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Abstract 6 

Identifying the molecular mechanisms that control differential gene expression (DE) is a major goal of basic and disease 7 

biology.  Combining the strengths of systems biology and deep learning in a model called DEcode, we are able to predict 8 

DE more accurately than traditional sequence-based methods, which do not utilize systems biology data.  To determine 9 

the biological origins of this accuracy, we identify the most predictive regulators and types of regulatory interactions in 10 

DEcode, contrasting their roles across many human tissues.  Diverse systems biology, ontological and disease-related 11 

assessments all point to the predominant influence of post-translational RNA-binding factors on DE.  Through the 12 

combinatorial gene regulation that is captured in DEcode, it is even possible to predict relatively subtle person-to-person 13 

variation in gene expression.  We demonstrate the broad applicability of these clinically-relevant predictions by predicting 14 

drivers of aging throughout the human lifespan, gene coexpression relationships on a genome-wide scale, and frequent 15 

DE in diverse conditions.  Researchers can freely access DEcode to utilize genomic big data in identifying influential 16 

molecular mechanisms for any human expression data - www.differentialexpression.org. 17 

Introduction 18 

While all human cells share DNA sequences, gene regulation differs among cell types and developmental stages, and in 19 

response to environmental cues and stimuli. Accordingly, when gene expression is not properly regulated, cellular 20 

homeostasis can be perturbed, often affecting cell function and leading to disease1. These distinctions between cell 21 

states are observed as differential expression (DE) of gene transcripts. DE have been cataloged for tens of thousands of 22 

gene expression datasets, in the context of distinctions between species, organs, and conditions. Despite the important 23 
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and pervasive nature of DE, it has been challenging to shift from these observations towards a coherent understanding 24 

of the underlying generative processes that would essentially decode DE– a transition which is essential for progress in 25 

basic and disease biology. We address this gap by exploiting novel computational and systems biology approaches to 26 

develop a predictive model of DE based on genome-wide regulatory interaction data. Utilizing diverse genomic 27 

datasets, we identify a complex, yet strikingly consistent set of principles that control DE. This model of differential 28 

expression, called DEcode, can be applied to the majority of current and future gene expression data, to accelerate basic 29 

and disease biology, by identifying the origins of DE in each experiment. 30 

Diverse molecular interactions have been shown to generate DE, and jointly regulate gene expression at the 31 

transcriptional and post-transcriptional levels. Major classes of gene regulatory interactions have been cataloged at the 32 

genomic scale, including transcription factor (TF)-promoter interactions2, protein-RNA interactions3, RNA-RNA 33 

interactions4, chromatin interactions5, and epigenetic modifications on DNAs6, histones, and RNAs7. Statistical models 34 

of gene expression can help fulfill the purpose of these resources in describing the origins of gene regulation and DE1. 35 

However, such raw data resources have outpaced model development, likely due to the challenge of uniting diverse 36 

molecular data into a single accurate model. 37 

Predicting DE on the basis of gene regulatory interactions is one initial approach to understanding its origins. Among 38 

many possible statistical approaches to predicting DE, deep learning (DL) blends diverse data sources in a way that 39 

approximates the convergence of regulatory interactions. Indeed, DL has been applied to genomic research8, 9 including 40 

RNA splicing10, genomic variant functions11, and RNA/DNA binding12. However, accurate prediction is only one 41 

component of understanding DE; additional genomic and systems biology analysis are helpful in understanding how 42 

predictions are fueled by existing molecular concepts, mechanisms, and classes. 43 

To decode the basis of DE in terms of molecular regulatory interactions, we first learn to predict it with a high degree of 44 

accuracy, using a DL model we call “DEcode”. This model combines several types of gene regulatory interactions and 45 

allows us to prioritize the main systems and molecules that influence DE on a tissue-specific basis. We further establish 46 

likely molecular mechanisms for this gene regulation and validate the influence of the predicted strongest regulators. In 47 

parallel, we predict the origin of person-to-person DE, which is the major component of experimental and clinical studies. 48 

These particularly challenging predictions are validated on a genome-wide scale, as we identify key drivers of 49 

coexpression, and also drivers for phenotype-associated differential expression. These tests and applications indicate 50 

DEcode can combine multiple recent data sources, to extract regulators for arbitrary human DE signatures.  51 
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Results 52 

Promoter and RNA features predict differential expression across human tissues 53 

The overarching goal of this study is to accurately predict gene expression as a function of molecular interactions. These 54 

results should be tissue-specific, but also highlight major regulatory principles across tissues, and ideally have sufficient 55 

accuracy to predict the relatively small expression changes observed between individual humans. To accomplish this, we 56 

utilized deep convolutional neural networks in a system called DEcode that can predict inter-tissue variations and inter-57 

person variations in gene expression levels from promoter and mRNA features (Figure 1). The promoter features 58 

included: the genomic locations of binding sites of 762 TFs and the mRNA features encompassed the locations of binding 59 

sites of 171 RNA-binding proteins (RNABPs) and 213 miRNAs in each mRNA (Table S1). DEcode takes the promoter 60 

features and the mRNA features for each gene as inputs and outputs its expression levels under various conditions. We 61 

note that the prediction is based on only the presence or absence of known binding sites, and other information such as 62 

gene expression levels of TFs, RNABPs, and miRNAs is not utilized. First, we applied the DEcode framework to tissue-63 

specific human transcriptomes of 27,428 genes and 79,647 transcripts measured in the GTEX consortium13 to predict 64 

log-fold changes across 53 tissues against the median log-TPM (transcripts per million) of all tissues, as well as the 65 

median log-TPM of all tissues with a multi-task learning architecture. To ensure rigorous model testing, we excluded all 66 

genes or transcripts coded in chromosome 1 from the training data and used them as the testing data for evaluating the 67 

performances of DEcode models. This procedure prevents information leaking from intra-chromosomal interactions and 68 

potential overlaps of regulatory regions (details of model construction in Figure S1). The predicted median TPM levels 69 

showed high consistency with the actual observations for both gene-level (Spearman's rho = 0.81) and transcript-level 70 

(Spearman's rho = 0.62) (Figure 2A). Moreover, the model predicted the differential transcript usage within the same 71 

gene (Spearman's rho = 0.44) (Figure 2A). The DEcode models also predicted the differential expression profiles across 72 

53 tissues for both gene (mean Spearman's rho = 0.34), transcript (mean Spearman's rho = 0.32), and transcript-usage 73 

levels (mean Spearman's rho = 0.16) (Figure 2B). The predicted gene expression for the testing genes was indeed tissue-74 

specific, as they showed less correspondence with the expression profiles from alternate tissues (Figure 2C). 75 

To provide context for the statistical performance of DEcode, we contrast it to a high-performing method called 76 

ExPecto11, as it was designed to predict GTEX gene expression from epigenetic states, estimated from promoter 77 

sequences via DL. We built 10 models for each method using the same genes for training, validation, and testing to 78 
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predict gene expression in the 53 tissues. In this comparison, DEcode showed an average of 7.2% improvement in root 79 

mean square error over ExPecto (Figure 2D) which translates into an average correlation coefficient with actual gene 80 

expression of 0.42 - a 50% increase over 0.28 from ExPecto (Figure S2).  81 

Beyond the predictive performance of DEcode, we utilize the model to help define the biological processes regulating 82 

DE. Many studies have demonstrated that TFs-promoter interactions are critical determinants of transcriptional activity 83 

of promoter and thereby define gene expression levels2. However, it is unclear to what extent RNA features, which we 84 

define as each RNA’s binding sites of proteins and miRNA’s, contribute to gene expression levels compared to TFs-85 

promoter interactions. To answer this question, we re-trained the deep learning model, randomizing either RNA features, 86 

promoter features, or both. We found that RNA features alone explained the actual TPM values better than the model 87 

trained with promoter features (Figure 2E). An example of how RNA features may distinguish between transcripts to a 88 

greater extent than promotor features can be seen in the structure of the gene ACADM (Figure 2F), which showed 89 

substantial differences between the promoter-based model and the RNA-based model. For instance, the promoter-based 90 

model could not distinguish 8 out of 11 transcripts coding for the ACADM gene that shared the same promoter region 91 

(p1 in Figure 2F). However, the actual expression levels for the 8 transcripts varied depending on the mRNA structures 92 

and therefore were more accurately captured by the RNA-based model (Figure 2F). However, the importance of RNA 93 

features was tissue-dependent (Figure 2G), as gene expression in the aorta and coronary arteries were mainly defined by 94 

TF-promoter interactions, whereas RNA-binding features were the major predictors for thyroid-specific or skeletal 95 

muscle-specific expression. 96 

 97 

Regulatory factors for differential expression across human tissues 98 

To quantify the importance of the biological interactions weighted in the DEcode models, we calculated DeepLIFT 99 

scores, which are a measure of the additive contribution of its binding site to each prediction14, 15 and then averaged the 100 

DeepLIFT scores for each interactor across genes (Table S2). Because DeepLIFT scores for the gene-based model and 101 

the transcript-based model were well correlated (Spearman's rho = 0.52, P < 2.2e-16) (Figure S3), we focused on 102 

DeepLIFT scores for the gene-based model in the following analyses. For the prediction of median TPM levels, the 103 

enrichment of the binding sites of RNABPs peaked among the top 12% of influential predictors, which was significantly 104 

greater than the influence of TFs and miRNAs (P < 0.00001) (Figure 3A). Indeed, out of the top 30 key predictors, 19 105 

were RNABP’s binding sites and 11 were TF binding sites. The direction of DeepLIFT scores indicates either a positive 106 
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or a negative effect of having the binding site on the abundance of RNA (Figure 3B). For instance, the binding sites of 107 

ATXN2, DDX3X, and FUS had high positive DeepLIFT scores to the prediction of RNA abundance, indicating the 108 

RNAs that bear binding sites for these RNABPs tended to be more highly expressed (Figure 3B). We also calculated 109 

DeepLIFT scores for tissue-specific expression to examine critical predictors for each of 53 tissues (Figure 3C). The 110 

DeepLIFT scores across tissues recapitulated the contribution of binding sites of known master regulators in each tissue 111 

such as REST for brain tissues16, SPI1 and RUNX1 for immune-related tissues17, TP63 and KLF4 for skin18, HNF4A 112 

for liver19, and PPARG for adipose-related tissues20, which suggested the differences in predictive contributions of 113 

binding sites of a given regulator reflect the differential activities of regulators across tissues. We hypothesized that the 114 

differential activities of a regulator could be in part explained by the relative abundance of a regulator across tissues. 115 

Based on this hypothesis, we contrasted DeepLIFT scores for the binding sites of each regulatory factor and its expression 116 

levels across tissues. We indeed found that 99 RNABPs and 410 TFs showed significant correlations between DeepLIFT 117 

scores of their binding sites and their expression levels (FDR < 5%) (Figure S4). These relationships were not based on 118 

differences in expression profiles between brain and non-brain tissues, as the relationships remained the same without 119 

brain tissues (Figure S5). The sign of the correlation possibly reflects whether the binding of a regulator to RNA 120 

increased or decreased the abundance of the RNA. For instance, the model suggested that PPARG and PTBP1 are positive 121 

regulators of gene expression as DeepLIFT scores of PPARG or PTBP1 binding sites were higher in the tissues expressing 122 

PPARG or PTBP1 at higher levels (Figure 3D). Indeed, PPARG is a transcriptional activator20 and PTBP1 is a stabilizer 123 

of RNAs21. Conversely, the expression levels of REST, a transcriptional repressor16, or METTL14, an RNA 124 

methyltransferase destabilizing RNAs22, showed inverse correlations with their DeepLIFT scores as expected (Figure 125 

3D). These results indicated that DEcode reflects biological mechanisms for controlling RNA abundance. 126 

 127 

Critical predictors of transcriptome are enriched for disease genes.  128 

Next, we characterized the roles of the critical regulators of human transcriptome, as suggested by the DEcode models 129 

(Figure 3A). We hypothesized that if these are truly impactful transcriptome regulators, then defects in such regulators 130 

would have significant impacts on cellular phenotypes and thereby lead to disease. To examine this hypothesis, first, we 131 

obtained genes whose loss-of-function (LoF) mutations are depleted through the process of natural selection, from the 132 

Exome Aggregation Consortium (ExAC)23. Since these genes are intolerant to LoF mutations they are considered to play 133 

important roles in individual fitness. Out of all TFs and RNABPs used in DEcode, 853 genes were examined in the ExAC 134 
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study and 601 genes were reported as being intolerant of homozygous or heterozygous LoF mutations, with probability 135 

greater than 99%. We found that these LoF-mutation-intolerant regulators had greater DeepLIFT score magnitudes for 136 

the prediction of the absolute gene expression (Figure 3E and Table S3). In particular, these associations are based on 137 

genes that are intolerant to both heterozygous and homozygous LoF mutations (Figure S6). This suggested that having 138 

LoF mutations only in a single allele of the predicted critical regulators would cause a deleterious consequence on survival 139 

or reproduction in humans. Next, to examine whether the predicted critical regulators of transcriptome indeed cause 140 

diseases, we obtained disease-causing genes registered in the Online Mendelian Inheritance in Man (OMIM)24. We 141 

confirmed that mutations in the regulators with high DeepLIFT scores tended to cause genetic disorders (Figure 3E). 142 

Interestingly, their roles on fitness are likely preserved across species, as dysfunctions of the predicted critical regulators 143 

also led pre-weaning lethality in mice (Figure 3E). Lastly, we asked whether the loss-of-function of the predicted critical 144 

regulators of the transcriptome could also impair cellular viability, by overlapping them with loss-of-function screens for 145 

a range of cellular models, from the Cancer Dependency Map project (DepMap)31. We found that the key genes for 146 

cellular viability tended to have higher DeepLIFT scores in the DEcode model (Figure 3E). These results were robust, 147 

as they were also supported by the DeepLIFT scores for the transcript-level model (Figure S7). Together, the results 148 

indicated that the critical predictors of transcriptome indeed play critical roles in maintaining vital cellular and body 149 

functions. Thus the DEcode model can identify disease-causing genes, and this capability points toward the broader 150 

validity of predicted key regulators.  151 

 152 

DEcode predicts differential expression across individuals  153 

Next, we asked whether the same input of promoter and RNA features could also predict relative expression differences 154 

across individuals within the same tissue. We hypothesized that each individual has different activation levels of 155 

regulatory factors, and thus those differences lead to person-specific differential expression of their targets. To verify our 156 

hypothesis, we extended the DEcode framework to model differential expression across individuals for 14 representative 157 

tissues with a sample size greater than 100 in GTEX. This was challenging as the average variance in gene expression 158 

within tissues was less than 25% of that between tissues (Figure S8).  159 

To generate person-specific predictions, we utilized transfer learning, wherein the parameters in convolutional layers in 160 

the across-tissue DEcode model were fixed and then only the parameters in the fully-connected layers were tuned (Figure 161 

S9). The person-specific models successfully predicted fold changes across individuals with a mean Spearman’s 162 
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correlation of ~0.28 (Figure 4A). The performance was further increased to 0.34 when we filtered out the models that 163 

worked poorly for the validation data (Figure S10). Note the model selection was performed based on validation data 164 

alone, and all the follow-up performance evaluations and analyses were conducted by using testing data to prevent 165 

information leaks that could inflate model performance (Figure S9). The models were indeed person-specific as they did 166 

not predict gene expression profiles of unrelated individuals (Figure 4A). To examine if the model captured the person-167 

specific expression shared across tissues25, we compared expression between tissues within the same individuals and 168 

between different individuals. The predicted expression showed better concordance between tissues from the same 169 

individuals, as is the case with actual expression data, which indicated the model captured the person-specific regulatory 170 

mechanisms, even though we did not use any direct information that could identify individuals (Figure 4B).  171 

Next, to gauge the contribution of RNA and promoter features to the person-specific expression profiles, we re-trained 172 

models with randomized RNA features, promoter features, or both. The RNA-feature-based model performed on average 173 

85% as well as the model trained with all features. This corresponded to an average 173% performance gain, compared 174 

to the promoter-feature-based model, which suggested that the post-transcriptional controls are the major determinants 175 

of the differential expression across individuals (Figure 4C). The model also allowed us to investigate the person-specific 176 

activities of regulators by calculating DeepLIFT scores (Figure 4D). At least 100 of regulators out of 933 regulators in 177 

each tissue showed a good correlation between their DeepLIFT scores and expression levels across individuals (Figure 178 

S11). The signs of these correlations were consistent between tissues, and consistent with those of the cross-tissue model 179 

(Figure S12). This suggested that differential expression between individuals and between tissues can be modeled by the 180 

universal relationships between regulators and their targets.  181 

To examine whether specific genes contributed to the per-person accuracy of the predicted gene expression, we also 182 

assessed its accuracy on a per-gene basis. The predicted expression of a majority of the testing genes (78% on average) 183 

showed significant positive correlations with the actual gene expression (FDR<5%). In order to assess whether this 184 

predictive performance outperformed a state of the art method, we compared DEcode with PrediXcan26, which predicts 185 

person-specific gene expression from genetic variations in cis-regulatory regions of genes. We built PrediXcan models 186 

for each of the testing genes based on the same GTEX gene expression data used for the DEcode models and whole-187 

genome sequence data of corresponding individuals (see Methods). The PrediXcan model predicted gene expression 188 

levels of only about 11% of the testing genes at FDR less than 5%, which was far less than that of DEcode (Figure 4E). 189 
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This suggested that the differential activity of transcriptional and post-transcriptional regulators has a larger effect on 190 

gene expression than genetic variations in cis-regulatory regions. 191 

The genes that DEcode could predict well were similar across tissues (Figure S13). This suggested that the predictability 192 

of gene expression is defined by gene characteristics rather than a target tissue. We, therefore, explored gene 193 

characteristics that were associated with the per-gene accuracy of the predicted expression. We found that the models 194 

showed higher performance for the genes that are registered in multiple gene annotation databases than those found only 195 

in the GENCODE database (Figure S14). The GENCODE-specific genes are novel or putative and thus their annotations 196 

are not well established. Since both actual gene expression and binding features in RNA and promoter regions are likely 197 

to be less accurate for such a novel or putative gene, it is reasonable that the performance of the model for those genes 198 

was lower than other well-established genes. Beyond the annotation reliability, we found that the number of known 199 

binding features for each gene had a larger effect on the predictability (Figure S15). This suggested that the more 200 

information on RNA and promoter interactions is available, the more the prediction becomes accurate. Interestingly, the 201 

number of binding features in RNAs was a stronger determinant of the predictive accuracy than that in promoter regions 202 

(Figure 4F and Figure S15). RNA-protein interactions are largely missing as global RNA-binding profiles are available 203 

for only about 10% of known RNABPs30. Thus, the incompleteness of RNA features is likely to be an origin of lower 204 

accuracy for a portion of genes. 205 

 206 

DEcode predicts trait-related transcriptomic changes 207 

Next, we asked whether the person-specific expression profiles predicted by the DEcode models also retained trait-208 

associated differential expression changes. For this, we conducted differential expression analysis against the donor’s 209 

age and sex using the predicted gene expression data. Notably, test statistics of the predicted data showed significant 210 

positive correlations with those of the actual data in all tissues for both traits (Figure 5A). Especially, age- and sex-211 

specific expression changes were well preserved in the predicted data in lung (Spearman's rho = 0.59, P < 2.2e-16) and 212 

hippocampus (Spearman's rho = 0.47, P < 2.2e-16), respectively. The predicted associations were the closest to those of 213 

corresponding tissues in 9 and 11 out of 14 tissues for age and sex, respectively (Figure 5B). This indicated that the 214 

predicted gene expression changes against age and sex are tissue-specific in most cases, rather than the effects shared 215 

across tissues. We also explored the regulators for the age- and sex-related gene expression changes by associating 216 

regulator's DeepLIFT scores with age and sex. We found that many regulators, for instance, 717 in the tibial artery and 217 
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904 in the breast mammary tissue, showed age- and sex-dependent changes at FDR 5%, respectively (Figure 5C and 218 

Table S4), which showed the capability of DEcode to associate transcriptional regulators with phenotypes. Although 219 

there were more TFs associated with phenotypes than RNABPs and miRNAs, overall collective impacts of RNA features 220 

on the generative process of DEs for age and sex were greater than those of promoter features in most tissues (Figure 221 

S16). 222 

 223 

DEcode predicts gene co-expression relationships 224 

Co-expression analysis is a frequent component of transcriptome studies as gene-to-gene co-expression relationships are 225 

regarded as functional units of the transcriptional system27. Therefore, we examined if the DEcode models could detect 226 

known gene co-expression relationships. These tests were both a potential validation of the person-specific DEcode 227 

predictions, and a means to explore the biological basis of co-expression. We found that the gene co-expression 228 

relationships in the predicted gene expression profiles separated gene pairs with positive and negative correlation in the 229 

actual gene expression data in each tissue (Figure 6A). Furthermore, the predicted gene expression profiles also detected 230 

inter-tissue co-expression relationships (Figure 6B). The accuracy of these results motivated us to investigate key factors 231 

driving co-expression, via the DEcode predictions. RNA features alone could explain co-expression relationships better 232 

than promoter features in most tissues (Figure 6C), which again suggested the significant contribution of RNA features 233 

to person-specific transcriptomes.  234 

To further assess the capability of DEcode to decipher the mechanisms leading a specific co-expression relationship, we 235 

focused on the co-expression of LAPTM5 and CD53, which were robustly co-expressed both in the simulated expression 236 

data and the actual data in all tissues except whole-blood. Using the trained model, we simulated the consequences of 237 

disruptions of promoter and mRNA features. The co-expression relationship was weakened when the features near 238 

transcriptional start site (TSS) and 1,000 bp downstream of TSS in LAPTM5 or near TSS and 500 bp upstream of TSS in 239 

CD53 were removed (Figure 6D). These observed effects were reasonable because many TFs bind to these regions 240 

(Figure 6D). We further examined the specific regulators for the co-expression relationships by simulating knockout 241 

(KO) effects of regulators. The in-silico KO experiments revealed that immune-related TFs such as SPI1 and TBX21 242 

potentiated the co-expression relationships consistently across multiple tissues (Figure 6E). To validate if these 243 

regulators indeed induced the co-expression relationships, we conducted a mediation analysis that is an orthogonal 244 

computational method to infer the effect of regulators on downstream targets. A mediation analysis evaluated the 245 
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hypothesis where if LAPTM5 and CD53 are co-expressed due to the predicted regulators, normalizing expression levels 246 

of the two genes by the expression levels of the regulators would decrease the co-expression relationships. Specifically, 247 

it quantified the covariance between LAPTM5 and CD53 explained by the expression levels of the predicted regulators 248 

using the actual expression data. The set of the 10 regulators together mediated up to 94% of covariance, which was 249 

significantly greater than the same number of randomly picked regulators (Figure 6F). This example showed the utility 250 

of DEcode framework to identify the drivers of the co-expression.  251 

 252 

DEcode reveals molecular regulations for frequently DE genes in meta-transcriptomes 253 

A recent meta-analysis of over 600 human transcriptome data revealed that some genes are more likely to be detected as 254 

DE genes than others in diverse case-control studies28. From this observation, Megan et al. formulated the “DE prior”, a 255 

global ranking of gene’s generic likelihood of being DE. The genes with high DE prior rank were significantly more 256 

enriched with DE genes from a variety of conditions, as compared to other functional gene sets, such as those contained 257 

in gene ontology or canonical pathways28. However, the regulatory-origin behind the ranking of these highly responsive 258 

genes has yet to be uncovered. Therefore, we used DEcode to examine whether the DE prior rank could be generated by 259 

gene regulatory interactions, and to identify critical regulatory relationships for frequently DE genes. The ability of 260 

DEcode to predict global DE prior ranks was highly significant (P < 2.2e-16) and practically relevant (Spearman's rho = 261 

0.53) (Figure 7A). Furthermore, DEcode was able to identify genes with high (90th percentile and greater) DE prior 262 

probability (AUCROC = 0.81, 95% confidence interval = 0.78 - 0.84) (Figure 7B). Re-training the model with 263 

randomized inputs indicated that TF-promoter interactions were the major factors explaining the DE prior rank (Figure 264 

7B). To further characterize TFs that contributed to the prediction, we defined TFs with DeepLIFT score greater than 265 

90th percentile as critical TFs (Table S5) and performed pathway analysis on them. We found that critical TFs were 266 

enriched for cancer or inflammatory-related KEGG pathways (FDR<5%) such as pathways in cancer (Fold = 3.1, P = 267 

4.2e-5), JAK-STAT signaling pathway (Fold = 6.8, P = 4.8e-5), chemokine signaling pathway (Fold = 7.3, P = 1.4e-4), 268 

and acute myeloid leukemia (Fold = 4.5, P = 3.6e-4) (Table S6). This result is consistent with the disease-related data 269 

context for DE prior, which is 62% cancer-related and 23% inflammatory-related. Supported by the ability to predict DE 270 

prior ranks, and by the consistency of these results, this application of DEcode illustrates how it goes beyond DE gene 271 

lists, to uncover major key drivers for generating DE.  272 
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In summary, DEcode defines major principles in gene regulation in arbitrary gene expression data. It is applicable to 273 

tracing the origins of complex gene expression patterns such as co-regulation, and also to arbitrary gene expression 274 

signatures. This capacity is strongly supported on a comparative basis to alternative methods, and on an absolute basis 275 

across diverse applications, which include, through predictions of transcript-usage, person-specific gene expression, 276 

frequently DE genes of multiple external disease-related gene sets.  277 

Discussion 278 

We introduced the DEcode framework, which integrates a wealth of genomic data into a unified computational model of 279 

transcriptome regulations to predict multiple transcriptional effects, including the absolute expression differences across 280 

genes and transcripts, tissue- and person-specific transcriptomes. Systems biology analysis of these results provided 281 

biological insights regarding the regulatory mechanisms of transcriptome. For instance, it suggested that absolute 282 

expression levels are mainly under post-transcriptional control, whereas tissue-specific expression is shaped by both 283 

transcriptional and post-transcriptional control. This implied that TFs act as a switch that initiates tissue-specific 284 

transcriptional programs, but once a gene is transcribed at a certain level, its abundance in the cells will be primarily 285 

regulated by RNABPs. The post-transcriptional regulators were also critical for explaining individual differences in 286 

transcriptomes and thus may fine-tune the transcriptome in response to environmental and genetic factors. 287 

Transcriptome analysis often identifies differentially expressed genes and then assesses the enrichment of functional 288 

genes such as TF-targets one by one. The person-specific DEcode model offers several comparative advantages. First, 289 

DEcode can take into account the effects of multiple regulators simultaneously as opposed to one at a time. Second, 290 

DEcode can estimate the person-specific regulator’s activities that can be used to identify regulators associated with a 291 

phenotype of interest. Third, DEcode can simulate the consequence of KO perturbations for each gene. This step can 292 

reduce the number of candidate key drivers of gene expression changes by an order of magnitude or more, and facilitates 293 

the design of follow-up experiments. Therefore, DEcode can extract more actionable information from transcriptome 294 

data, which will benefit a variety of transcriptome studies.  295 

Looking toward even more expansive applications, the DEcode framework has the flexibility to incorporate other types 296 

of genomic information such as DNA methylation, histone marks, and RNA modifications, and also can be extended to 297 

other organisms. Thus, DEcode framework provides a direct bridge between accumulating genomic big data and 298 
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individual transcriptome studies, allowing researchers to predict molecules that control DE associated with any condition 299 

or disease.  300 

Materials and Methods 301 

Transcriptome data processing 302 

To prepare gene expression data used for the model training, we downloaded the median gene TPM from 53 human 303 

tissues from the v7 release of GTEX portal (https://gtexportal.org). We kept 27,428 genes expressed greater than two 304 

TPM in at least one tissue and log2-transformed TPM with the addition of 0.25 to avoid a negative infinity. Then, we 305 

calculated the median log2-TPM across 53 tissues and log2-fold-changes relative to the median of all tissues. The 306 

processed gene-level expression data comprised 27,428 genes with 54 columns including relative fold-changes for 53 307 

tissues and the median log2-TPM across 53 tissues. To compile transcript-level data, we downloaded the individual-308 

level transcript TPM from the GTEX portal and computed the median transcript TPM by tissue. We processed the 309 

transcript data in the same way we did for the gene-level data. The resulted transcript-level data included 79,647 310 

transcripts that corresponded to 23,813 genes. For building person-specific DEcode models, we obtained the gene-level 311 

TPM for each individual in 14 tissues from the GTEX portal. We filtered out lowly-expressed genes in each tissue and 312 

kept genes expressed greater than one TPM in at least 50% of samples. Then, we log2-transformed TPM with the 313 

addition of 0.25 and then quantile normalized the log2-TPM. Finally, we removed the effects of technical covariates 314 

including rRNA rate, intronic rate, and RIN number via linear regression for each gene followed by quantile 315 

normalization. 316 

Promoter and RNA binding features. 317 

To generate RNA and DNA feature matrices, we downloaded genomic locations of binding sites of 171 RNABPs from 318 

POSTAR229 as of Oct 2018, 218 miRNAs from TargetScan Release 7.230, and 826 TFs from GTRD31 as of Oct 2018. 319 

Then, we mapped the binding sites of RNABPs, miRNAs, and TFs to promoters and RNA-coding regions defined in 320 

the GTF file provided by the GTEX portal. A promoter region of each gene was defined as the region from 2,000 bp 321 

upstream of the transcriptional start site (TSS) to 1,000bp downstream of the TSS. We only used interactors that bind to 322 
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promoters or RNA-coding regions of at least 30 genes, or transcripts as the predictors in each model. To reduce the size 323 

of the input, an RNA-coding region and a promoter region of each gene was binned with 100 bp intervals and the 324 

number of bases bound to each RNABP, miRNA, or TF was counted in each interval. This step generated RNA and 325 

DNA feature matrices for each gene described in Figure 1.  326 

Training tissue-specific models 327 

For training the gene-level model of tissue-specific expression, we reserved all 2,705 genes coded on chromosome 1 as 328 

the testing data and the rest of the genes was randomly split into training data (22,251 genes) and validation data (2,472 329 

genes). In the case of the transcript model, we used all 7,631 transcripts coded on chromosome 1 as the testing data and 330 

the rest of the transcripts was randomly split into training data (64,978 transcripts) and validation data (7,038 331 

transcripts). The binding matrices were normalized by the maximum values for each binding protein and miRNA. The 332 

relative fold-changes for 53 tissues were scaled together to set the standard deviation as one and the median log2-TPM 333 

was separately scaled to set the standard deviation as one. These steps were conducted for the training data first and 334 

then the same scaling factors were used for the validation and the testing data to avoid information leaking from those 335 

data. We constructed and trained DL models using Keras (version 2.1.3)32 with a TensorFlow (version 1.4.1)33 336 

backend. Hyper-parameters were optimized using hyperopt (version 0.2)34 based on the mean squared error against the 337 

validation data. The detailed structure of the model was described in Figure S17. The training was done using mini-338 

batches of 128 training examples with a learning rate of 0.001 for Adam optimizer35. The number of maximum training 339 

epochs was set to 100 with early-stopping of 10 based on validation loss. This training cycle was repeated 10 times and 340 

the best model for the validation data was selected as the final model (Figure S1). All models were trained using 341 

TITAN X Pascal graphics processing units (Nvidia). 342 

Comparison of DEcode with ExPecto 343 

To perform a fair comparison between DEcode and ExPecto11, we used 18,550 genes that were commonly included in 344 

both studies and trained models with the same set of genes for training and evaluation. Since ExPecto model was 345 

originally built using genes on chromosome 8 as the testing data, we followed the same procedure as we reserved all 346 

714 genes coded on chromosome 8 as the testing data and the rest of the genes was randomly split into training data 347 

(16,052 genes) and validation data (1784 genes). The epigenetic states estimated by ExPecto were downloaded from 348 
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the ExPecto repository (https://github.com/FunctionLab/ExPecto) as of Nov 2019. Given the epigenetic states, we built 349 

a prediction model for tissue-specific gene expression for each tissue via XGBoost based on the training script 350 

downloaded from the ExPecto repository. We modified the original script so that the early stopping of the model 351 

optimization was decided based on the performance on the validation data instead of the testing data. This modification 352 

prevented the overfitting of the model to the testing data. We used the same hyper-parameters for XGBoost as in the 353 

script. Both hyper-parameters and model parameters of DEcode model were also trained with the same set of training, 354 

validation, and testing genes. 355 

DeepLIFT score calculation 356 

To evaluate the importance of input features to the prediction, we calculated DeepLIFT (Deep SHAP) scores14 using 357 

DeepExplainer implementation (version 0.27.0)15. The DeepLIFT method estimates the contribution of each input 358 

compared to a reference input in a trained DL model. To compute the contribution of the presence of a binding site, we 359 

used a reference that does not have any binding sites in both promoters and RNAs with the median length of all genes 360 

in the testing data. DeepLIFT scores follow a summation-to-delta property where the summation of input contributions 361 

(DeepLIFT scores) is equal to the difference in the predicted value compared to the prediction from the reference input. 362 

We calculated DeepLIFT scores for each gene in testing data for each of 54 outputs, then summed up the scores over 363 

promoter or RNA regions for each feature, and finally averaged them over genes.  364 

Disease genes 365 

The probability that a gene is intolerant for a loss-of-function mutation was downloaded from the release 1.0 of the 366 

ExAC portal (http://exac.broadinstitute.org). Disease genes were obtained from the OMIM portal as of June 2019 367 

(https://www.omim.org/). We excluded provisional gene-to-phenotype associations and genes associated with non-368 

disease phenotypes, multifactorial disorders, or infection. We obtained mouse-lethal genes from Gene Discovery 369 

Informatics Toolkit (v1.0.0)36 that provided pre-processed gene lists from the murine knock-out experiments registered 370 

in Mouse genome informatics (MGI)37 and the International Mouse Phenotyping Consortium (IMPC)38. The results of 371 

CRISPR screening for the genes essential for proliferation or viability conducted in the DepMap project39 were 372 

downloaded from Enrichr portal40, 41 as of June 2019 (https://amp.pharm.mssm.edu/Enrichr). Enrichr portal provided 373 

two CRISPR screening results conducted independently at Broad Institute and the Sanger Institute. To reduce the false 374 
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positives in the CRISPR screening, we used essential genes that were identified in both of the two independent 375 

screenings. 376 

Training person-specific models 377 

To train person-specific models, we utilized the same model structure as the tissue-model, except that the number of 378 

model outputs was modified to match the sample size of the tissue. We re-used the parameters of convolutional layers 379 

in the tissue-model and only parameters in the fully-connected layers were tuned (Figure S9). We used the same gene 380 

splits and the same procedure of normalization and scaling as the tissue-model for training and evaluating models. We 381 

evaluated the model prediction for each individual separately based on validation data and filtered out the individual 382 

models that performed less than 50% percentile of all individual models for some analyses (Figure S9). 383 

Training PrediXcan models 384 

To build a prediction model for gene expression from genotype data, we trained PrediXcan26 models with GTEX gene 385 

expression and genotype data. A QCed vcf file of GTEx genotype data called by whole-genome sequence was 386 

downloaded from dbGaP for 635 individuals. We filtered out variants with a missing rate greater than 1% and minor 387 

allele frequency less than 1% and kept 9,219,660 variants for PrediXcan. We followed the model building procedure 388 

employed in PredictDB (http://predictdb.org/), a repository of PrediXcan models, as of Nov 2019. Briefly, we 389 

randomly split the samples into 5 folds. Then for each fold, we removed the fold from the data and used the remaining 390 

data to train an elastic-net model using 10-fold cross-validation to tune the lambda parameter. With the trained model, 391 

we predicted gene expression values for the hold out samples. We applied the PrediXcan method to predict the same 392 

gene expression data used for the person-specific DEcode models. We built PrediXcan model for each gene using 393 

variants located within 1 Mbp upstream and downstream of its TSS. A missing value of the genotype data was replaced 394 

with an average dosage of non-missing samples. 395 

Differential expression analysis for age and sex 396 

Limma42 was used to identify genes associated with age using gender as a covariate. The log2-TPM values of genes in 397 

the testing data were used. We also tested the associations between DeepLIFT scores for predictors and age via limma 398 
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to identify regulators for DE against ages and sex. The Benjamini–Hochberg procedure was used to control the false 399 

discovery rate at 5%.  400 

in silico binding-site disruption experiment 401 

To simulate the consequence of the removal of binding sites on the expression of LAPTM5 and CD53, we generated 402 

10,000 synthetic inputs for each of LAPTM5 and CD53 where all binding sites in each interval of its promoter and 403 

RNA were randomly removed. From each of these synthetic inputs, we computed predicted expression values and 404 

correlated them with ones of another gene without any disruptions in its binding sites. Then, we used multiple linear 405 

regression to associate the location of disrupted regions with the correlation values between LAPTM5 and CD53 to 406 

estimate the effects of the disruption in each region on the co-expression relationship. 407 

in silico knockout experiment 408 

To simulate the effect of regulator knockout (KO) on the expression of LAPTM5 and CD53, we generated 10,000 409 

synthetic inputs for each LAPTM5 and CD53 where each protein or miRNA bound to its promoter or RNA was 410 

randomly removed from it feature matrices. From each of these synthetic inputs, we computed predicted expression 411 

values and correlated them with ones of another gene without any removals in its feature matrices. Then, we used 412 

multiple linear regression to associate KOs of regulators with the correlation values between LAPTM5 and CD53 to 413 

estimate the effects of the KO of each regulator on the co-expression relationship. We applied the Bonferroni correction 414 

to control multiple testing and the regulators with the corrected p-value less than 0.05 in all tissues were chosen as the 415 

key drivers of the co-expression.  416 

Conditional independence test 417 

To validate the effect of the predicted drivers on co-expression, we conducted a conditional independence test. We 418 

regressed the actual log2-TPM values of LAPTM5 and CD53 with the actual log2-TPM values of the predicted drivers 419 

and computed R2 (variance explained) between the residuals of two genes. The R2 based on the actual gene expression 420 

and one from the residuals were compared to quantify the covariance explained by the predicted drivers. To evaluate 421 

the significance of this effect, we repeated this process 1,000 times with an equal number of randomly picked genes 422 

that have a binding site in LAPTM5 or CD53 as regressors. 423 
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DEcode model for DE prior rank 424 

DE prior rank was downloaded from https://github.com/maggiecrow/DEprior. In the DE prior rank, each gene has a 425 

probability-like value where zero is the minimum and one is the maximum. To convert this value to a non-bounded 426 

scale, we applied the logit transformation to the DE prior value. We assigned a value of 10 to a gene that had an infinite 427 

value after the logit transformation. We used the same gene splits as the GTEX-tissue-model, which resulted in 13,433 428 

genes for training, 1,504 genes for validation, and 1,674 genes for testing. We trained the DEcode model for DE prior 429 

rank using the same procedure as with the GTEX-person-specific models. To evaluate the contribution of promoter and 430 

RNA features to the prediction, the model was also trained with randomized input features. Receiver operating 431 

characteristic (ROC) curve analysis was performed using pROC R package43 with a default setting. We performed 432 

pathway analysis of the TFs with a DeepLIFT score greater than 90th percentile using KEGG pathways44. KEGG 433 

pathway gene sets were downloaded from MSigDB v6.145. The enrichment significance was based on results of the 434 

hypergeometric test, with 757 unique TF genes as a background, against KEGG pathways comprised of at least 5 435 

background genes. FDR was controlled at 5%. We manually curated the 159 disease-related data sets used in the 436 

construction of the DE prior ranking, to determine the number of data sets related to cancer or inflammatory disease.  437 

Code and model availability  438 

DEcode software and pre-trained models for tissue- and person-specific transcriptomes are available at 439 

www.differentialexpression.org. 440 
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Figure legends 532 

 533 

Figure 1. Overview of building and evaluating the DEcode transcriptome prediction model.  534 
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 535 

Figure 2. Performance of the tissue-level models. (A) Prediction performances on the median absolute expression levels 536 

across tissues. The predicted the log2-TPM values for 2,705 genes or 7,631 transcripts coded on chromosome 1 were 537 
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compared with the actual median log2-TPMs across 53 tissues using Spearman's rank correlation. The transcript usage 538 

within each gene was computed by subtracting the mean log2-TPM from log2-TPM of transcripts in each gene for 1,485 539 

genes that had multiple transcripts. (B) Prediction performances on the tissue-specific expression profiles. The predicted 540 

fold changes relative to the median of all tissues for 2,705 genes or 7,631 transcripts coded on chromosome 1 were 541 

compared with the actual fold changes in each tissue using Spearman's rank correlation. The differences in the transcript 542 

usage within each across tissues were computed for 1,485 genes that had multiple transcripts. The color of the bar 543 

indicated the tissue groups based on the similarity of gene expression profiles. (C) The heatmap showing pairwise 544 

correlations between the predicted and the actual tissue-specific expression profiles of 53 tissues for the testing genes. 545 

(D) Performance comparison of DEcode with ExPecto. The root-mean-square errors (RMSE) of DEcode models for 546 

expression-levels of 714 genes coded on chromosome 8 was compared with those of ExPecto. Each method was executed 547 

10 times. The median RMSE of the 10 runs was displayed as a bar plot and the error bar represents median absolute 548 

deviation. (E) The predictive performances of the models trained with a different set of features. (F) The comparison of 549 

the expression levels for ACADM transcripts predicted by the models trained with different feature sets. (G) The 550 

predictive performances on the tissue-specific gene expression profiles of the testing data relative to the model trained 551 

with a full set of features.  552 
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 553 

Figure 3. Identification and characterization of key predictors in the tissue-level models. (A) The enrichment of a 554 

regulator class in the key predictors for the median absolute expression levels. We ranked the regulators by the DeepLIFT 555 

scores and evaluated the enrichment of each regulator class. We used the pre-ranked gene set enrichment analysis (GSEA) 556 

algorithm with 10,000 permutations to compute enrichment scores and statistical significance. (B) Top 30 key predictors 557 
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for the median absolute expression levels. (C) Key predictive regulators for the tissue-specific transcriptomes. We 558 

selected the top 5 key predictors for each tissue and their DeepLIFT scores were displayed as a heatmap. The ward 559 

linkage method with the Euclidean distance was used to cluster tissues and predictors. (D) Example relationships between 560 

the predictive importance for a regulator and its expression levels across tissues. (E) The overlap between the key 561 

regulators for the median absolute expression levels and external functional gene sets.  562 
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 563 

Figure 4. Performance of the person-specific models. (A) The predictive performances of the person-specific models for 564 

the actual data from the same individuals and unrelated random individuals. (B) The person-specific models predicted 565 

person-specific expression shared across tissues. (C) The performances of the models trained with a distinct feature set. 566 
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(D) Per-person key predictive regulators for the hippocampus transcriptome. We selected the top 5 key predictors of the 567 

hippocampus transcriptome for each individual and their DeepLIFT scores were displayed as a heatmap. The ward 568 

linkage method with the Euclidean distance was used to cluster tissues and predictors. (E) Comparison of per-gene 569 

predictive accuracy between DEcode and PrediXcan. The number of genes that showed a positive Pearson’s correlation 570 

between predicted and actual gene expression levels at FDR 5% was calculated for each method. Only the testing genes 571 

on chromosome 1 were used for this comparison. (F) Per-gene prediction accuracy is associated with the number of 572 

features present in RNAs and promoters. The histogram represents Pearson’s correlations between the predicted and the 573 

actual expression for each gene. The line plot shows the average number of RNA and promoter features of genes in each 574 

bin of the histogram. Spearman’s correlation between the number of features and per-gene correlations is displayed in 575 

the line plot. The error bars indicate standard errors.   576 
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 577 

Figure 5. Application of the person-specific models to analyze phenotype-related gene signatures. (A) The scatter plots 578 

showing the relations between the associations of genes with age and sex using predicted expression and those using the 579 

actual expression. Spearman’s correlation between t-statistics using the predicted and the actual gene expression is 580 

displayed in the scatter plot. (B) The pairwise Spearman’s correlations between the predicted and the actual associations 581 

of genes with age and sex in all tissues. The numbers in diagonal elements of the heatmap indicate the ranks of similarity 582 

of the predictions with the actual observations in the corresponding tissues. (C) The regulators whose DeepLIFT scores 583 

were associated with age and sex. The Benjamini–Hochberg procedure was used to control the false discovery rate at 5% 584 

for each phenotype.  585 
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 586 

Figure 6. Application of the person-specific models to investigate gene co-expression. (A) Co-expression relationships 587 

in the predicted gene expression. We defined the ground truth co-expression relationships as gene pairs with the absolute 588 

Spearman’s correlation greater than 0.7 in the actual expression of the testing data. The density of Spearman’s correlation 589 

between the co-expressed gene pairs in the predicted gene expression data was estimated using the density function in R 590 

with the Gaussian kernel. (B) Inter-tissue gene co-expression relationships in the predicted gene expression. We defined 591 

the ground truth co-expression relationships as gene pairs with the absolute Spearman’s correlation greater than 0.5 in 592 
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the actual expression of the testing data. We computed the average of Spearman’s correlation of the inter-tissue co-593 

expressed gene pairs in each pair of tissues using the predicted expression from all models and the models whose 594 

performances on validation data were greater than 50% percentile in each tissue. (C) The major feature types contributed 595 

to the gene co-expression. We defined the gene pairs with the absolute Spearman’s correlation greater than 0.3 and the 596 

sign of the correlation matched with one with the ground truth as the successfully predicted gene pairs. The successfully 597 

predicted gene pairs of the model trained with the full set of features were split into three groups based on the performance 598 

of the models trained with only RNA features or promoter features. (D) The effect of the binding site removal on co-599 

expression between LAPTM5 and CD53. We simulated gene expression profiles with random removals of the binding 600 

sites in each gene 10,000 times and computed a correlation between LAPTM5 and CD53 for each simulation. Multiple 601 

regression was used to estimate the effect of the binding site removal on the co-expression in each tissue. (E) The key 602 

regulators for the co-expression between LAPTM5 and CD53. We simulated gene expression profiles with random KOs 603 

of regulators in each gene 10,000 times and computed a correlation between LAPTM5 and CD53 for each simulation. 604 

We used multiple regression to estimate the effect of the KO on the co-expression in each tissue and identified the 605 

consensus regulators across tissues. (F) Percent of the co-expression relationship explained by the expression levels of 606 

the key regulators. The white diamond and the error bars in the bar indicated the average and 95% percentile of the 607 

percent of variance explained by randomly picked regulators, respectively. The scatter plots show the effect of the key 608 

regulators on the co-expression.  609 
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 610 

Figure 7. DEcode predicts gene’s prior probability of differential expression. (A) The scatter plots showing the relations 611 

between predicted and actual DE prior rank. The predicted logit of DE prior rank was converted to probability and 612 

compared with actual DE prior rank with Spearman’s correlation. (B) The performances of the models trained with a 613 

distinct feature set. ROC represents the performance of model predicting genes with DE prior rank greater than 0.9. 614 

R = 0.53 , p < 2.2e−16
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