Silencing of *Mu* elements in maize involves distinct populations of small RNAs and

distinct patterns of DNA methylation

Diane Burgess¹, Hong Li², Meixia Zhao³, Sang Yeol Kim⁴ and Damon Lisch⁵

¹ Department of Plant and Microbial Biology, University of California Berkeley

² Monsanto company, Chesterfield, MO

³ Department of Biology, Miami University, Oxford, Ohio 45056

⁴ US Department of Agriculture, Agricultural Research Service (USDA-ARS), Urbana, IL

⁵ Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN

Corresponding author: Damon Lisch Associate Professor Purdue University Department of Botany and Plant Pathology 915 West State Street West Lafayette, IN 47907 Phone, office: (765) 496-0197 Phone, lab: (765) 496-0213 Email: dlisch@purdue.edu

Key words: maize, *Mutator*, transposon, epigenetic, methylation.

1 Summary

2	Transposable elements (TEs) are a ubiquitous feature of plant genomes. Because of the
3	threat they post to genome integrity, most TEs are epigenetically silenced. However, even
4	closely related plant species often have dramatically different populations of TEs,
5	suggesting periodic rounds of activity and silencing. Here we show that the process of de
6	novo methylation of an active element in maize involves two distinct pathways, one of
7	which is directly implicated in causing epigenetic silencing and one of which is the result
8	of that silencing.
9	
10	Abstract
11	Epigenetic changes involve changes in gene expression that can be heritably transmitted
12	to daughter cells in the absence of changes in DNA sequence. Epigenetics has been
13	implicated in phenomena as diverse as development, stress response and carcinogenesis.
14	A significant challenge facing those interested in investigating epigenetic phenomena is
15	determining causal relationships between DNA methylation, specific classes of small
16	RNAs and associated changes in gene expression. Because they are the primary targets
17	of epigenetic silencing in plants and, when active, are often targeted for de novo
18	silencing, transposable elements (TEs) represent a valuable source of information about
19	these relationships. We use a naturally occurring system in which a single TE can be
20	heritably silenced by a single derivative of that TE. By using this system it is possible to
21	unravel causal relationships between different size classes of small RNAs, patterns of
22	DNA methylation and heritable silencing. Here, we show that the long terminal inverted
23	repeats (TIRs) within Zea mays MuDR transposons are targeted by distinct classes of

- small RNAs during epigenetic silencing that are dependent on distinct silencing
- 25 pathways. Further, these small RNAs target distinct regions of the TIRs, resulting in
- 26 different patterns of cytosine methylation with different functional consequences with
- 27 respect to epigenetic silencing and heritability of that silencing.

28 Introduction

29	Plant genomes are host to large numbers of potentially deleterious endogenous
30	mutagens known as transposable elements (TEs). Due to the activity of a sophisticated
31	regulatory system, the vast majority of TEs are epigenetically silenced (SLOTKIN and
32	MARTIENSSEN 2007; LISCH 2009; LAW and JACOBSEN 2010; BUCHER et al. 2012;
33	SIGMAN and SLOTKIN 2016). This silencing is associated with DNA methylation and
34	modification of histones, and can be propagated over many generations (LISCH 2009;
35	SAZE and KAKUTANI 2011).
36	Because most transposons are silenced most of the time, much of what we know
37	about TE silencing involves maintenance, rather than initiation of silencing. However,
38	recent work suggests that aberrant RNAs can trigger silencing of otherwise active TEs
39	via a pathway that involves the production of <i>trans</i> -acting 21-22 nt small RNAs via the
40	activity components of both the Post Transcriptional Gene Silencing (PTGS) and the
41	Transcriptional Gene Silencing (TGS) pathways (LI et al. 2010; MARI-ORDONEZ et al.
42	2013; NUTHIKATTU et al. 2013; FULTZ et al. 2015; CUERDA-GIL and SLOTKIN 2016). The
43	available data suggests that Pol II transcripts from active TEs are recognized by small
44	RNAs that then act as triggers for RDR6/SGS3-mediated production of dsRNAs using
45	RNA directed RNA polymerase 6 (RDR6) in conjunction with Suppressor of Gene
46	Silencing 3 (SGS3). The resulting double-stranded RNA is then processed into 21-22 nt
47	trans-acting small RNAs by Dicer like 2 (DCL2) or Dicer like 4 (DCL4). These small
48	RNAs are then incorporated into a complex that includes Argonaute 6 (AGO6), which is
49	then competent to trigger de novo and heritable TGS using Pol V transcript arising from
50	the active elements as a scaffold (FULTZ et al. 2015; MCCUE et al. 2015; CUERDA-GIL

51 and SLOTKIN 2016; FULTZ and SLOTKIN 2017). The initial triggers for silencing are not 52 always well understood, but it appears that they may be small RNAs derived from the Pol 53 II transcript itself, or from an unlinked aberrant version of the TE (SLOTKIN *et al.* 2005; 54 MARI-ORDONEZ et al. 2013; CREASEY et al. 2014). 55 Following the initiation of silencing via *trans*-acting small RNAs, TE silencing 56 can be maintained by stable propagation of CG and CHG methylation, as well as 57 reinforcement via 24 nt small RNAs derived from Pol IV transcripts that are tethered to 58 the target gene via a Pol V transcript (MATZKE and MOSHER 2014; HOLOCH and MOAZED 59 2015). Maintenance of silencing in the germ line is enhanced via small RNA-mediated 60 transcriptional silencing in lineages adjacent to but distinct from the germinal lineage 61 (MARTINEZ and SLOTKIN 2012). This results in a recapitulation of the initial silencing 62 event, in which expression of otherwise inactive elements triggers production of trans-63 acting small RNAs that are then thought to be transported to the germinal lineage 64 (SLOTKIN et al. 2009; LI et al. 2010; CREASEY et al. 2014). The net effect of this process 65 is that active TEs can be recognized and silenced, and potentially active TEs can be kept 66 in a stably silenced state over long periods of time. 67 The initiation and maintenance of TE silencing is particularly well characterized 68 in the *Mutator* system in maize, primarily because the autonomous regulator of the 69 system can be heritably silenced by a *trans*-acting locus called *Mu killer (Muk)*, a 70 naturally occurring derivative of *MuDR* that expresses a long hairpin transcript (SLOTKIN 71 et al. 2003; SLOTKIN et al. 2005). This transposon system is composed of several related 72 classes of cut and paste elements, all of which share similar, ~200 bp terminal inverted 73 repeats (TIRs) but each of which carries unique internal sequences (LISCH 2002). The

74	system is regulated by autonomous MuDR elements, which carry two genes: mudrA,
75	which encodes the putative transposase MURA, and <i>mudrB</i> , which encodes the helper
76	protein MURB (Figure 1) (HERSHBERGER et al. 1995; LISCH et al. 1999). Expression of
77	mudrA and mudrB is convergent, with transcripts from each gene originating from within
78	the 220 bp TIRs adjacent to each gene and extending towards the middle of the element
79	(Figure 1). In our lines, activity of MuDR is monitored by a reporter element, a non-
80	autonomous Mul element located in the al -mum2 allele of the Al gene, whose function
81	is required for color expression in both the plant and the seed (CHOMET et al. 1991). In
82	the seed, Mul excises from al-mum2 somatically in the presence of a functional MuDR
83	element, giving rise to spotted kernels. In the absence of functional MuDR elements, the
84	kernels are uniformly pale.
85	Also present in this and likely all maize lines are MuDR derivatives called
86	hMuDR elements (RUDENKO and WALBOT 2001). Although nearly identical to portions
87	of MuDR, none of these elements are intact and they do not appear to contribute to
88	Mutator activity, either positively or negatively (LISCH and JIANG 2008). They are,
89	however, a source of nuclear localized transcript and are thus the likely source of the
90	abundant MuDR-similar small RNAs that have been observed in immature ears and
91	embryos (RUDENKO et al. 2003; WOODHOUSE et al. 2006; NOBUTA et al. 2008). Finally,
92	the reference maize genome contains a limited number of non-autonomous Mu elements
93	with high homology within their TIRs to known active Mu elements (LISCH 2015). The
94	available data suggests that both hMuDRs and non-autonomous elements are targeted by
95	24-26 nt small RNAs that are dependent on the RNA-directed DNA methylation pathway
96	(NOBUTA et al. 2008; HALE et al. 2009).

97	Active MuDR elements can be heritably and reliably silenced by genetically
98	combining them with Mu killer (Muk), whose transcript is identical to a portion of the
99	mudrA gene, as well as its associated TIR (TIRA) (Figure 1). In active MuDR elements,
100	TIRA is devoid of DNA methylation. In contrast, in plants carrying both Muk and
101	MuDR, TIRA sequences are densely methylated in all three sequence contexts, CG, CHG
102	and CHH (where H represents any nucleotide but guanine) (LI et al. 2010). This
103	methylation and the associated silencing of the MuDR element, can be heritably
104	propagated over many generations, even in the absence of Muk (SLOTKIN et al. 2003).
105	Interestingly, we have found that silencing of MuDR by Muk is sensitive to
106	changes in components of the trans-acting silencing (tasiRNA) pathway. Specifically, we
107	found that a transient loss of expression of Leafbladeless1 (lbl1), the maize homolog of
108	SGS3, in leaves that emerge during the transition from juvenile to adult growth is
109	associated with an alleviation of transcriptional silencing of the mudrA gene (LI et al.
110	2010). Since SGS3 works in conjunction with RDR6 to produce secondary double-
111	stranded RNAs (KUMAKURA et al. 2009), this suggests that silencing of MuDR elements
112	in leaves requires production of secondary dsRNAs triggered by small RNAs produced
113	by the hairpin <i>Muk</i> transcript.
114	Here we show that cytosine methylation of different regions within the MuDR
115	TIR has distinct causes and consequences, and corresponds to distinct populations of
116	small RNAs derived from the Muk hairpin, the mudrA transcript, and other Mu elements
117	in the maize genome. In addition, we demonstrate that although active MuDR elements
118	can reverse methylation at one end of the TIR of a silenced MuDR element, they do not

119 heritably reactivate that silenced element, nor does the silenced element inactivate the

120 active element. Finally, we demonstrate that the previously described transient relaxation

- 121 of *Muk*-induced silencing of *MuDR* during vegetative change (LI *et al.* 2010) is
- associated with a dramatic reduction in small RNAs targeting that element.
- 123

124 **RESULTS**

The absence of transposase results in default methylation of cytosines in all sequence contexts at TIRs of non-autonomous elements.

127 When *Mutator* activity is lost due to silencing or genetic segregation of

autonomous *MuDR* elements, methyl-sensitive sites within the TIRs of non-autonomous

129 *Mu* transposons such as *Mu1* at *a1-mum2* become methylated (CHANDLER and WALBOT

130 1986; CHOMET *et al.* 1991). This methylation is fully reversible when a source of

transposase is added, and invariably occurs when transposase is lost. Indeed this can

132 occur in somatic sectors in developing plants when spontaneous deletions within MuDR

elements occur, suggesting that the RNA directed DNA methylation (RdDM) pathway is

134 competent to trigger *de novo* methylation of *Mu* elements during somatic development

135 (CHOMET et al. 1991; LISCH and JIANG 2008). Recent work has demonstrated that this

default methylation requires a component of the RdDM pathway, MOP1, a protein that is

137 homologous to Arabidopsis RNA-DEPENDENT RNA POLYMERASE II (LISCH et al.

138 2002; ALLEMAN et al. 2006; WOODHOUSE et al. 2006). This has led to the suggestion that

the TIRs of non-autonomous elements are subject to a default methylation pathway that

140 operates in the absence of the transposase but that can be blocked and even reversed by

141 the presence of the transposase (HERSHBERGER *et al.* 1995; LISCH *et al.* 1995; BENITO

142 and WALBOT 1997). However, this conclusion has been based on a limited number of

143 restriction enzyme sites within the TIRs of non-autonomous elements. We wanted to 144 understand the distribution and nature of this methylation more fully, so we examined 145 methylation of the TIR of the non-autonomous Mul element inserted into the Al gene in 146 the *a1-mum2* (O'REILLY et al. 1985; CHOMET et al. 1991) allele using bisulfite 147 sequencing. 148 The results were entirely consistent with previous observations. In the absence of 149 transposase, the *Mul* TIR is extensively methylated in all three sequence contexts, 150 although it is interesting to note that methylation of this TIR is much higher in the 5' end 151 of the TIR (62% methylated cytosines in the first 110 nt) than the 3' end of the TIR (11%152 methylated cytosines in the second 110 nt), only marginally more than the 3% observed 153 in the presence of the transposase (Figure 2). The 5' end of the TIR contains sequences 154 known to bind the MURA protein (BENITO and WALBOT 1997); the 3' end of the TIR has 155 two binding sites for unknown proteins that were previously identified (ZHAO and 156 SUNDARESAN 1991). Methylation was restricted to the Mul TIR and did not extend into 157 adjacent A1 promoter sequences. In plants carrying an active MuDR element, nearly all 158 of the Mul methylation was lost, indicating that the presence of the transposase is 159 sufficient to remove that methylation. 160 Because the Mul TIR is not identical to that of MuDR (roughly 83% identity over

Because the *Mul* TIR is not identical to that of *MuDR* (roughly 85% identity over 200 bp, with the highest degree of identity - 88% - within the first 100 bp), we wanted to examine the effects of the transposase on a non-autonomous element with TIRs that are identical to those of *MuDR*. Fortunately, we had available a direct derivative of *MuDR* (*MuDR-d107, or d107*) that is identical to the autonomous element with the exception of a 700 bp deletion within a conserved portion of the *mudrA* transposase gene (LISCH 1995;

166	LISCH and JIANG 2008) (Figure 1). As is the case for other MuDR deletion derivatives,
167	sequence analysis of the deletion in $d107$ suggests that it arose as a consequence of strand
168	slippage during gap repair following excision of $MuDR(p1)$ (Figure S1) (HSIA and
169	SCHNABLE 1996). This derivative cannot cause excision of the reporter element, nor can
170	it trigger hypomethylation of non-autonomous elements, suggesting that it does not make
171	a functional transposase. However, it is transcriptionally active, producing a full-length
172	mudrB transcript and a polyadenylated but internally deleted $mudrA$ transcript. $d107$ also
173	has the advantage of being at the same chromosomal location as the originally cloned
174	MuDR element at position 1 on chromosome 3L $(p1)$ (CHOMET et al. 1991) and can be
175	efficiently silenced by Muk (SLOTKIN 2005). Thus, the only difference between $d107$ and
176	the functional MuDR from which it was derived is the presence of the deletion.
177	Examination of the TIR of $d107$ revealed that the default methylation that we
178	observed at Mul also occurs within the $d107$ TIR. As in the case of Mul , methylation
179	was largely restricted to the 5' end of the TIR (Figure 3B). With this in mind, we have
180	split analysis of this TIR into 5' (5'TIRA) and 3' (3'TIRA) portions (Figure 1A).
181	5'TIRA includes the first 144 bp of TIRA. This region of the TIR includes the binding
182	site for the transposase (MURA) (BENITO and WALBOT 1997) and is the most highly
183	conserved region among Mu elements (BENNETZEN 1996). 3'TIRA includes the last 75
184	bp of the TIR along with 69 bp of internal sequences corresponding to a portion of the
185	mudrA 5' UTR. This region includes both of the alternative transcriptional start sites for
186	mudrA (HERSHBERGER et al. 1995).
187	Within transcriptionally active $d107$, 68% of the cytosines in 5'TIRA were
188	methylated. In contrast, only 7% of the cytosines in 3'TIRA were methylated (Figure

189	3B; $P < 0.0001$, Fisher's exact test). These data indicate that the default methylation
190	observed at Mul is also observed at $d107$. However, because $d107$ is transcriptionally
191	active, we can conclude that the dense methylation we observe in 5'TIRA in all sequence
192	contexts in this derivative is not sufficient to trigger transcriptional silencing.
193	In order to determine the effects of Muk on $d107$ a plant carrying $d107$ was
194	crossed to a plant carrying Muk and the pattern of methylation at TIRA was examined in
195	a progeny plant carrying both $d107$ and Muk (Figure 3A). In this plant, the level of
196	methylation of 5'TIRA was quite similar to that observed in <i>d107</i> not exposed to <i>Muk</i>
197	(78% and 69%, respectively) ($P = 0.2327$, Fisher's exact test). In contrast, exposure to
198	Muk caused extensive CG and CHG methylation of 3'TIRA of d107 (30%), significantly
199	higher than was observed in <i>d107</i> by itself (7%) ($P < 0.0001$, Fisher's exact test). This
200	pattern of methylation is nearly identical to that seen in TIRA of MuDR elements as they
201	are being silenced by Muk in immature ears (LI et al. 2010).
202	Interestingly, we find that the sequence context of the methylated cytosines is
203	quite different between 5'TIRA and 3'TIRA of <i>d107</i> . In both <i>d107</i> and in F1 <i>d107;Muk</i>
204	plants the cytosines are densely methylated in all three sequence contexts in 5'TIRA. In
205	contrast, in 3'TIRA, cytosine methylation in the CHH context was uniformly low (4% for
206	d107 and 5% for $d107$; Muk) ($P = 0.6210$, Fisher's exact test), but CG and CHG was
207	considerably enriched in <i>d107;Muk</i> relative to <i>d107</i> plants in 3'TIRA (67% versus 16%
208	for CG ($P < 0.0001$, Fisher's exact test), and 42% versus 3% for CHG, respectively ($P < 0.0001$)
209	0.0001, Fisher's exact test). Collectively, from the examination of $d107$, we conclude
210	that methylation of 5'TIRA is independent of transcriptional silencing, and that exposure
211	of transcriptionally active d107 to Muk induces new CG and CHG methylation to the

212	3'TIRA.	the region	on that	t includes	both	alternative	transcription	al start sites.	These data

- 213 suggest that 5'TIRA and 3'TIRA methylation may involve distinct molecular
- 214 mechanisms that result in distinct patterns of cytosine methylation.
- 215

216 Active elements remove default methylation within silenced elements but do not

217 heritably reactivate them.

218 Having established the nature of default methylation, and the distinction between 219 default methylation and methylation induced by Muk at d107, we sought to examine the 220 effects of an active element on a previously silenced element. To do this, we crossed a 221 plant carrying MuDR at position 1 (henceforth referred to as "p1") to a plant carrying 222 *Muk.* Previous analysis had determined *MuDR* TIRA is densely methylated in the mature 223 leaves and immature ears of F1 (p1/-;*Muk/-*) plants (LI et al. 2010). Plants carrying p1 224 and Muk were crossed to plants carrying an active MuDR element at a second 225 chromosomal position (referred to as "p5") (Figure 4A) (SINGH et al. 2008). A progeny 226 plant carrying p1 that had been silenced in the previous generation but that no longer 227 carried Muk (referred to as p1*) was then compared to a sibling carrying both p1* and p5 228 in order to examine the heritability of silencing and the effects of an active element on a 229 silenced element. Consistent with the fact that Muk induces heritable silencing of MuDR 230 elements, p1* by itself was extensively methylated. Overall, 5'TIRA of p1* had 81% 231 methylated cytosines and 3'TIRA had 48%, similar to the levels of methylation in F1 232 (p1/-:*Muk*/-) plants (LI et al. 2010). These data confirm our previous observation that 233 methylation at 5'TIRA established due to the presence of *Muk* is maintained in 234 subsequent generations in its absence (LI et al. 2010). Analysis of a sibling plant that

235	carried both p1* and p5 revealed extensive changes in the pattern of methylation at p1*
236	TIRA. In the 5'TIRA of these plants, only 15% of cytosines were methylated, suggesting
237	that the methylation established in this region due to the activity of Muk was largely lost
238	in a manner similar to what is observed at non-autonomous elements when exposed to the
239	transposase. In contrast, within 3'TIRA 34% of the cytosines remained methylated in
240	this region, somewhat less than the 48% methylation observed in 3'TIRA in siblings that
241	carried only p1* and F1 MuDR;Muk parent in the previous generation (44%) ($P = 0.0032$,
242	Fisher's exact test).
243	Having established that an active element can reverse at least some of the
244	methylation associated with Muk-induced silencing of p1, we wanted to determine
245	whether or not this has a heritable effect on the silenced element. In order to do this, a
246	plant carrying p1* by itself and a sibling carrying both p1* and p5 were test crossed to a
247	plant that lacked both MuDR and Muk, referred to as an a1-mum2 tester (Figure 4A).
248	When crossed to the $a1$ -mum2 tester, the plant carrying only p1* gave rise to an ear all of
249	whose kernels were uniformly pale. The plant carrying both p5 and p1* yielded an ear
250	that segregated for a single active element (44 spotted to 41 pale kernels), suggesting that
251	p5 had not been silenced by p1*, and p1* had not been heritably activated as a
252	consequence of exposure to p5. Analysis of methylation of TIRA in a progeny plant that
253	carried only $p1*$ but that had been exposed to $p5$ in the previous generation ($p1*/-F2$ in
254	Figure 4A) revealed that exposure to p5 had no obvious heritable effect on the silenced
255	element. 70% of the cytosines in 5'TIRA were methylated, as were 50% of the cytosines
256	in 3'TIRA (Figure 4C). Further, when this plant was test crossed, none $(0/137)$ of its

257 progeny kernels were spotted.

258	In order to extend this observation, we performed a cross between a plant carrying
259	a previously silenced p1 element $(p1^*)$ by a plant that carried an active $MuDR$ element at
260	a third position, p4 (SINGH et al. 2008). The resulting ear segregated for a single active
261	MuDR element (52% spotted progeny kernels). Spotted and pale progeny kernels were
262	genotyped for p1 and p4 and then test crossed to plants that lacked either element. Of the
263	plants grown from spotted progeny kernels, six of fourteen carried p1* and all of them
264	contained p4. When test crossed, these fourteen plants gave rise to an average of 52%
265	spotted progeny (Supplemental Table 1), consistent with the segregation of a single
266	active element. Siblings grown from spotted kernels that lacked p1* gave rise to an
267	average of 50% spotted progeny. Of the pale progeny, eight of seventeen carried p1*.
268	When test crossed, none of these gave rise to any spotted progeny. From these
269	experiments, we conclude that the presence of the transposase from the active element
270	had no heritable effect on the silenced element, nor did the silenced elements affect the
271	active element.
272	

272

273 **22** nt *mudrA*-specific small RNAs are associated with silencing of *MuDR* by *Muk*.

274 Previously, we had demonstrated that small RNAs are associated with silencing of *MuDR*

by *Muk* (SLOTKIN *et al.* 2005). This conclusion was based on gel hybridization of RNAs

from young juvenile leaves. In order to more comprehensively characterize these small

277 RNAs, small RNAs were sequenced from plants lacking both Muk and MuDR, plants

278 carrying a single active *MuDR* element, plants carrying only *Muk*, and plants carrying

both *MuDR* and *Muk* (F1 plants). In each of these cases, tissue was collected from young

leaf 2. Leaf 2 was chosen because it is the tissue that had previously shown ample

281	evidence of an accumulation of Muk-specific small RNAs, and because TIRA is heavily
282	methylated in all three sequence contexts in F1 plants in this leaf (LI et al. 2010).
283	Further, in contrast to immature ears, this leaf also lacks the ubiquitous MuDR-
284	homologous heterochromatic small interfering RNAs (hc-siRNAs) present in all
285	genotypes regardless of activity present in that tissue (WOODHOUSE et al. 2006). Small
286	RNAs of leaf 6 from F1 plants were also analyzed because previous work in our
287	laboratory had demonstrated that this leaf exhibits a striking loss of TIRA methylation,
288	concomitant with a loss of expression of LBL1, an important component of the tasiRNA
289	silencing pathway in maize (LI et al. 2010; DOTTO et al. 2014).
290	Consistent with previous results, plants with Muk by itself contained large
291	numbers of MuDR-identical small RNAs, the vast majority of which were 21 and
292	(particularly) 22 nucleotides in length (Figure 5 and Supplementary Table 2). These
293	small RNAs were oriented in both sense and antisense orientation relative to mudrA, and
294	were restricted to the portion of the Muk transcript that can form an inverted repeat,
295	consistent with the hypothesis that the small RNAs are a product of processing and/or
296	amplification of the hairpin transcript produced by Muk. In contrast, plants carrying only
297	MuDR and those that lacked both MuDR and Muk had very few MuDR-identical small
298	RNAs.
299	The presence of a deletion within Muk relative to MuDR resulted in a junction that
300	is unique to Muk. We found one prominent group of 22 nt small RNAs that spanned this
301	junction and thus can only be derived from Muk (Figure S2). Interestingly, this particular
302	class of unique, Muk-specific small RNAs are largely in the sense orientation relative to

the *mudrA* transcript, suggesting that processing of the *Muk* hairpin transcript at this sitefavors retention of small RNAs in this orientation.

305	The small RNAs sequenced from plants carrying both MuDR and Muk are quite
306	similar to those observed in plants carrying only Muk, with one important exception. In
307	these plants there are many 21 and 22 nt small RNAs corresponding to regions of MuDR
308	that are not in present in Muk (Figure 5A). Although these small RNAs are in both
309	orientations relative to <i>mudrA</i> , a prominent cluster, mapping approximately 1880 nt from
310	the 5' end of MuDR is primarily in the antisense orientation (Figure 5A, arrow).
311	Given that these <i>mudrA</i> -specific small RNAs are only present when both <i>MuDR</i>
312	and Muk are combined, these data suggest a transitive process by which mudrA transcript
313	is converted into double-stranded RNA and then cleaved into 21 and 22 nt small RNAs,
314	presumably triggered by the presence of small RNAs generated by Muk. Interestingly, the
315	ratio of 22 nt to 21 nt small RNAs differs between the regions shared by both MuDR and
316	Muk and the regions only present in MuDR. In the former, the ratio of 22 nt to 21 nt small
317	RNAs is 5.1:1. In the latter it is 1.4:1 ($P < 0.0001$, χ^2 test) (Supplemental Table 3).
318	Given that these distinct size classes require distinct DCL proteins, generally DCL4 for
319	21 nt trans-acting small RNAs and DCL2 for the 22 nt size class (SCHWAB and VOINNET
320	2010), this observation suggests the relative contribution of these two proteins may differ
321	in these two distinct regions.
322	Interestingly, the vast majority of small MuDR-identical small RNAs in plants
323	that carry only Muk or that carry both MuDR and Muk correspond to transcribed mudrA
324	sequences. This is most apparent at the transcriptional start site of <i>mudrA</i> , where there is

a prominent cluster of 22 nt small RNAs, most of which are in an antisense orientation

326	relative to <i>mudrA</i> (Figure 5B). There are also a smaller number of small RNAs
327	corresponding to sequences upstream of the start of transcription within TIRA. However,
328	many of them are sizes other than 22 nt. Further, when two mismatches are permitted,
329	roughly half of them have sequences that match a non-autonomous Mu element present
330	elsewhere in the maize reference genome rather than MuDR (Figure S3) (TAN et al.
331	2011).
332	The distribution of these two distinct small RNA populations in all of the plants
333	carrying Muk matches the distribution of DNA methylation within TIRA of both d107
334	and silenced MuDR elements. The variably sized and polymorphic small RNAs
335	correspond to the 5' end of TIRA that is default methylated in all sequence contexts in
336	the absence of the transposase in $d107$ (Figure 3). The more numerous 22 nt small RNAs
337	correspond to the expressed portion of TIRA whose stable CG and CHG methylation is
338	triggered in response to Muk (Figures 3 and 4). Interestingly, analysis of large
339	populations of small RNAs from mop1 mutant and wild type immature ears, as well as
340	<i>lbl1</i> mutant and wild type leaf apexes provides similar evidence (Supplemental Table 4).
341	In these libraries, derived from plants that did not carry MuDR or Muk, there are very few
342	small RNAs of any size class perfectly matching either 5'TIRA or 3'TIRA. When two
343	mismatches are permitted, there are a substantial number of small RNAs matching TIRA,
344	but the vast majority of them are in 5'TIRA. In combination with our analysis, these data
345	suggest that de novo methylation of 5'TIRA, but not 3'TIRA, is mediated by
346	"background" small RNAs with one or more mismatch, but de novo methylation of
347	3'TIRA requires 21 and 22 nt small RNAs derived from the Muk hairpin and processed
348	Pol II <i>mudrA</i> transcript.

349	Given the involvement of <i>LBL1</i> in the production of dsRNA, and the requirement
350	for LBL1 in methylation of TIRA in leaf tissue, we hypothesized that there would be a
351	reduction of small RNAs in leaves that are transitional between juvenile and adult, which
352	exhibit a loss of both TIRA methylation and a reduction of <i>Lbl1</i> expression (LI et al.
353	2010). In fact we observed a dramatic reduction in the number of small RNAs of all size
354	classes in transition leaves (Figure 5C and Supplemental Table 2).

355

356 **TIRB silencing is not associated with small RNAs.**

357 *Muk* does not include sequences from *mudrB*. However, it does include TIRA, 358 which is 99% identical over the first 180 bp with TIRB, suggesting that small RNAs from 359 the *Muk* hairpin transcript would be hypothetically competent to direct methylation of 360 TIRB. Although *mudrB* is eventually silenced by *Muk*, the trajectory of *mudrB* silencing 361 is distinct. Unlike *mudrA*, which is transcriptionally silenced by the immature ear stage in 362 *p1;Muk* F1 plants, *mudrB* is not transcriptionally silenced by this stage (SLOTKIN *et al.* 363 2003). Instead, in these plants transcript from *mudrB* is readily detectable, but it does not 364 appear to be polyadenylated. By the next generation, however, plants that carry only pl^* 365 do not have detectable *mudrB* transcript. Further, *Muk* can only heritably silence *mudrB* 366 in this way when this gene is in *cis* to *mudrA* (on the same transposon); it is not silenced 367 when it is in *trans* to a *mudrA* gene that is being silenced (SLOTKIN *et al.* 2005). 368 Previous work using RNA gel hybridization showed that small RNAs similar to 369 *mudrB* did not accumulate to high levels in F1 *MuDR*;*Muk* plants (SLOTKIN *et al.* 2005). 370 In some ways, this was surprising given that TIRB is identical over much of its length to 371 TIRA, and the hairpin formed by the *Muk* transcript includes all of TIRA (and thus TIRB)

372	as well). A closer examination of the small RNA population in F1 leaf 2 tissues provides
373	a possible explanation for this discrepancy. Although the two TIRs are quite similar to
374	each other, they are more diverged near the internal portion of each TIR, within 3'TIRA
375	and 3'TIRB (Figure 6C). The <i>mudrA</i> transcript initiates 168 bp from the end of the
376	element and the $mudrB$ transcript initiates 163 bp from the other end of the element
377	(HERSHBERGER et al. 1995). Since this is the region in which TIRA and TIRB begin to
378	diverge in sequence, there are very few 22 nt small RNAs that perfectly match TIRB,
379	particularly in the transcribed portion of TIRB (Figure 6A and B). If silencing requires
380	the presence of both the target transcript and small RNAs from the Muk hairpin, this
381	distribution of small RNAs may explain why Muk acts only indirectly on mudrB via a
382	distinct mechanism.
383	
384	Discussion
205	The evidence presented here suggests that two distinct silencing pathways operate

385 The evidence presented here suggests that two distinct silencing pathways operate 386 on *MuDR* TIRA as it is being silenced. One pathway, dependent on MOP1, appears to 387 involve a number of heterogeneous small RNAs likely derived from other Mu TIRs in the 388 genome that target 5'TIRA for DNA methylation in the absence of the transposase. They 389 do not, however, trigger transcriptional silencing, as is evidenced by d107, which 390 accumulates dense methylation in 5'TIRA but is transcriptionally active. In contrast, 391 when d107 or MuDR is silenced by Muk, methylation spreads from 5'TIRA into the 392 transcribed portion of the *mudrA* (Figure 3 and (LI *et al.* 2010)). Once *MuDR(p1)* is 393 silenced, a source of transposase can reverse the methylation at 5'TIRA but does not 394 reverse the heritably silenced state of MuDR(p1), nor does it reverse methylation within

395 3'TIRA (Figure 4). Thus, one can gain methylation at 5'TIRA and not gain

transcriptional silencing, and one can lose 5'TIRA methylation and not lose heritable
transcriptional silencing. Interestingly, these data also suggest that the methylation
required for a heritably silenced state is restricted to the 3'TIRA, and is largely composed

399 of CG and CHG methylation (Figure 4).

400 The second pathway involves 21 and 22 nt small RNAs specifically associated 401 with sequences within 3'TIRA corresponding to the transcribed portion of *mudrA*. These 402 small RNAs correspond to cytosines within 3'TIRA that are stably methylated in the CG 403 and CHG sequence contexts, and are only observed in leaves carrying Muk, either by 404 itself or in combination with MuDR. Plants carrying both MuDR and Muk also have many 405 small RNAs that are derived from portions of *mudrA* that are not present in *Muk*. This is 406 consistent with the activity of a transitive process that is triggered by small RNAs 407 processed from the Muk hairpin. This hypothesis is supported by the observation that in 408 leaf 6 in which *lbl1* expression is reduced, the number of these small RNAs is also 409 reduced (Figure 5, Table S1) (LI et al. 2010). The fact that the 22 nt small RNAs do not 410 extend upstream of the transcriptional start site of *mudrA* suggests that these small RNAs 411 are processed almost entirely from transcript initiated from within TIRA rather than the 412 double-stranded hairpin formed by Muk, which includes 5'TIRA. Since LBL1 works in 413 conjunction with *RDR6* to produce a variety of *trans*-acting small RNAs, these data 414 suggest that the *Muk* triggers silencing in leaves via a pathway that interacts with Pol II 415 TE transcripts in a manner that is similar to that described in *Arabidopis* (WU et al. 2012; 416 NUTHIKATTU et al. 2013; PANDA and SLOTKIN 2013; PANDA et al. 2016). In this context, 417 an interaction between small RNAs and Pol II transcript represents a natural and expected

418	means by which otherwise active TEs are recognized and silenced. The key here is the
419	source of small RNAs that can trigger silencing. For high copy number elements, a low
420	level of expression of aberrant transcripts in germinal lineages could be sufficient to
421	trigger silencing of transiently active elements. For low copy number elements such as
422	Mu or Ac , it may be necessary for rearrangements to arise prior to effective silencing.
423	Interestingly, however, maize lines containing larger numbers of Mu elements are prone
424	to spontaneous silencing (ROBERTSON 1986; SKIBBE et al. 2012). This phenomena
425	appears to be a function of copy number, as single copy number MuDR line, which was
426	derived from such a line does not show evidence of spontaneous silencing, and if copy
427	number is allowed to increase in this line spontaneous silencing begins to occur (D.
428	Lisch, unpublished). We speculate that this spontaneous silencing could be due to the
429	accumulation of aberrant MuDR elements that collectively trigger silencing of active
430	elements in this line.
431	One important conclusion from our analysis is that default methylation such as
432	that observed at $d107$ and $Mu1$ is not sufficient to trigger silencing. $d107$ expresses a
433	transcript and Mul element has a functional outward reading promoter even when it is
434	methylated (BARKAN and MARTIENSSEN 1991). Because hypomethylated Mul elements
405	

435 can be re-methylated due to genetic segregation of *MuDR*, or even in somatic sectors in

436 which the transposase is lost, it is apparent that this pathway is competent to trigger de

437 *novo* methylation during plant development (LISCH *et al.* 1995; LISCH and JIANG 2008).

438 However, this methylation is readily reversed when transposase is reintroduced. This may

439 be because binding of the transposase to the TIR directly blocks methyltransferase

440 activity or due to demethylation activity on the part of the transposase as has been

441	proposed for the Spm transposase (CUI and FEDOROFF 2002). These results are
442	reminiscent of patterns of methylation in other transposable elements. For instance,
443	although active maize Spm elements are extensively methylated throughout much of the
444	element, they are hypomethylated in the region immediately upstream of their
445	transcriptional start site. In contrast, silenced Spm elements are extensively methylated in
446	this region (BANKS et al. 1988). Further, when silenced Spm elements are exposed to
447	active Spm elements, an adjacent region in the active element can be demethylated (CUI
448	and FEDOROFF 2002). Methylation within the Tam3 transposon in Antirrhinum majus is
449	reversible and the loss of methylation requires the presence of the transposase, suggesting
450	that methylation of this TE may be a consequence of the loss of transposase rather than a
451	cause of silencing (HASHIDA et al. 2006). Our data is consistent with that hypothesis, at
452	least with respect to methylation within TIRA.
453	The default methylation at 5'TIRA is dependent on the maize homolog of RDR2,
453 454	The default methylation at 5'TIRA is dependent on the maize homolog of RDR2, MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc-
454	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc-
454 455	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc-siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work
454 455 456	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs
454 455 456 457	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs efficiently in a <i>mop1</i> mutant background in the absence of those hc-siRNAs, and that
454 455 456 457 458	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs efficiently in a <i>mop1</i> mutant background in the absence of those hc-siRNAs, and that <i>Muk</i> -specific small RNAs are retained in this mutant (WOODHOUSE <i>et al.</i> 2006). Further,
454 455 456 457 458 459	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs efficiently in a <i>mop1</i> mutant background in the absence of those hc-siRNAs, and that <i>Muk</i> -specific small RNAs are retained in this mutant (WOODHOUSE <i>et al.</i> 2006). Further, in immature ears, the presence of the hc-siRNAs, likely derived from <i>hMuDR</i> elements in
454 455 456 457 458 459 460	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs efficiently in a <i>mop1</i> mutant background in the absence of those hc-siRNAs, and that <i>Muk</i> -specific small RNAs are retained in this mutant (WOODHOUSE <i>et al.</i> 2006). Further, in immature ears, the presence of the hc-siRNAs, likely derived from <i>hMuDR</i> elements in this genetic background, has no effect on an otherwise active <i>MuDR</i> element. Thus, it
454 455 456 457 458 459 460 461	MOP1, which is required for the vast majority of 24 nt heterochromatic siRNAs (hc- siRNAs) (LISCH <i>et al.</i> 2002; ALLEMAN <i>et al.</i> 2006; NOBUTA <i>et al.</i> 2008). Previous work in our laboratory has demonstrated that heritable silencing of <i>MuDR</i> by <i>Muk</i> occurs efficiently in a <i>mop1</i> mutant background in the absence of those hc-siRNAs, and that <i>Muk</i> -specific small RNAs are retained in this mutant (WOODHOUSE <i>et al.</i> 2006). Further, in immature ears, the presence of the hc-siRNAs, likely derived from <i>hMuDR</i> elements in this genetic background, has no effect on an otherwise active <i>MuDR</i> element. Thus, it would appear that <i>de novo</i> silencing of <i>MuDR</i> elements requires small RNAs derived

464	silenced elements would be expected to produce only Pol IV transcript, which would not
465	be expected to produce trans-acting small RNAs. More generally, it suggests that the
466	presence of previously silenced elements, by itself, is not sufficient to initiate silencing.
467	Indeed, this has been demonstrated for reactivated elements in Arabidopsis (KATO et al.
468	2004). This in turn suggests that transient loss of silencing of previously silenced MuDR
469	elements, such as has been observed in pollen (SLOTKIN et al. 2009) would only be
470	expected to function to reinforce silencing if those previously silenced elements produced
471	aberrant Pol II transcripts with a propensity to be processed into trans-acting small
472	RNAs. This seems to be the case for easiRNAs in Arabidopsis, which are produced from
473	aberrant hairpin micro-RNA-like transcripts that target transposons (CREASEY et al.
474	2014). Thus, we suggest that the key to silencing reinforcement in tissues such as pollen
475	is not reactivation of silenced elements per se, but reactivation of "zombie" elements,
476	whose Pol II transcripts, when expressed, are competent to reinforce or trigger silencing
477	in <i>trans</i> . These elements could be similar in structure of Muk and result in the production
478	of a hairpin, but any feature of their transcript that is recognized as aberrant that would be
479	sufficient. In our low copy Mutator line, it would appear that these zombie elements are
480	not present. Thus, pollen that carries both a silenced MuDR element and an active
481	element does not give rise to progeny in which the active element has been silenced,
482	despite evidence that silenced MuDR elements, like other silenced transposons, are
483	transcriptionally activated in the pollen vegetative nucleus as part of a strategy of
484	silencing reinforcement (SLOTKIN et al. 2009; MARTINEZ et al. 2016).
485	Our observations are consistent with a relatively simple model (Figure 7). TIRA
486	methylation is absent whenever a functional transposase is present, presumably because

487	the transposase blocks methyltransferase activity. When 22 nt small RNAs are
488	introduced from the Muk hairpin, they trigger RDR6-dependent production of double-
489	stranded RNA using the Pol II-derived mudrA transcript as a template. This double-
490	stranded RNA is cleaved by a DICER (presumably DCL2 and/or DCL4) and the resulting
491	small RNAs are then used to direct DNA methylation, largely in the CG and CHG
492	sequence contexts in 3'TIRA. Meanwhile, because the transposase is no longer present,
493	hc-siRNAs derived from other silenced Mu elements present in the genome can direct de
494	novo methylation of 5'TIRA, exactly as they do at d107 and Mu1 in the absence of
495	functional transposase (Figures 2 and 3). According to this model, processed mudrA
496	transcript and the resulting 3'TIRA methylation is the cause of transcriptional silencing,
497	and 5'TIRA methylation is a consequence of that silencing. Based on this model, we
498	would predict that a MuDR derivative that had a genetic lesion that prevented it from
499	expressing Pol II transcript would accumulate methylation in 5'TIRA but would not
500	accumulate methylation in 3'TIRA when combined with Muk.
501	The involvement of two parallel pathways interacting with MuDR TIRA raises
502	some interesting questions. The default methylation pathway suggests that there are small
503	RNAs that are competent to trigger de novo methylation that are present even when the
504	elements are active. However, active MuDR elements retain that activity in the face of
505	this "soup" of hc-siRNAs, and the same is true for some other active transposons, such as
506	CACTA elements in Arabidopsis and Mu elements in maize (KATO et al. 2004;
507	WOODHOUSE et al. 2006). In contrast, others, such as ONSEN and Tos17, are rapidly re-
508	silenced after periods of activity, a process that requires Pol IV (HIROCHIKA et al. 1996;
509	ITO et al. 2011; MATSUNAGA et al. 2015). Since Pol IV transcript is thought to be

510 derived from previously methylated elements, this would suggest that at some threshold, 511 silenced elements can contribute to *de novo* silencing of active elements. In contrast, *Muk* 512 silencing of MuDR does not appear to involve 24nt Pol IV-dependent small RNAs, 513 presumably because processing of the Muk hairpin can produce siRNAs in the absence of 514 hc-siRNAs (WOODHOUSE et al. 2006). Further, those hc-siRNAs that are present in the 515 background largely target a portion of active MuDR elements (5'TIRA) that is irrelevant 516 to transcriptional gene silencing (Figure S3). This may be due to random sequence 517 divergence within the relevant portions of TIRA relative to other Mu elements, or due to 518 selection in favor of differences between autonomous and non-autonomous elements at 519 the *mudrA* and *mudrB* transcriptional start sites. Indeed, we find few hc-siRNAs 520 specifically targeting the transcribed portion of TIRA. Further, a more comprehensive 521 analysis of all available small RNAs derived from a number of tissues and genetic 522 backgrounds reveals that the vast majority of small RNAs with zero, one or two 523 mismatches to MuDR map to 5'TIR rather than 3'TIR (Supplemental Table 4). The 524 absence of small RNAs directly targeting the transcribed portions of *mudrA* and *mudrB*, 525 despite the presence of hMuDRs suggests that selection may have favored sequence 526 divergence between currently active and previously silenced autonomous elements 527 (hMuDRs). 528 Collectively, our data suggests that active elements in maize remain active 529 because of an absence of small RNAs that are competent to trigger heritable silencing,

and that small RNAs competent to trigger silencing are most likely those that directly
target the Pol II transcript arising from those active elements, rather than the small RNAs

532 derived from previously silenced elements. Further, our data suggest that heritable

533	silencing information is contained within 3'TIRA in the form of CG and CHG
534	methylation. Finally, our analysis of small RNAs in transition leaves reveals that the loss
535	of LBL1 in these leaves results in a reduction of small RNAs targeting mudrA, suggesting
536	that the accumulation of these small RNAs are dependent on the tasiRNA pathway.
537	
538	Author contributions: D.B performed the bisulfite analysis and contributed to
539	experimental design. H.L performed the small RNA sequencing analysis contributed to
540	experimental design. S.K. performed bisulfite analysis on the MuDR active individual.
541	M.Z. performed analysis of the small RNA data set. D.L wrote the manuscript, performed
542	the genetic analysis and analyzed the small RNA and deletion junction analysis.
543	
544	Acknowledgements: This work was supported by the National Science Foundation
545	(Grants DBI-1237931 and DBI-0820828 to D.L.) as well as the Purdue Center for Plant
546	Biology. We thank Xinyan Zhang and Thomas Peterson for providing useful comments.
547	
548	Materials and Methods
549	Plant materials. The minimal <i>Mutator</i> line consists of one fully active <i>MuDR</i> element at
550	position 1 (p1) on chromosome 3L (CHOMET et al. 1991). Muk is a derivative version of
551	MuDR as described previously (SLOTKIN et al. 2005). Activity is monitored in seeds via
552	excisions of a non-autonomous $Mu1$ element inserted into the $a1$ -mum2 allele of the $A1$
553	color gene (CHOMET et al. 1991). All plants used in these experiments are homozygous
554	for <i>a1-mum2</i> . "Test crosses" refer to crosses to plants that are homozygous for <i>a1-mum2</i>
555	but that lack MuDR or Muk.

556 The crosses used to generate the genotypes examined are depicted in Figures 3A 557 and 4A. In order to construct lines containing silenced MuDR(p1) elements (p1*) with 558 and without active elements, plants carrying p1 were crossed to plants heterozygous for 559 *Muk.* Progeny plants that were heterozygous for *Muk* and that carried p1 were then 560 crossed to plants that carried MuDR(p5) (p5). Progeny that lacked Muk and that carried 561 silenced p1 (p1*) with or without p5 were then compared. Plants carrying p1* and p5 562 were then test crossed to *a1-mum2* testers, and progeny plants carrying only p1* were 563 examined. Tests of the ability of a second active element, p4, to activate a silenced 564 element were performed by crossing a plant carrying p4 to a plant carrying a previously 565 silenced p1* element and then test crossing plants carrying both p1* and p4. Progeny of 566 this cross were then separated into spotted (exhibiting somatic excisions of the reporter 567 element) and pale kernels, genotyped for p1 and p4 and then test crossed. Genotyping for 568 p1 employed primers RLTIR2 and Ex1. Genotyping for p4 employed primers RLTIR2 569 and p4flankB. Genotyping for p5 employed primers RLTIR2 and p5flankB (all primers 570 used in experiments described in this manuscript are supplied in Supplemental Table 5). 571 **Tissue sampling.** All plants used in bisulfite sequencing experiments were genotyped 572 individually. Immature ears, approximately 10 cm long, were collected from each 573 individual plant. To check for variation in patterns of methylation, fully mature leaves 574 (the third leaf from the top of each plant) were also examined (Figure S5). Given that the 575 results were nearly identical for ears and leaves, only the data from ears is presented here. 576 For small RNA analysis, the distal 10 cm of emerging leaves was collected as previously 577 described (LI et al. 2010).

578 Genomic Bisulfite sequencing. Genomic DNA was isolated as previously described 579 (LISCH et al. 1995). Two micrograms of genomic DNA from the appropriate genotype 580 were digested with restriction enzymes (*XhoI* and *BamHI*) that cut just outside of the 581 region of interest. Bisulfite conversion was performed using an EpiTect Bisulfite kit 582 (Qiagen). PCR fragments from TIRA were amplified using p1bis2f and TIRAbis2R, and 583 re-amplified using TIRAbis2R and the nested primer TIRAmF6 or p1bis7Fmed (all 584 primer sequences are provided in Supplemental Table 5). In addition, all samples were 585 also amplified using a different set of primers (TIRAMF6 and Autr1R, followed by re-586 amplification with Autr1R and the nested primers TIRAF1 or p1bis7Fmed). The 587 sequences from each amplification were then compared. This was done to ensure that 588 biases had not been introduced due to the selection of a particular pair of primers. No 589 substantive differences were detected and thus clones from each set of primers were 590 combined. In addition, for many of the plants examined, both fully mature leaves (the 591 third from the top leaf) and immature ears were examined. The results in all cases 592 (different primers or different tissues) were substantially equivalent. An example of 593 results obtained using two sets of primers on both leaves and immature ears from one 594 plant is portrayed in Figure S4. To ensure that duplicate clones resulting from 595 amplification did not skew the analysis, sequences with zero mismatches were only 596 counted once for each sample. The resulting sequences were analyzed using kismeth 597 (http://katahdin.mssm.edu/kismeth/revpage.pl) (GRUNTMAN et al. 2008). 598 For *Mul* methylation analysis, a similar strategy was employed, but the initial use 599 of restriction enzymes was not necessary. Following bisulfite conversion, the DNA was

amplified using primers Mu1bis1 (located in the *Mu1* element) and either a1mum2bis1 or
a1mum2bis2 (located in the *a1-mum2* allele, flanking the *Mu1* insertion).

602 Small RNA sequencing.

603 Plants were grown in a greenhouse with a 12 hour light cycle. Young leaf tissue for small

604 RNA samples was obtained from two closely related families segregating for MuDR and

605 *Muk*. Each sample class contained at least three pooled individuals, each one of which

606 was genotyped. RNA was independently extracted from two separate sets of individuals

on different days, and each set is referred to as an experimental replicate, the results of

608 which are presented separately because of large overall differences in relative abundance

609 of normalized MuDR-identical small RNAs. The classes included MuDR by itself, Muk

610 by itself, *MuDR* with *Muk*, and neither *MuDR* nor *Muk*. The small RNA extraction and

611 enrichment protocol was adapted from Dalmay et. al. (DALMAY et al. 2000). Total RNA

612 was extracted using an SDS-based extraction solution and precipitated using ethanol. The

613 pellet was dissolved in water, heated to 65°C for 5 min, and then placed on ice.

614 Polyethylene glycol (molecular weight 8000; Sigma) was added to a final concentration

of 5% and NaCl to a final concentration of 0.5 M. After an hour incubation on ice, the

616 RNA was centrifuged at 10,000g for 10 min. Three volumes of ethanol were added to the

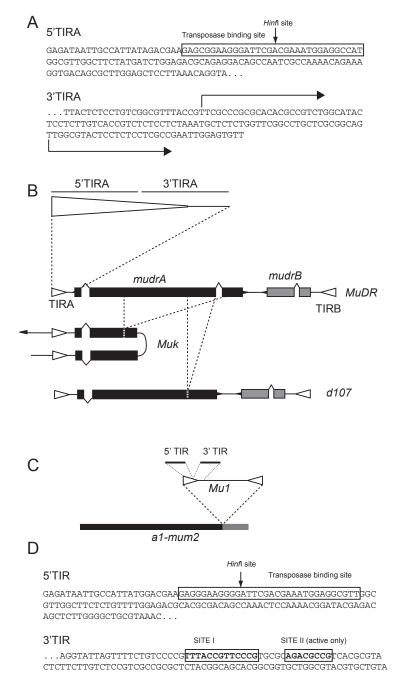
617 supernatant, and the RNA was precipitated at -20°C for at least 2 hrs. The low molecular

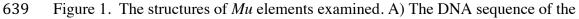
618 weight RNAs were pelleted by centrifugation for 10 min at 10,000g. Small RNAs were

619 detected in Polyacrylamide gel electrophoresis (PAGE) gel and purified by ZR small-

620 RNA[™] PAGE Recovery Kit. Small RNA library was prepared by ScriptMiner[™] Small

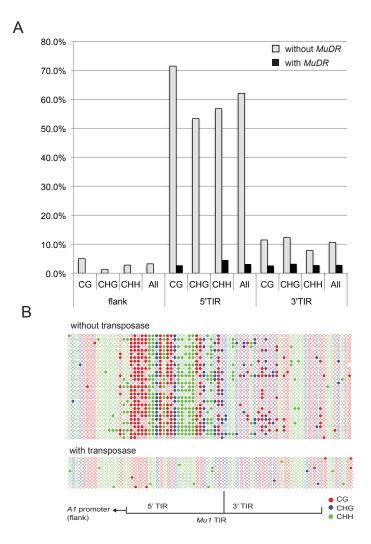
621 RNA-Seq Library Preparation Kit for Ilumina sequencing.

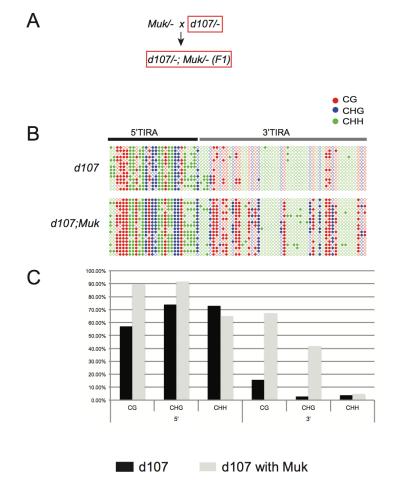

622


623 Small RNA data analysis.

- 624 The small RNA sequencing data from different libraries was trimmed and filtered for low
- 625 quality reads, adapter sequences, and reads matching structural noncoding RNAs
- 626 (t/r/sn/snoRNAs) collected from Rfam (<u>http://rfam.sanger.ac.uk</u>). The kept reads with a
- 627 length of 18-26 nt were mapped to MuDR(p1) and Muk, and their flanking 500 bp
- 628 upstream and downstream sequences using Bowtie only allowing perfect matches
- 629 (LANGMEAD et al. 2009). Small RNA abundance was normalized to reads per million.
- 630 The data was viewed using Intergrative Genomics Viewer (Robinson et al. 2011). Small
- 631 RNAs for the *mop1* and *lbl1* mutants were downloaded from previous studies (Nobuta et
- al., 2008; Dotto et al., 2014), trimmed and mapped to *MuDR* sequences.

633 Statement on reagent and data availability


- All small RNA data generated for this work is freely and publicly available. The small
- 635 RNA sequencing data have been deposited at the National Center for Biotechnology
- 636 Information Gene Expression Omnibus under accession number GSE103833. Maize lines
- 637 used for these analyses are also freely available for non-commercial purposes.


- 640 terminal inverted repeat (TIR) adjacent to the *mudrA* gene in *MuDR* (TIRA). 5'TIRA
- refers to the first 144 bp of the TIR and includes the known binding site for the MuDR
- transposase. The *Hinf*I site has long been diagnostic for methylation in TIRs. The

- adjacent 3'TIRA includes the last 75 bp of the TIR along with 56 bp of internal
- 644 sequences corresponding to a portion of the *mudrA* 5' UTR, indicated by arrows. This
- 645 region includes both of the alternative transcriptional start sites for *mudrA*. B) A diagram
- of the structure of MuDR, Muk and d107. TIRs are indicated as open triangles and exons
- 647 as shaded boxes. The regions missing in *Muk* and *d107* are indicated by dashed lines. C)
- 648 The structure of the *Mu1* insertion at *a1-mum2*. D) The sequence of the *Mu1* TIR,
- 649 divided into its 5' and 3' parts. The transposase binding site is as indicated, as are
- additional protected sites within the 3' portion of the *Mul* TIR.
- 651
- 652
- 653

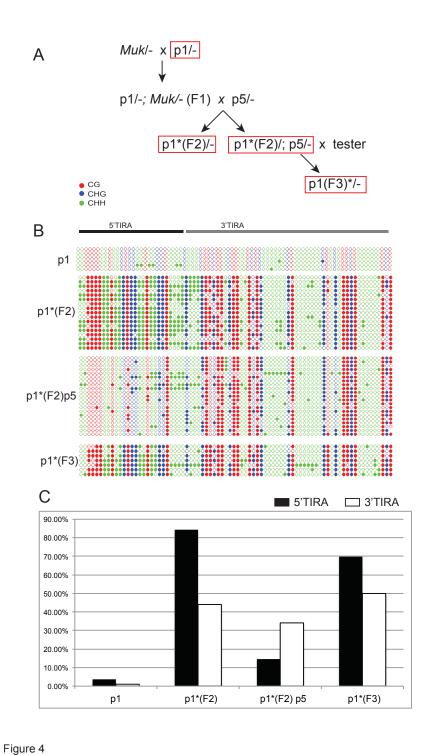
655 Figure 2. Methylation of the non-autonomous Mul element in the presence and absence 656 of an active MuDR element. A) Percent methylated cytosines in sequences flanking the 657 Mul insertion, as well as the 5' and 3' portions of the Mul TIR. Cytosines are classified 658 by sequence context, with "H" meaning any nucleotide except guanine. B) A graphic 659 depiction of the same patterns of cytosine methylation. For this and all subsequent 660 depictions of cytosine methylation, filled circles indicate methylated cytosines in the CG 661 (red) CHG (blue) and CHH (green) sequence contexts. Open circles represent 662 unmethylated cytosines. Each line represents one clone from a PCR amplification of a 663 bisulfite-treated DNA sample.

665 Figure 3. Depiction of patterns of methylation in TIRA of the deletion derivative, *d107*.

A) The cross used to generate the individuals examined (one of each genotype) (boxed

red) B) A graphic representation of the patterns of methylation at *d107* TIRA. Samples

668 include a transcriptionally active *d107* and *d107* in the presence of *Muk*. Cytosines in


669 different sequence contexts (CG, CHG and CHH) are as indicated. C) Percent

670 methylation of cytosines in each sequence context in the same samples depicted

671 graphically, with the results separated into 5'TIRA and 3'TIRA.

672

664

Fig

Figure 4. The effect of an active element on methylation of a silenced element. A) Thecrosses used to generate the samples subject to bisulfite sequencing (boxed red) B) A

- 678 graphic representation of patterns of cytosine methylation within TIRA in plants of the
- 679 indicated genotypes. Cytosines in different sequence contexts (CG, CHG and CHH) are
- as indicated. C) Percent methylation of cytosines within 5' TIRA and 3'TIRA in plants of
- 681 the indicated genotype.

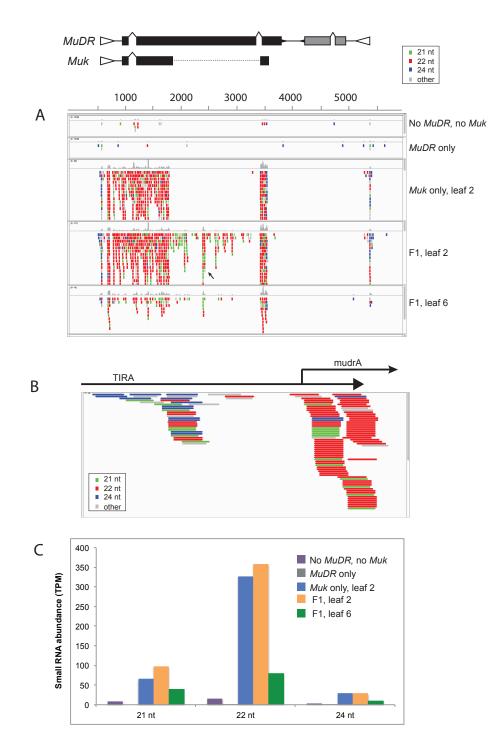
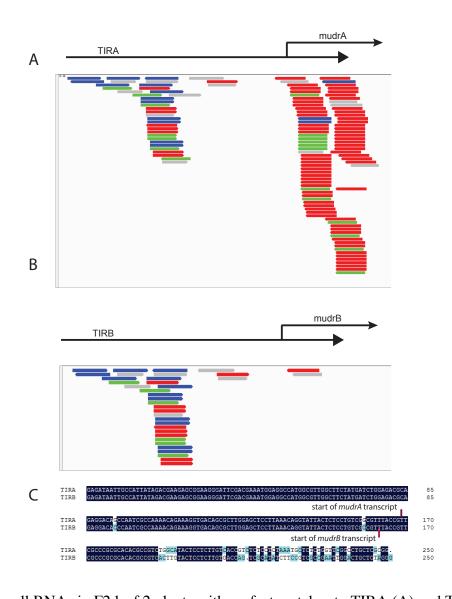
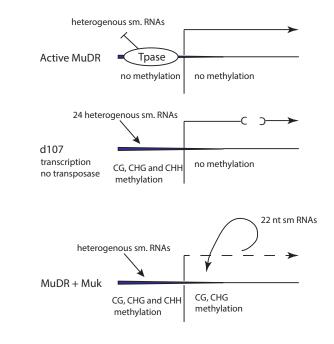
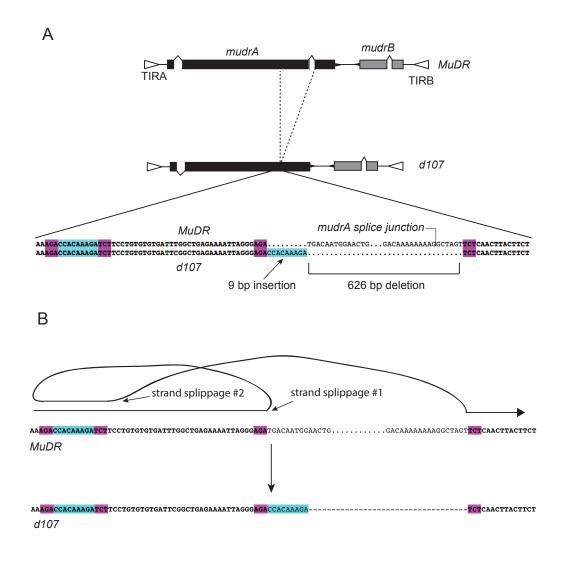



Figure 5. Small RNAs associated with silencing of *MuDR* by *Muk*. A) A representation of perfectly matched small RNAs from tissues of various genotypes mapped onto *MuDR*. A map of the regions present in *Muk* is provided for reference. Small RNAs are color coded for size, as indicated. Note that small RNA samples from plants containing only *MuDR* or


- 688 neither MuDR nor Muk have very few small RNAs matching MuDR. B) Small RNAs
- 689 with exact matches to the first 250 bp of MuDR (data is taken from F1 p1;Muk leaf 2). C)
- 690 Numbers of perfect matches to MuDR of the indicated size classes to the indicated
- 691 genotypes.

692

Figure 6. Small RNAs in F2 leaf 2 plants with perfect matches to TIRA (A) and TIRB(B). C) An alignment of TIRA and TIRB with the transcriptional start sites for *mudrA*


and *mudrB* as indicated.

699 Figure 7. A model for the interaction between different classes of small RNAs and DNA

- 700 methylation in 5'TIRA and 3'TIRA.

- / 00

712 Figure S1. Sequence analysis of the deletion in d107. A) Structure of the progenitor 713 (MuDR) sequence and that of the deletion derivative. B) Hypothesized mechanism of 714 deletion. MuDR replication is thought to involve gap repair using the sister chromatid as 715 a template (LI et al. 2008). To generate the deletion at d107, we hypothesize that 716 replication proceeded to an AGA triplet, at which point the replicated strand is 717 hypothesized to have switched to a second AGA 47 bp upstream. Replication then 718 continued until it reached a TCT triplet, at which point replication switched to a second 719 TCT triplet 660 bp downstream. The net result was a deletion of 626 bp and the insertion 720 of a short (9 bp) upstream sequence at the end of the deletion.

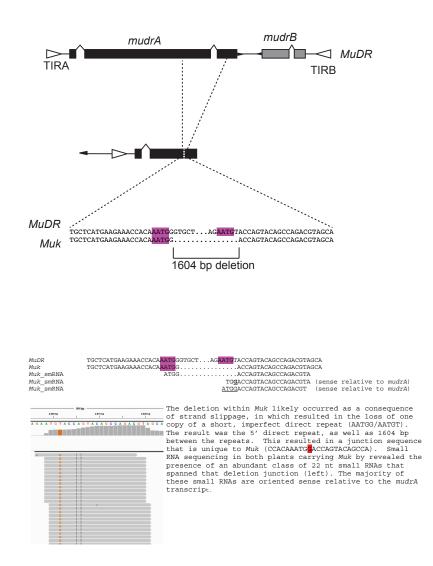


Figure S2. The sequences flanking the deletion within *Muk*, illustrating polymorphisms

- introduced by that deletion in the small RNA population. As with d107, the deletion is
- 125 likely due to strand slippage at a short direct repeat. The result is a *Muk*-specific junction
- sequence that is the source of numerous 22 nt small RNAs.

727

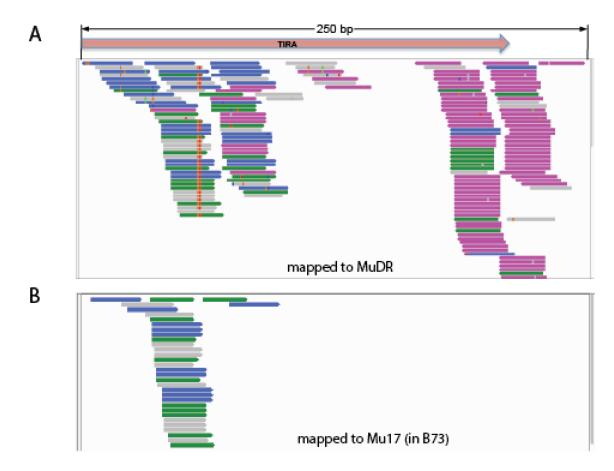
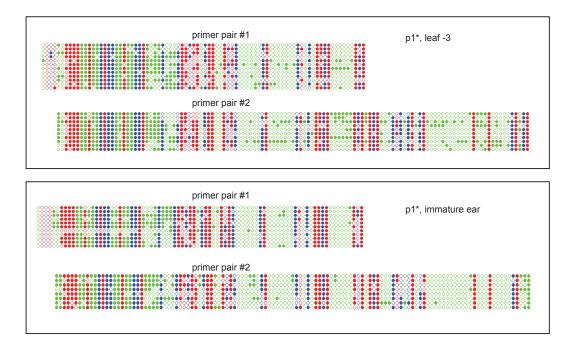



Figure S3. Distribution of small RNAs matched to the 5' TIR regions of MuDR(p1) and

- 730 Mu17. (A) The small RNAs of F1 (p1/-;Muk/-) leaf 2 matching the 5' TIR region of
- 731 *MuDR(p1)* with two or fewer mismatches. (B) The small RNAs in F1 leaf 2 that perfectly
- match the 5' TIR region of Mu17. Green, pink and blue arrows indicate the small RNA
- length of 21 nt, 22 nt and 24 nt, respectively. The grey arrows represent other sizes of
- small RNAs.

735

Figure S4.

A comparison of the patterns of methylation at TIRA observed in two tissues of the same

plant using two different primer pairs. Note that similar results were observed in both

tissues regardless of the primer pairs used.

References:

- ALLEMAN, M., L. SIDORENKO, K. MCGINNIS, V. SESHADRI, J. E. DORWEILER *et al.*, 2006 An RNA-dependent RNA polymerase is required for paramutation in maize. Nature **442**: 295-298.
- BANKS, J. A., P. MASSON and N. FEDOROFF, 1988 Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev **2:** 1364-1380.
- BARKAN, A., and R. A. MARTIENSSEN, 1991 Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci U S A **88**: 3502-3506.
- BENITO, M. I., and V. WALBOT, 1997 Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol **17:** 5165-5175.
- BENNETZEN, J. L., 1996 The Mutator transposable element system of maize. Curr Top Microbiol Immunol **204:** 195-229.
- BUCHER, E., J. REINDERS and M. MIROUZE, 2012 Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr Opin Plant Biol **15**: 503-510.
- CHANDLER, V. L., and V. WALBOT, 1986 DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A **83:** 1767-1771.
- CHOMET, P., D. LISCH, K. J. HARDEMAN, V. L. CHANDLER and M. FREELING, 1991 Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics **129**: 261-270.
- CREASEY, K. M., J. ZHAI, F. BORGES, F. VAN EX, M. REGULSKI *et al.*, 2014 miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature **508**: 411-415.
- CUERDA-GIL, D., and R. K. SLOTKIN, 2016 Non-canonical RNA-directed DNA methylation. Nat Plants **2:** 16163.
- CUI, H., and N. V. FEDOROFF, 2002 Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. Plant Cell **14**: 2883-2899.
- DALMAY, T., A. HAMILTON, E. MUELLER and D. C. BAULCOMBE, 2000 Potato virus X amplicons in arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell **12:** 369-379.
- DOTTO, M. C., K. A. PETSCH, M. J. AUKERMAN, M. BEATTY, M. HAMMELL *et al.*, 2014 Genomewide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet **10**: e1004826.
- FULTZ, D., S. G. CHOUDURY and R. K. SLOTKIN, 2015 Silencing of active transposable elements in plants. Curr Opin Plant Biol **27:** 67-76.

- FULTZ, D., and R. K. SLOTKIN, 2017 Exogenous Transposable Elements Circumvent Identity-Based Silencing, Permitting the Dissection of Expression-Dependent Silencing. Plant Cell **29:** 360-376.
- GRUNTMAN, E., Y. QI, R. K. SLOTKIN, T. ROEDER, R. A. MARTIENSSEN *et al.*, 2008 Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics **9**: 371.
- HALE, C. J., K. F. ERHARD, JR., D. LISCH and J. B. HOLLICK, 2009 Production and processing of siRNA precursor transcripts from the highly repetitive maize genome. PLoS Genet **5**: e1000598.
- HASHIDA, S. N., T. UCHIYAMA, C. MARTIN, Y. KISHIMA, Y. SANO *et al.*, 2006 The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell **18**: 104-118.
- HERSHBERGER, R. J., M. I. BENITO, K. J. HARDEMAN, C. WARREN, V. L. CHANDLER *et al.*, 1995 Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics **140**: 1087-1098.
- HIROCHIKA, H., K. SUGIMOTO, Y. OTSUKI, H. TSUGAWA and M. KANDA, 1996 Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A **93:** 7783-7788.
- HOLOCH, D., and D. MOAZED, 2015 RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet **16:** 71-84.
- HSIA, A. P., and P. S. SCHNABLE, 1996 DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics **142**: 603-618.
- ITO, H., H. GAUBERT, E. BUCHER, M. MIROUZE, I. VAILLANT *et al.*, 2011 An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature **472**: 115-119.
- KATO, M., K. TAKASHIMA and T. KAKUTANI, 2004 Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics **168**: 961-969.
- Кимакика, N., A. Takeda, Y. Fujioka, H. Motose, R. Takano *et al.*, 2009 SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett **583**: 1261-1266.
- LANGMEAD, B., C. TRAPNELL, M. POP and S. L. SALZBERG, 2009 Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biology **10**.
- LAW, J. A., and S. E. JACOBSEN, 2010 Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet **11**: 204-220.
- LI, H., M. FREELING and D. LISCH, 2010 Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci U S A **107**: 22184-22189.
- LI, J., T. J. WEN and P. S. SCHNABLE, 2008 Role of RAD51 in the repair of MuDR-induced double-strand breaks in maize (Zea mays L.). Genetics **178**: 57-66.
- LISCH, D., 1995 Genetic and Molecular Characterization of the Mutator System in maize, pp. 408 in *Plant and Microbial Biology*. University of California, Berkeley, Berkeley, CA.
- LISCH, D., 2002 Mutator transposons. Trends Plant Sci 7: 498-504.

- LISCH, D., 2009 Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol **60:** 43-66.
- LISCH, D., 2015 Mutator and MULE transposons in *Mobile DNA III*, edited by P. R. NL CRAIG, A LAMBOWITZ, M CHANDLER, M GELLERT, S. SANDMEYER. American Society for Microbiology Press, Washington, D.C.
- LISCH, D., C. C. CAREY, J. E. DORWEILER and V. L. CHANDLER, 2002 A mutation that prevents paramutation in maize also reverses Mutator transposon methylation and silencing. Proc Natl Acad Sci U S A **99:** 6130-6135.
- LISCH, D., P. CHOMET and M. FREELING, 1995 Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics **139**: 1777-1796.
- LISCH, D., L. GIRARD, M. DONLIN and M. FREELING, 1999 Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics **151**: 331-341.
- LISCH, D., and N. JIANG, 2008 Mutator and Pack-MULEs, pp. 277-306 in *The maize handbook - Volume II: Domestication, Genetics and Genomics of Maize*, edited by J. L. BENNETZEN and S. HAKE. Springer, New York, NY.
- MARI-ORDONEZ, A., A. MARCHAIS, M. ETCHEVERRY, A. MARTIN, V. COLOT *et al.*, 2013 Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet **45:** 1029-1039.
- MARTINEZ, G., K. PANDA, C. KOHLER and R. K. SLOTKIN, 2016 Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants **2**: 16030.
- MARTINEZ, G., and R. K. SLOTKIN, 2012 Developmental relaxation of transposable element silencing in plants: functional or byproduct? Curr Opin Plant Biol **15**: 496-502.
- MATSUNAGA, W., N. OHAMA, N. TANABE, Y. MASUTA, S. MASUDA *et al.*, 2015 A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis. Front Plant Sci **6**: 48.
- MATZKE, M. A., and R. A. MOSHER, 2014 RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet **15**: 394-408.
- MCCUE, A. D., K. PANDA, S. NUTHIKATTU, S. G. CHOUDURY, E. N. THOMAS *et al.*, 2015 ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J **34:** 20-35.
- NOBUTA, K., C. LU, R. SHRIVASTAVA, M. PILLAY, E. DE PAOLI *et al.*, 2008 Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci U S A **105**: 14958-14963.
- NUTHIKATTU, S., A. D. MCCUE, K. PANDA, D. FULTZ, C. DEFRAIA *et al.*, 2013 The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol **162**: 116-131.
- O'REILLY, C., N. S. SHEPHERD, A. PEREIRA, Z. SCHWARZ-SOMMER, I. BERTRAM *et al.*, 1985 Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J **4**: 877-882.

- PANDA, K., L. JI, D. A. NEUMANN, J. DARON, R. J. SCHMITZ *et al.*, 2016 Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation. Genome Biol **17:** 170.
- PANDA, K., and R. K. SLOTKIN, 2013 Proposed mechanism for the initiation of transposable element silencing by the RDR6-directed DNA methylation pathway. Plant Signal Behav **8**.
- ROBERTSON, D. S., 1986 Genetic studies on the loss of mu mutator activity in maize. Genetics **113**: 765-773.
- RUDENKO, G. N., A. ONO and V. WALBOT, 2003 Initiation of silencing of maize MuDR/Mu transposable elements. Plant J **33**: 1013-1025.
- RUDENKO, G. N., and V. WALBOT, 2001 Expression and post-transcriptional regulation of maize transposable element MuDR and its derivatives. Plant Cell **13**: 553-570.
- SAZE, H., and T. KAKUTANI, 2011 Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol **14**: 81-87.
- SCHWAB, R., and O. VOINNET, 2010 RNA silencing amplification in plants: size matters. Proc Natl Acad Sci U S A **107:** 14945-14946.
- SIGMAN, M. J., and R. K. SLOTKIN, 2016 The First Rule of Plant Transposable Element Silencing: Location, Location, Plant Cell **28**: 304-313.
- SINGH, J., M. FREELING and D. LISCH, 2008 A position effect on the heritability of epigenetic silencing. PLoS Genet **4**: e1000216.
- SKIBBE, D. S., J. F. FERNANDES and V. WALBOT, 2012 Mu killer-Mediated and Spontaneous Silencing of Zea mays Mutator Family Transposable Elements Define Distinctive Paths of Epigenetic Inactivation. Front Plant Sci 3: 212.
- SLOTKIN, R. K., 2005 The Heritable silencing of Mutator Transposons by Mu killer, pp. 223 in *Plant and Microbial Biology*. University of California, Berkeley, Berkeley, CA.
- SLOTKIN, R. K., M. FREELING and D. LISCH, 2003 Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics **165**: 781-797.
- SLOTKIN, R. K., M. FREELING and D. LISCH, 2005 Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet **37:** 641-644.
- SLOTKIN, R. K., and R. MARTIENSSEN, 2007 Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet **8:** 272-285.
- SLOTKIN, R. K., M. VAUGHN, F. BORGES, M. TANURDZIC, J. D. BECKER *et al.*, 2009 Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell **136**: 461-472.
- TAN, B. C., Z. CHEN, Y. SHEN, Y. ZHANG, J. LAI *et al.*, 2011 Identification of an active new mutator transposable element in maize. G3 (Bethesda) **1**: 293-302.
- WOODHOUSE, M. R., M. FREELING and D. LISCH, 2006 Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol **4:** e339.

- WU, L., L. MAO and Y. QI, 2012 Roles of dicer-like and argonaute proteins in TASderived small interfering RNA-triggered DNA methylation. Plant Physiol **160**: 990-999.
- ZHAO, Z. Y., and V. SUNDARESAN, 1991 Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mu1 transposable element. Mol Gen Genet **229:** 17-26.

Supplemental Table 1. Genetic interaction between a silenced and an active *MuDR* element. grown from spotted seed ^a

8	p1*	p4	spotted	pale	total	%spot	Chi square
2	yes	yes	134	111	245	55%	0.14172
3	yes	yes	8	12	20	40%	0.37109
4	yes	yes	167	160	327	51%	0.69868
5	yes	yes	261	239	500	52%	0.32518
6	yes	yes	74	78	152	49%	0.74560
8	yes	yes	119	110	229	52%	0.55202
total	yes	yes	763	710	1473	52%	0.16730
	,	,					
1	no	yes	166	165	331	50%	0.95617
7	no	yes	45	50	95	47%	0.60796
9	no	yes	185	182	367	50%	0.87556
10	no	yes	143	122	265	54%	0.19704
11	no	yes	103	93	196	53%	0.47505
13	no	yes	45	46	91	49%	0.91651
14	no	yes	186	208	394	47%	0.26771
total	no	yes	873	866	1739	50%	0.86669
grown from pale seed							
	p1	p4	spotted	pale	total	%spot	
1	yes		0	80	80	0%	
2	yes		0	154	154	0%	
3	yes		0	234	234	0%	
5	yes		0	322	322	0%	
6	yes		0	456	456	0%	
9	yes		0	429	429	0%	
12	yes		0	168	168	0%	
17	yes		0	224	224	0%	
total				2067	2067		
4	no		0	187	187	0%	
7	no		0	428	428	0%	
8	no		0	176	176	0%	
10	no		0	337	337	0%	
13	no		0	169	169	0%	
14	no		0	154	154	0%	
15	no		0	165	165	0%	
16	no		0	272	272	0%	
18	no		0	468	468	0%	
total			0	2356	2356	0%	

^a A plant carrying p1* and p4 was crossed to a tester. The resulting seed was separated into spotted and pale progeny, genotyped for p1* and p4 and test crossed giving the resulting spotted and pale progeny seeds.

	Replicate 1 (TPM) ^b					Repli	
	no MuDR or Muk	MuDR only	Muk only	F1 leaf2	F1 leaf6	no MuDR or Muk	MuDR only
MuDR							
18-nt	0.00	0.00	6.11	1.67	1.38	1.63	0.00
19-nt	0.00	0.29	8.55	1.11	4.15	0.81	0.00
20-nt	1.58	0.00	11.91	3.33	1.38	0.00	0.00
21-nt	7.13	0.29	35.44	16.11	16.61	1.63	0.00
22-nt	11.08	0.29	194.60	60.00	19.37	4.07	0.00
23-nt	0.79	0.00	8.86	2.22	1.38	0.81	0.00
24-nt	1.58	1.75	15.89	4.44	4.15	1.63	0.00
25-nt	0.00	0.29	1.22	0.56	1.38	0.00	0.00
26-nt	0.00	0.00	0.00	0.56	0.00	0.00	0.00
Muk							
18-nt	0.00	0.00	5.19	1.11	1.38	1.63	0.00
19-nt	0.00	0.29	6.42	0.56	2.77	0.81	0.00
20-nt	0.79	0.00	9.78	1.11	1.38	0.00	0.00
21-nt	4.75	0.29	35.74	11.67	12.45	1.63	0.00
22-nt	11.88	0.29	185.44	53.33	19.37	3.26	0.00
23-nt	0.00	0.00	8.25	0.00	1.38	0.81	0.00
24-nt	1.58	0.58	7.64	1.67	2.77	0.00	0.00
25-nt	0.00	0.00	0.92	0.56	0.00	0.00	0.00
26-nt	0.00	0.00	0.00	0.56	0.00	0.00	0.00

Supplemental T	ahle 2 Small	RNAs in plan	ts with and	l without <i>MuDR</i> and	Muk
Jupplementari	abic Z. Jillan		us with and		i iviun.

^aSmall RNA reads matching t/r/sn/snoRNAs were removed before normalization.

^bTranscripts per million reads.

cate 2 (TPM) ^b	
Muk only	F1 leaf2	F1 leaf6
4.15	9.90	2.46
9.35	6.97	1.64
12.98	11.00	1.64
30.12	81.75	22.97
131.89	297.31	60.71
2.60	9.16	1.64
12.98	24.56	6.56
0.00	0.37	0.82
0.00	0.00	0.00
3.63	7.33	1.64
7.27	4.03	0.82
11.42	8.43	1.64
31.16	51.69	15.59
133.97	271.28	52.51
2.08	6.23	1.64
7.27	11.36	3.28
0.00	0.37	0.82
0.00	0.00	0.00

MuDR

size		Sense ^a	Antisense	Ratio	total
	18	17	12	1.42	29
	19	10	9	1.11	19
	20	14	19	0.74	33
	21	125	104	1.20	229
	22	359	462	0.78	821
	23	18	8	2.25	26
	24	57	23	2.48	80

mudrA

	Sense	Antisense	Ratio	
18	14	10	1.40	24
19	10	9	1.11	19
20	11	17	0.65	28
21	119	97	1.23	216
22	349	453	0.77	802
23	16	7	2.29	23
24	44	9	4.89	53

shared by MuDR and Muk

	Sense	Antisense	Ratio	total
18	12	10	1.20	22
19	6	8	0.75	14
20	10	15	0.67	25
21	83	67	1.24	150
22	320	404	0.79	724
23	17	6	2.83	23
24	55	10	5.50	65

specific to MuDR

	Sense	Antisense	Ratio	total	
18	5	0	na	5	
19	4	1	4.00	5	
20	3	2	1.50	5	
21	41	31	1.32	72	
22	36	50	0.72	86	
23	1	1	1.00	2	
24	0	1	0.00	1	

Supplemental Table 3. Small RNAs matching TIRA, 5'TIRA and 3'TIRA

TIRA

	Sense	Antisense	Ratio	total
18	3	1	3.00	4
19	0	0	ba	0
20	2	3	0.67	5
21	7	13	0.54	20
22	12	68	0.18	80
23	2	1	2.00	3

24	11	5	2.20	16
5'TIRA				
	Sense	Antisense	ratio	total
18	3	0	na	3
19	0	0	na	0
20	2	0	na	2
21	6	1	6	7
22	8	1	8	9
23	2	0	na	2
24	11	2	5.5	13

3'TIRA

	Sense	Antisense	ratio	total
18	0	1	0.00	1
19	0	0	na	0
20	0	3	0.00	3
21	1	12	0.08	13
22	4	67	0.06	71
23	0	1	0.00	1
24	0	3	0.00	3

Summary for 22 and 21 nt small RNAs

	22	21	ratio
MuDR	821	229	3.59
mudrA	802	216	3.71
shared	724	150	4.83
MuDR sp.	86	72	1.19
TIRA	80	20	4.00
5'TIRA	9	7	1.29
3'TIRA	71	13	5.46

^a sense and antisense reads per million reads. Exact matches only

	mop1-1 immature ear ^a							Ibl1 leaf	
Small RNA		wild type		тор	o1-1 mutai	nt		wild type	
length	5TIRA	3TIRA	Ratio ^c	5TIRA	3TIRA	Ratio	5TIRA	3TIRA	Ratio
18-nt	0.2	0.0	nd	1.1	0.0	nd	1.1	0.1	13.0
19-nt	0.7	0.3	2.0	4.8	0.0	nd	1.6	0.1	19.0
20-nt	0.7	0.3	2.0	44.5	0.0	nd	2.3	0.1	26.0
21-nt	5.2	0.3	15.0	41.0	1.7	24.3	7.5	0.2	43.0
22-nt	3.0	0.9	3.4	2.2	2.1	1.1	4.1	0.2	23.5
23-nt	11.5	3.5	3.3	0.6	0.4	1.3	9.5	0.4	22.0
24-nt	51.3	8.3	6.1	5.8	1.5	3.7	83.7	4.4	18.9
25-nt	1.2	0.0	nd	0.1	0.3	0.5	1.2	0.0	nd
26-nt	0.0	0.0	nd	0.1	0.0	nd	0.0	0.0	nd

Supplemental Table 4.	Comparison of small RNAs ma	apped to 5'TIRA and 3'TIRA of <i>MuDR(p1)</i> allowing two	r
	companioon of official factoria		

^aThe data used here was derived from Nobuta et al., 2008.

^bThe data used here was derived from Dotto et al., 2014, replicate 1.

^cRatio of no. of small RNAs mapped to 5TIRA to no. of small RNAs mapped to 3TIRA; nd, not determined.

Comparison of small RNAs mapped to 5'TIRA and 3'TIRA of MuDR(p1) with zero mismatches in different	of small RNAs mapped to 5'TIRA and 3'TIRA of MuDR(p1) with zero mis	smatches in different li
--	---	--------------------------

		mop1-1 immature ear ^a						lbl1 leaf	
Small RNA		wild type		тор	o1-1 mutar	nt		wild type	
length	5TIRA	3TIRA	Ratio ^c	5TIRA	3TIRA	Ratio	5TIRA	3TIRA	Ratio
18-nt	0.0	0.0	nd	0.0	0.0	nd	0.2	0.0	nd
19-nt	0.0	0.0	nd	0.0	0.0	nd	0.1	0.0	nd
20-nt	0.0	0.0	nd	0.1	0.0	nd	0.5	0.0	nd
21-nt	0.5	0.0	nd	1.8	0.6	3.3	0.5	0.0	nd
22-nt	0.0	0.0	nd	1.0	0.8	1.2	0.3	0.0	nd
23-nt	0.5	0.0	nd	0.3	0.1	2.0	0.3	0.1	4.0
24-nt	3.3	0.0	nd	2.7	1.0	2.7	2.0	1.0	2.1
25-nt	0.0	0.0	nd	0.1	0.1	1.0	0.0	0.0	nd
26-nt	0.0	0.0	nd	0.0	0.0	nd	0.0	0.0	nd

Comparison of small RNAs mapped to TIRA and TIRB of MuDR(p1) allowing two mismatches in different libr

	mop1-1 immature ear ^a							Ibl1 leaf	
Small RNA		wild type		тор	o1-1 muta	nt		wild type	
length	TIRA	TIRB	Ratio ^c	TIRA	TIRB	Ratio	TIRA	TIRB	Ratio
18-nt	0.2	0.2	1.0	1.1	1.1	1.0	1.0	0.7	1.4
19-nt	1.0	1.2	0.9	4.8	4.9	1.0	1.6	1.6	1.0
20-nt	0.7	0.5	1.3	44.3	44.5	1.0	1.7	1.7	1.0
21-nt	4.9	3.7	1.3	39.3	39.6	1.0	7.1	6.5	1.1
22-nt	3.3	2.6	1.3	1.3	1.3	1.0	3.8	3.9	1.0
23-nt	11.3	10.1	1.1	0.4	0.6	0.8	9.3	9.3	1.0
24-nt	49.2	47.5	1.0	3.4	3.1	1.1	82.2	79.4	1.0
25-nt	1.2	0.5	2.3	0.1	0.3	0.5	1.2	1.2	1.0
26-nt	0.0	0.0	nd	0.1	0.3	0.5	0.0	0.0	nd

	mop1-1 immature ear ^a							Ibl1 leaf	
Small RNA		wild type		тор	o1-1 muta	nt		wild type	
length	TIRA	TIRB	Ratio ^c	TIRA	TIRB	Ratio	TIRA	TIRB	Ratio
18-nt	0.0	0.0	nd	0.0	0.0	nd	0.2	0.2	1.0
19-nt	0.0	0.0	nd	0.0	0.0	nd	0.1	0.1	1.0
20-nt	0.0	0.0	nd	0.1	0.1	1.0	0.5	0.5	1.0
21-nt	0.5	0.5	1.0	1.8	2.0	0.9	0.5	0.5	1.0
22-nt	0.0	0.0	nd	1.1	1.3	0.9	0.3	0.3	1.0
23-nt	0.5	0.5	1.0	0.3	0.1	2.0	0.4	0.3	1.3
24-nt	3.3	4.3	0.8	2.9	3.6	0.8	2.8	2.1	1.3
25-nt	0.0	0.0	nd	0.3	0.1	2.0	0.0	0.0	nd
26-nt	0.0	0.0	nd	0.0	0.0	nd	0.0	0.0	nd

Comparions of small RNAs mapped to TIRA and TIRB of MuDR(p1) with zero mismatches in different librarie

mismatches in different librarie

apex ^b				
Ibl1 mutant				
5TIRA	3TIRA	Ratio		
1.1	0.0	nd		
3.2	0.2	14.0		
3.6	0.0	nd		
9.3	0.0	nd		
3.9	0.5	8.5		
16.4	0.0	nd		
115.4	4.1	28.2		
1.4	0.0	nd		
0.0	0.0	nd		

raries

h		
apex ^b		
	lbl1 mutan	t
5TIRA	3TIRA	Ratio
0.0	0.0	nd
0.5	0.2	2.0
1.1	0.0	nd
1.1	0.0	nd
0.0	0.0	nd
0.2	0.0	nd
2.3	0.9	2.5
0.0	0.0	nd
0.0	0.0	nd

aries

h

apex ^b		
	Ibl1 mutan	it
TIRA	TIRB	Ratio
1.1	1.1	1.0
2.7	2.7	1.0
2.5	2.5	1.0
8.2	8.2	1.0
4.1	4.1	1.0
16.2	15.9	1.0
114.5	113.5	1.0
1.4	1.1	1.2
0.0	0.0	nd

es		
apex ^b		
	Ibl1 mutar	nt
TIRA	TIRB	Ratio
0.0	0.0	nd
0.5	0.5	1.0
1.1	1.1	1.0
1.1	1.1	1.0
0.0	0.0	nd
0.2	0.2	1.0
3.0	2.5	1.2
0.0	0.0	nd
0.0	0.0	nd

primer name	primer sequence
Mu1bis1	TACARCACRTACRCCARCACC
a1mum2bis1	GYGAGTGTTTAAGGTTGGTAGGTA
a1mum2bis2	GATYGAYGAYGGTGTGATATATAATG
p1bis2F	GTTGGYGAGGAGGAGYAYGAGGTG
TIRAbis2R	CARCTCCCRARAACACTCCAATTC
TIRAmF6	TYAGGGAAYTGGAGYGAYGGGTG
p1bis2F	GTTGGYGAGGAGGAGYAYGAGGTG
TIRAbis2R	CARCTCCCRARAACACTCCAATTC
p1bis7Fmed	GGGTGTTTGGTTGAGAYGAGATA
RLTIR2	ATGTCGACCCCTAGAGCA
EX1	ACATCCACGCTGTCTCAGCC
p4flankB	CGTGAAAGGTGGAGACTACTGGAA
p5flankB	CGATTAAGCGCGACGAACACG