historic observations (Bröker et al., 2018; Harrison, 2011; Mattar et al.,

2016; Meyniel et al., 2016; O’Reilly, 2013; Squires et al., 1976; Yu & Cohen, 2008). This

inability to capture recency effects limits the validity of PPM as a cognitive model.

Here we address this problem. We suppose that the influence, or weight, of a given

n-gram observation varies as a function both of the current timepoint and the timepoints of

the symbols that have since been observed. This weight decay function represents the

following hypotheses about auditory memory:

a) Each n-gram observation begins in the memory buffer (Figure 9). Within this buffer,

observations do not experience weight decay.

b) Upon leaving the buffer, observations enter a secondary memory store. This transition

is accompanied by an immediate drop in weight.

c) While in the secondary memory store, observations experience continuous weight decay

over time, potentially to a non-zero asymptote.

These hypotheses must be considered tentative, given the scarcity of empirical evidence

directly relating memory constraints to auditory prediction. However, the notion of a

short-lived memory buffer is consistent with pre-existing concepts of auditory sensory

memory (Atkinson & Shiffrin, 1968; Nees, 2016; Neisser, 1967), and the continuous-decay

phenomenon is consistent with well-established recency effects in statistical learning (Bröker

et al., 2018; Harrison, 2011; Mattar et al., 2016; Meyniel et al., 2016; O’Reilly, 2013; Squires

et al., 1976; Yu & Cohen, 2008).

We formalize these ideas as follows. For readability, we write pos(x, i) for the ith

element of pos(x), corresponding to the ordinal position of the ith observation of n-gram x
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within the input sequence, defined with respect to the final symbol of the n-gram. Similarly,

we write time(x, i) as an abbreviation of τpos(x,i), the timepoint of the ith observation of

n-gram x. We then define w(x, i, t) as the weight for the ith observation of n-gram x for an

observer situated at time t:

w(x, i, t) =


w0 if t ≤ timeexpire(x, i),

w∞ + (w1 − w∞)f (t− timeexpire(x, i)) otherwise.

Here w0 is the buffer weight, w1 is the initial post-buffer weight, and w∞ is the asymptotic

post-buffer weight (w0 ≥ w1 ≥ w∞ ≥ 0). The function f defines an exponential decay with

half-life equal to t0.5, with t0.5 > 0:

f(t) = exp(−λt)

λ = log(2)/t0.5.

timeexpire(x, i) denotes the timepoint at which the ith observation of n-gram x expires from

the buffer, computed as the earliest point when either the temporal capacity or the itemwise

capacity expires. The temporal capacity expires when tb seconds have elapsed since the first

symbol in the n-gram, whereas the itemwise capacity expires when nb symbols have been

observed since the first symbol in the n-gram:
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timeexpire(x, i) = min (timetemporal expiry(x, i), timeitemwise expiry(x, i))

timetemporal expiry(x, i) = timebegin(x, i) + tb

timebegin(x, i) = τposbegin(x,i)

posbegin(x, i) = pos(x, i)− size(x) + 1

timeitemwise expiry(x, i) =


∞ if positemwise expiry(x, i) > N,

τpositemwise expiry(x,i) otherwise,

positemwise expiry(x, i) = posbegin(x, i) + nb.

An illustrative memory-decay profile is shown in Figure 10.
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Figure 10 . Weight decay for an n-gram of length one plotted as a function of relative observer

position, assuming that new symbols continue to be presented every 0.05 seconds. Model

parameters are set to tb = 2, nb = 15, w0 = 1.0, t0.5 = 3.5, w1 = 0.6, and w∞ = 0, as

optimized in Experiment 3.

Memory traces accumulate over repeated observations of the same n-gram. We define
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W (x, t), the accumulated weight for an n-gram x, as

W (x, t) =
∑

i:1≤i≤count(x)
w(x, i, t).

As currently specified, memory decay does not necessarily cause forgetting, because the

same information may be preserved in the ratios of n-gram weights even as the absolute

values of the weights shrink. For example, consider a pair of n-grams AB and AC with

weights 4 and 1 respectively, both undergoing exponential decay to an asymptotic weight of

0. From these n-gram weights, the model can estimate the probability that B follows A as

p(B | A) = 4/(4 + 1) = 0.8. After one half-life, the new counts are 2 and 0.5 respectively, but

the maximum-likelihood estimate remains unchanged: p(B | A) = 2/(2 + 0.5) = 0.8.

A better account of forgetting can be achieved by supposing that memory traces must

compete with noise factors introduced by imperfections in auditory memory; in this case,

shrinking the absolute values of n-gram weights decreases their signal-to-noise ratio and

hence induces forgetting. Here we model imperfections in memory retrieval by adding

truncated Gaussian noise to the retrieved weights:

W ∗(x, t) = W (x, t) + max (0, ε) (1)

where W ∗(x, t) is the retrieved weight of n-gram x at time t, and ε ∼ N(0, σ2
ε ) represents

Gaussian noise uncorrelated across n-grams or timepoints. Setting σ2
ε to zero disables the

noise component of the model.

Prediction. Traditionally, a maximum-likelihood n-gram model estimates the

probability of symbol ei given context ei−1
1 by taking all n-grams beginning with ei−1

i−n+1 and

finding the proportion that continued with ei. For n ≤ i:
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P (ei | ei−1
1 ) ≈ P̂n(ei | ei−1

1 ) =


1/ |A| Cn

(
ei−1

1

)
= 0,

c
(
eii−n+1

)
/Cn

(
ei−1

1

)
otherwise.

Cn
(
ei−1

1

)
=
∑
x∈A

c
(
ei−1
i−n+1 :: x

)

where P̂n denotes an n-gram probability estimator of order n, c(eji ) is the number of times

n-gram c(eji ) occurred in the training set, and eji :: x denotes the concatenation of sequence

eji and symbol x. The n-gram model predicts from the previous n− 1 symbols, and therefore

constitutes an (n− 1)th-order Markov model. Note that the estimator defaults to a uniform

distribution if Cn
(
ei−1

1

)
= 0, when the context has never been seen before. Note also that

the predictive context of a 1-gram model is the empty sequence ei−1
i = ().

To incorporate memory decay into a maximum-likelihood n-gram model, we replace

the count function c with the retrieval weight function W ∗. For n ≤ i:

P (ei | ei−1
1 ) ≈ P̂n(ei | ei−1

1 ) =


1/ |A| Tn

(
ei−1

1

)
= 0,

W ∗
(
eii−n+1, time(ei)

)
/Tn

(
ei−1

1

)
otherwise.

Tn
(
ei−1

1

)
=
∑
x∈A

W ∗
(
ei−1
i−n+1 :: x, time(ei)

)

This decay-based model degenerates to the original maximum-likelihood model when

w0 = 1, tb →∞, nb →∞, σε = 0 (i.e. an infinite-length memory buffer with unit weight and

no retrieval noise).

High-order n-gram models take into account more context when generating their

predictions, and are hence capable of greater predictive power; however, this comes at the

expense of greater tendency to overfit to training data. Conversely, low-order models are
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more robust to overfitting, but this comes at the expense of lower structural specificity.

Smoothing techniques combine the benefits of both high-order and low-order models by

merging n-gram models of different orders, with model weights varying according to the

amount of training data. Here we use interpolated smoothing as introduced by Bunton

(1996, 1997). For n ≤ i, the unnormalized interpolated n-gram estimator is recursively

defined as a weighted sum of the nth-order maximum-likelihood estimator and the

(n− 1)th-order interpolated estimator:

P̂ ∗n(ei | ei−1
1 ) =


1/ (|A|+ 1) if n = 0,

P̂n
(
ei | ei−1

1

)
an
(
ei−1

1

)
+
(
1− an

(
ei−1

1

))
P̂ ∗n−1

(
ei | ei−1

1

)
otherwise,

(2)

where P̂ ∗n is the nth-order unnormalized interpolated n-gram estimator, P̂n is the nth-order

maximum-likelihood estimator, |A| is the alphabet size, and an is a function of the context

sequence that determines how much weight to assign to P̂n, the maximum-likelihood n-gram

estimator of order n.

The unnormalized interpolated estimator defines an improper probability distribution

that does not necessarily sum to 1. We therefore define P̂ ∗∗n as the normalized interpolated

estimator:

P̂ ∗∗n (ei | ei−1
1 ) = P̂ ∗n(ei | ei−1

1 )∑
x∈A P̂ ∗n(x | ei−1

1 )
for n ≤ i.

Note that the need for normalization can alternatively be avoided by redefining

P̂ ∗n(ei | ei−1
1 ) = 1/ |A| for n = 0 in Equation (2), meaning that the interpolated smoothing

terminates with a proper probability distribution. However, we keep the original definition to

preserve equivalence with Bunton (1997) and Pearce (2005).
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The weighting function an corresponds to the so-called “escape mechanism” of the

original PPM algorithm. Pearce & Wiggins (2004) review five different escape mechanisms,

termed “A” (Cleary & Witten, 1984), “B” (Cleary & Witten, 1984), “C” (Moffat, 1990), “D”

(Howard, 1993), and “AX” (Moffat, Neal, & Witten, 1998) (see also Bunton, 1996, 1997),

each corresponding to different weighting functions an. Of these, “C” tends to perform the

best in data compression benchmarks (Pearce & Wiggins, 2004). However, methods “B”,

“C”, “D”, and “AX” do not generalize naturally to decay-based models; in particular, it is

difficult to ensure that the influence of an observation is a continuous function of its

retrieved weight w∗. We therefore adopt mechanism “A”.

In its original formulation, mechanism “A” gives the higher-order model a weight of

an = 1− 1/(1 + Tn), where Tn is the number of times the predictive context has been seen

before (which can be interpreted as the observer’s familiarity with the preceding sequence of

n− 1 tokens). When the context has never been seen before, Tn = 0 and an = 0, and the

estimator relies fully on the lower-order models; as Tn →∞, an → 1, and the estimator

relies fully on the highest-order model. In the original PPM algorithm, the number of times

that the predictive context has been seen before is equal to the sum of the weights (or

counts) for each possible continuation:

Tn
(
ei−1

1

)
=
∑
x∈A

W ∗
(
ei−1
i−n+1 :: x, time(ei)

)
.

Introducing memory-decay reduces the weights for these prior observations, decreasing the

model’s effective experience, and preferentially weighting lower-order models, as might be

expected. However, retrieval noise is problematic, because it positively biases the retrieved

weights (see Equation (1)), causing the algorithm to overestimate its familiarity with its

predictive context, and to overweight high-order predictive contexts as a result. We

compensate for this by subtracting the expected value of the retrieval noise’s contribution to

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.09.900266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.900266
http://creativecommons.org/licenses/by/4.0/


AUDITORY PREDICTION WITH MEMORY DECAY 45

Figure 11 . Illustration of the interpolated smoothing mechanism, which blends together

maximum-likelihood n-gram models of different orders. Here the Markov order bound is two,

the predictive context is “abracadabra”, and the task is to predict the next symbol. Columns

are identified by Markov order; rows are organized into weight distributions, maximum-

likelihood distributions, and interpolated distributions. Maximum-likelihood distributions

are created by normalizing the corresponding weight distributions. Interpolated distributions

are created by recursively combining the current maximum-likelihood distribution with the

next-lowest-order interpolated distribution. The labelled arrows give the weight of each

distribution, as computed using escape method “A”. The “Order = −1” column identifies the

termination of the interpolated smoothing, and does not literally mean a Markov order of −1.
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Tn, which can be computed from standard results for the truncated normal distribution as

σε
√

2
π
, and truncating at zero:

T ∗n
(
ei−1

1

)
= max

0, Tn
(
ei−1

1

)
− σε

√
2
π

 .

Putting this together, we have (for i ≥ n):

an
(
ei−1

1

)
= 1− 1/

(
1 + T ∗n

(
ei−1

1

))
T ∗n
(
ei−1

1

)
= max

0, Tn
(
ei−1

1

)
− σε

√
2
π


Tn
(
ei−1

1

)
=
∑
x∈A

W ∗
(
ei−1
i−n+1 :: x, time(ei)

)
.

For its final output, the model selects the maximum-order available normalized

interpolated estimator. The available orders are constrained by three factors:

a) The n-gram order bound: the model cannot predict using n-grams larger than nmax.

b) The sequence: the predictive context must fit within the observed sequence.

c) The buffer: the predictive context must fit within the buffer at the point when the

incoming symbol is observed.

Putting this together, the selected n-gram order for generating predictions from a context of

ei−1
1 becomes:

order
(
ei−1

1

)
= max{y ∈ {0, 1, . . . , nmax} : y ≤ i, τi − τi−y+1 ≤ tb}.

The final model output is then:
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P (ei | ei−1
1 ) ≈ P̂ ∗∗order(ei−1

1 )(ei | ei−1
1 ).

The n-gram order bound, nmax, constrains the length of n-grams that are learned by

the model. However, it is often more convenient to speak in terms of the model’s Markov

order, mmax, defined as the number of preceding symbols that contribute towards prediction

generation. A single n-gram model generates predictions with a Markov order of n− 1;

correspondingly, mmax = nmax − 1.

Figure 11 illustrates the interpolated smoothing mechanism. Here we imagine that a

model with a Markov order bound of two processes the sequence “abracadabra”, one letter at

a time, and then tries to predict the next symbol. The highest-order interpolated

distribution, at a Markov order of two, is created by averaging the order-2

maximum-likelihood distribution with the order-1 interpolated distribution, which is itself

created by averaging the order-1 maximum-likelihood distribution with the order-0

interpolated distribution. The resulting interpolated distribution combines information from

maximum-likelihood models at every order.

We have implemented the resulting model in a freely available R package, “ppm”, the

core of which is written in C++ for speed. With this package, it is possible to define a

PPM-Decay model customized by the eight hyperparameters summarized in Table 3. The

package also supports simpler versions of PPM-Decay, where (for example) the buffer

functionality is disabled but the exponential-decay functionality is preserved. The resulting

models can then be evaluated on arbitrary symbolic sequences. The package may be

accessed from its open-source repository at https://github.com/pmcharrison/ppm or its

permananent archive at https://doi.org/10.5281/zenodo.2620414.
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Table 3

Summary of PPM-Decay hyperparameters.

Symbol Name Description

mmax Markov order bound Maximum length of conditioning context

tb Temporal buffer capacity Time after which observation is expunged

from buffer

nb Itemwise buffer capacity Maximum number of symbols that can fit in

buffer

w0 Buffer weight Weight of n-gram while in buffer

t0.5 Half life Half life of the exponential-decay phase

w1 Initial post-buffer weight Weight of n-gram immediately after leaving

buffer

w∞ Asymptotic post-buffer

weight

Weight of n-gram as time tends to infinity

σε Retrieval noise Scale parameter for the retrieval noise

distribution

Musical corpora

Popular corpus. This corpus was derived from the McGill Billboard corpus of

Burgoyne (2011), a dataset of popular music sampled from the Billboard “Hot 100” charts

between 1958 and 1991. The sampling algorithm was designed such that the composition

dates should be approximately uniformly distributed between 1958 and 1991, and such that

composition popularity should be approximately uniformly distributed across the range of

possible chart positions (1–100). Having sampled 1,084 compositions with this algorithm,

Burgoyne (2011) had expert musicians transcribe the underlying chord sequences of these
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compositions. These transcriptions took a textual format, where each chord was represented

as a combination of a root pitch class (e.g. “Ab”) and a chord quality (e.g. “maj”). For

example, the following text represents the beginning of “Night Moves” by Bob Seger:

| Ab:maj | Ab:maj . . Gb:maj | Db:maj | Db:maj . . Gb:maj |

As is common in harmonic analyses, these transcriptions characterize chords in terms

of their constituent pitch classes. A pitch class is an equivalence class of pitches under octave

transposition; octave transposition means shifting a pitch by twelve semitones, which is

equivalent to multiplying (or dividing) its fundamental frequency by a power of two.

This “root + chord quality” representation is intuitive for performing musicians, but it

is problematic for cognitive modeling in that the chord root is a subjective music-theoretic

construct. We therefore translated these textual representations into sequences of pitch-class

chords, defined as the combination of a bass pitch class with a set of non-bass pitch classes

(see Harrison & Pearce, 2020 for details). We performed this translation using the chord

dictionary from the hrep software package (Harrison & Pearce, 2020,

https://doi.org/10.5281/zenodo.2545770).

Harmonic analyses often do not systematically differentiate between one long chord

and several repetitions of the same chord. In this and the following corpora we therefore

collapsed consecutive repetitions of the same chord into single chords, as well as omitting all

explicitly marked section repeats from the original transcriptions.

At the time of writing, only part of the Billboard corpus had been publicly released,

the remainder being retained for algorithm evaluation purposes. Here we used the 739

transcriptions available at the time of writing, having removed transcriptions corresponding

to duplicate compositions.

Figure 3A shows the resulting transcription for the first eight bars of “Night Moves”.
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The full corpus is available in the hcorp R package alongside the other two musical corpora

used in this paper (https://doi.org/10.5281/zenodo.2545754).

Jazz corpus. This corpus was derived from the iRb corpus of Broze & Shanahan

(2013), a dataset of lead sheets for jazz compositions as compiled from an Internet forum for

jazz musicians. Broze and Shanahan converted these lead sheets into a textual

representation format termed **jazz, which (similar to the McGill Billboard corpus)

expresses each chord as a combination of a root pitch class and a chord quality, alongside its

metrical duration expressed as a number. For example, the following text represents the

beginning of “Thanks for the Memory” by Leo Robin:

2G:min7

2C7

=

1F6

=

2F6

2F#o7

=

4G:min7

4C7

2F6

=

2F#o7

2G:min7

=

2Ao7

2B-6
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=

As with the popular music corpus, we translated these textual representations into

sequences of pitch-class chords using the chord dictionary from the hrep package (Harrison &

Pearce, 2020), and eliminated consecutive repetitions of the same chord. Figure 3B shows

the result for the first eight bars of “Thanks for the Memory”.

Bach chorale corpus. This corpus was derived from the “371 chorales” dataset

from the KernScores repository (Sapp, 2005). This dataset comprises four-part chorale

harmonizations by J. S. Bach, as collected by his son C. P. E. Bach and his student

Kirnberger, and eventually digitally encoded by Craig Sapp. The 150th chorale

harmonization is omitted from Sapp’s dataset as it is not in four parts, leaving 370 chorales

in total. This dataset uses the **kern representation scheme (Huron, 2002), designed to

convey the core semantic information of traditional Western music notation. For example,

the following text represents the first two bars of the chorale harmonization “Mit Fried und

Freud ich fahr dahin”:

4D 4F 4A 4d

=1 =1 =1 =1

4C# 4A 4e 4a

4D 4d 4f 4a

4E 4B 4e 4g

8F#L 8AL 8dL 4dd

8G#J 8BJ 8eJ .

=2 =2 =2 =2

4A 8cnXL 8eL 4ccnX

. 8dJ 8f#J .

4E 8eL 4g# 4b

. 8dJ . .
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4AA; 4c; 4e; 4a;

4E [4c 4g 4cc

=3 =3 =3 =3

We derived chord sequences from these **kern representations by applying the

harmonic analysis algorithm of Pardo & Birmingham (2002), which selects from a dictionary

of candidate chords using a template-matching procedure. Here we used an extended version

of this template dictionary, described in Table 4.

We computed one chord for each quarter-note beat, reflecting the standard harmonic

rhythm of the Bach chorale style, and collapsed consecutive repetitions of the same chord

into one chord, as before. Figure 3C shows the result for the first eight bars of the chorale

harmonization “Mit Fried und Freud ich fahr dahin”.

Behavioral experiment

Stimuli and procedure. Each stimulus comprised a sequence of tones, with each

tone gated on and off with 5-ms raised cosine ramps. Tone frequencies were drawn from a

pool of 20 values equally spaced on a logarithmic scale between 222 Hz and 2,000 Hz. Tone

length was always constant within a given trial and across trials in a block. Across blocks,

three different tone durations were used (25, 50 and 75 ms). Individual stimuli ranged in

length between 117 and 160 tones and in duration between 3,250 and 11,025 ms.

Four stimulus types were defined: “CONT”, “STEP”, “RAND”, and “RAND-REG”.

CONT and RAND trials contained no section change: CONT trials constituted one repeated

tone of a given frequency, and RAND trials constituted randomly sampled tones from the full

frequency pool, with the constraint that final tone counts were balanced by the end of the

stimulus. STEP and RAND-REG trials each contained exactly one section change, occurring

between 80 and 90 tones after sequence onset. Each section of a STEP trial comprised one
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Table 4

The dictionary of chord templates used in

constructing the Bach chorale corpus.

Pitch classes Label Weight
[0, 4, 7, 11] maj7 0.2
[0, 3, 7, 10] min7 0.2
[0, 4, 8] aug 0.02
[0, 7] no3 0.05
[0, 7, 10] min7no3 0.05
[0, 4, 7] maj 0.436
[0, 4, 7, 10] dom7 0.219
[0, 3, 7] min 0.194
[0, 3, 6, 9] dim7 0.044
[0, 3, 6, 10] hdim7 0.037
[0, 3, 6] dim 0.018

Note. Each row identifies a different template.

Each template comprises a set of pitch classes,

expressed relative to the chord root. Applied to

a collection of pitch classes within a harmonic

segment, Pardo and Birmingham’s (2002)

algorithm evaluates each candidate template

with the respect to each of the 12 possible

chord roots, and selects the template and root

combination that best reflect the pitch-class

content of the harmonic segment. Ties are

broken using the “weight” attribute; templates

with higher weights are given priority.
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repeated tone of a given frequency, with the section change constituting a change in

frequency. RAND-REG trials comprised an initial random section, constructed under the

same constraints as RAND trials, followed by a REG section constituting repeated iterations

of a sequence of tones sampled randomly from the frequency pool without replacement.

These repeating sequences comprised either 10 or 20 tones, depending on the block, with the

REG section always comprising at least three repeating cycles. All stimuli were generated

anew at each trial, and RAND and RAND-REG sequences occurred equiprobably.

The experimental session was delivered in 6 blocks, each containing 80 stimuli of a

given tone length and alphabet size (35 RAND-REG, 35 RAND, 5 STEP, and 5 CONT),

with the inter-stimulus interval jittered between 700 and 1100 ms, and with block duration

ranging between 5.7 and 17.4 minutes. The order of blocks was randomized across

participants. Before starting, participants were familiarized with the task with a short

training session comprising six short blocks of 12 trials each, representing the same

conditions as the main experiment. Stimuli were presented with the PsychToolBox in

MATLAB (9.2.0, R2017a) in an acoustically shielded room and at a comfortable listening

level selected by each listener.

Participants were encouraged to detect the transition as fast as possible.

Correspondingly, feedback about response accuracy and speed was delivered at the end of

each trial. This feedback consisted of a green circle if the response fell between the first and

the second cycle of the regularity, or before 400 ms from the change of tone in the STEP

condition; for slower RTs, an orange circle was displayed.

The RAND-REG trials were of primary interest for our analyses. We used the STEP

trials to estimate baseline response times, computed separately for each participant within

each block using correct responses only, and normalized the RAND-REG response times by

subtracting these baseline response times. We excluded all RAND-REG trials where the

participant responded incorrectly, and interpreted RAND and CONT trials as foils for the
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change-detection task.

Participants. We collected data from 25 paid participants (20 females; mean age

24.17, SD age = 3.17). Data from two participants were discarded due to overly slow

reaction times on the STEP condition (mean reaction time more than three standard

deviations from the mean). The research ethics committee of University College London

approved the study, and written informed consent was provided by each participant.

Preprocessing reaction time data. We discarded 530 trials where participants

responded incorrectly, and then normalized each participant’s reaction times by subtracting

the mean reaction time to all correctly answered STEP trials in the same block. We then

retained all RAND-REG trials where the normalized reaction times fell within two standard

deviations from the mean for a given combination of participant, tone duration, and cycle

length. This left 4,439 trials.

Modeling reaction time data

We modeled participants’ reaction times using the new PPM-Decay model presented in

Model. We modeled each trial separately, resetting the model’s memory after each trial.

We modeled participants’ change detection processes using a non-parametric

change-detection algorithm that sequentially applies the Mann-Whitney test to identify

changes in a time series’ location while controlling the false positive rate (Ross, 2015; Ross et

al., 2011). We used the algorithm as implemented in the “cpm” R package (Ross, 2015),

setting the desired false positive rate to one in 10,000, and the algorithm’s warm-up period

to 20 tones.

For comparison with the participant data, we computed representative model reaction

times for each condition by taking the mean reaction time over all trials where the model
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successfully detected a transition, excluding any trials where the model reported a transition

before the effective transition (this resulted in excluding 0.41% of trials). We used R and

C++ for our data analyses (R Core Team, 2017); our PPM-Decay implementation is

available at https://github.com/pmcharrison/ppm and

https://doi.org/10.5281/zenodo.2620414. Raw data, analysis code, and generated outputs

are archived at https://doi.org/10.5281/zenodo.3603058.
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