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Abstract  

Many computational methods to infer cell type proportions from bulk transcriptomics data have 
been developed. Attempts comparing these methods revealed that the choice of reference marker 
signatures is far more important than the method itself. However, a thorough evaluation of the 
combined impact of data transformation, pre-processing, marker selection, cell type composition 
and choice of methodology on the results is still lacking.  

Using different single-cell RNA-sequencing (scRNA-seq) datasets, we generated hundreds of 
pseudo-bulk mixtures to evaluate the combined impact of these factors on the deconvolution 
results. Along with methods to perform deconvolution of bulk RNA-seq data we also included 
five methods specifically designed to infer the cell type composition of bulk data using scRNA-
seq data as reference.   

Both bulk and single-cell deconvolution methods perform best when applied to data in linear 
scale and the choice of normalization can have a dramatic impact on the performance of some, 
but not all methods. Overall, single-cell methods have comparable performance to the best 
performing bulk methods and bulk methods based on semi-supervised approaches showed higher 
error and lower correlation values between the computed and the expected proportions. 
Moreover, failure to include cell types in the reference that are present in a mixture always led 
to substantially worse results, regardless of any of the previous choices. Taken together, we 
provide a thorough evaluation of the combined impact of the different factors affecting the 
computational deconvolution task across different datasets and propose general guidelines to 
maximize its performance. 
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Introduction 
Since bulk samples of heterogeneous mixtures only represent averaged expression levels (rather 
than individual measures for each gene across different cell types present in such mixture), many 
relevant analyses such as differential gene expression are typically confounded by differences in 
cell type proportions. Moreover, understanding differences in cell type composition in diseases 
such as cancer may enable scientists to identify potentially interesting cellular populations to be 
targeted therapeutically. For instance, the abundance of tumor infiltrating lymphocytes and 
other immune cells in solid tumors (also known as the tumor microenvironment) is currently a 
very active field of research1–3 (e.g. in the context of immunotherapy) and it has already been 
shown that accounting for the tumor heterogeneity resulted in more sensitive survival analyses 
and more accurate tumor subtype predictions4. For these reasons, many methodologies to infer 
proportions of individual cell types (= computational deconvolution) from bulk transcriptomics 
data have been developed during the last two decades5 and various methods able to use single-
cell RNA-sequencing data have emerged in the past year alone. 

Several studies have addressed different factors affecting the deconvolution results but only 
focused on one or two individual aspects at a time. For instance, Zhong and Liu6 showed that 
applying the logarithmic transformation to microarray data led to a consistent under-estimation 
of cell-type specific expression profiles. Hoffmann et al.7 showed that four different normalization 
strategies had an impact on the estimation of cell type proportions from microarray data and 
Newman et al.8 highlighted the importance of accounting for differences in normalization 
procedures when comparing the results from CIBERSORT9 and TIMER10. Furthermore, 
Vallania et al.11 observed highly concordant results across different deconvolution methods in 
both blood and tissue samples, suggesting that the reference matrix was more important than 
the methodology being used.  

Sturm et al.12 already investigated scenarios where reported cell type proportions were higher 
than expected (spillover effect) or different from zero when a cell type was not present in a 
mixture (background prediction), possibly caused by related cell types sharing similar signatures 
or marker genes not being sufficiently cell-type specific. Moreover, they provided a guideline for 
method selection depending on which cell type of interest needs to be deconvolved. However, 
each method evaluated in Sturm et al. was accompanied by its own reference signature for the 
different immune cell types, implying that differences may be marker-dependent and not 
method-dependent. Moreover, they did not evaluate the effect of data transformation and 
normalization in these analyses and only focused on immune cell types.  

Here we provide a comprehensive and quantitative evaluation of the combined impact of data 
transformation, scaling/normalization, marker selection, cell type composition and choice of 
methodology on the deconvolution results. In this study we evaluated the performance of 20 
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deconvolution methods aimed at computing cell type proportions, including five recently 
developed methods that use single-cell RNA-sequencing data as reference. The performance is 
assessed by means of Pearson correlation and root-mean-square error (RMSE) values between 
the cell type proportions computed by the different deconvolution methods (PC; computed 
proportions; Figure 1) and known compositions (PE; expected proportions) of a thousand pseudo-
bulk mixtures from each of four different single cell RNA-sequencing datasets (three from human 
pancreas and one from peripheral blood mononuclear cells (PBMCs)). Furthermore, to evaluate 
the robustness of our conclusions, different number of cells (cell pool sizes) were used to build 
the pseudo-bulk mixtures. 

 
Figure 1 – Schematic representation of the benchmarking study. Top panel: workflow for bulk deconvolution methods. 
Bottom panel: workflow for single-cell methods. In both cases the deconvolution performance is assessed by means of 
Pearson correlation and root-mean-square error (RMSE). PBMCs = peripheral blood mononuclear cells; log = 
logarithmic; sqrt = square-root; VST = Variance stabilization transformation. PE = Expected proportions; Pc = 
Computed proportions. 
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Results 
Different normalization and methodology combinations have different memory 
requirements and time consumption  
Even though computational resources keep on growing exponentially, memory requirements and 
time consumption can become important bottlenecks for non-experienced users that may be 
constrained to limited resources on a personal laptop or for implementations in clinical settings 
where short processing times are required. While simple logarithmic (log) and square-root (sqrt) 
data transformations were performed almost instantaneously in R (between 1 and 5 seconds; see 
Table 1 for information about the number of cells subject to transformation in each single-cell 
RNA-seq dataset), the variance stabilization transformation (VST) performed using DESeq213 
applied to the single-cell RNA-sequencing datasets had high memory requirements and took 
several minutes to complete (time increasing linearly with respect to the number of cells) 
(Supplementary Figure 1). Importantly, we used the developer version of DESeq2 v1.25.9, which 
reduced the running time from quadratic (Suppl. Fig 27 from Soneson et al.14) to linear with 
respect of the number of cells.  

We further evaluated the impact of different scaling and normalization strategies as well as the 
choice of deconvolution method. Although the different scaling/normalization strategies 
consistently have similar memory requirements, RNBR15 and scran16 (two single-cell RNA-
sequencing specific normalization methods) required up to seven minutes to complete, a 14 fold 
difference with the other methods, which finished under 30s (Supplementary Figure 2). 

The bulk deconvolution methods DSA17, ssFrobenius and ssKL18 (all implemented as part of the 
CellMix19 R package) had the highest RAM memory requirements, followed by DeconRNASeq20. 
Not surprisingly, the ordinary least squares (OLS21) and non-negative least squares (nnls22) were 
the fastest, as they have the simplest optimization problem to solve. For single-cell methods, 
Dampened Weighted Least Squares (DWLS23), which includes an internal marker selection step, 
resulted in the longest time consumption (6 to 12 hours to complete) whereas MuSiC24 and 
SCDC25 finished in 5 to 10 minutes.  
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Figure 2 – RAM memory (bytes) and time (seconds) requirements for the different bulk (top panel) and single-cell 
(bottom panel) deconvolution methodologies across datasets with expression values in linear scale (boxplots depict all 
scaling/normalization strategies across all pseudo-bulk cell pool sizes).  

Data transformation has a dramatic impact on the deconvolution results 

We investigated the overall performance of each individual deconvolution method across four 
different data transformations and all normalization strategies (Figure 2; Supplementary Figures 
3-4). Maintaining the data in linear scale (“none” transformation, in grey) consistently showed 
the best results (lowest RMSE values) whereas the logarithmic (in orange) and VST (in green; 
which also performs an internal complex logarithmic transformation) scale led to a poorer 
performance, with two to four-fold higher median RMSE values. For a detailed explanation 
concerning several bulk and single-cell deconvolution methods that could only be applied with 
a specific data transformation or dataset, please see Supplementary Methods. 
With the exception of EPIC26, DeconRNASeq20 and DSA17, the choice of normalization strategy 
does not have a substantial impact on the deconvolution results (evidenced by narrow boxplots). 
These conclusions also hold when repeating the analysis with different pseudo-bulk pool sizes in 
all datasets tested (collapsing all scaling/normalization strategies and all bulk (Supplementary 
Figure 5) or single-cell (Supplementary Figure 6) deconvolution methods together). For these 
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reasons, all downstream analyses were performed on datasets in linear scale. Interestingly, there 
are five bulk (OLS, nnls, RLR, FARDEEP and CIBERSORT) and three single-cell 
deconvolution methods (DWLS, MuSiC, SCDC) able to achieve very accurate cell type 
proportions, with median RMSE values lower than 0.05. 

 
Figure 3 – RMSE values between the known proportions in 1000 pseudo-bulk tissue mixtures from the baron dataset 
(pool size = 100 cells per mixture) and the predicted proportions from the different bulk (left) and single-cell (right) 
deconvolution methods. Each boxplot contains all normalization strategies that were tested in combination with a given 
method. 

Different combinations of normalization and deconvolution methodologies reveal 
important differences in performance 

From Figure 3 it is clear that different combinations of normalizations and methodologies lead 
to substantial differences in performance. Focusing on the data in linear scale, Figure 4 delves 
into the specific method and normalization combinations evaluated in this manuscript. Among 
the bulk deconvolution methods, least-squares (OLS, nnls), support-vector (CIBERSORT) and 
robust regression approaches (RLR/FARDEEP) gave the best results across different datasets 
and pseudo-bulk cell pool sizes (median RMSE values < 0.05; Figure 4a, Supplementary Fig 7). 
Regarding the choice of normalization/scaling strategy, column min-max and column z-score 
consistently led to the worst performance. In all other situations, the choice of 
normalization/scaling strategy had a minimal impact on the deconvolution results for these 
methods. Of note, quantile normalization always resulted in sub-optimal results in any of the 
tested bulk deconvolution methods (Figure 4b).  
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Figure 4 – Pearson correlation values between the expected (known) proportions in 1000 pseudo-bulk tissue mixtures 
in linear scale (pool size = 100 cells per mixture) and the output proportions from the different bulk (a) and single-cell 
(c) deconvolution methods. The darker the blue and the higher the area of the circle represents higher Pearson and 
lower RMSE values, respectively. b) Scatter plot showing the impact of the normalization strategy (TMM versus quantile 
normalization (QN)) comparing the expected proportions (y-axis) and the results obtained through computational 
deconvolution using nnls (x-axis) for baron and E-MTAB-5061 datasets. Empty locations represent combinations that 
were not feasible (see Supplementary methods). 
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Penalized regression approaches including lasso, ridge, elastic net regression and DCQ performed 
slightly worse than the ones described above (median RMSE ~ 0.1). As stated in its original 
publication, EPIC assumes transcripts per million (TPM) normalized expression values as input. 
We indeed observed that the choice of scaling/normalization has a big impact on the 
performance of EPIC, with TPM giving the best results. 
Quadratic programming (DeconRNASeq), Digital Sorting Algorithm (DSA) and the semi-
supervised approaches ssKL and ssFrobenius (using only sets of marker genes, in contrast to the 
supervised counterparts which use a reference matrix with expression values for the markers) 
showed the poorest performances with the highest root-mean-square errors and lower Pearson 
correlation values.  

For single-cell deconvolution methods (Figure 4c), we evaluated the different combinations of 
normalization strategies of both the pseudo-bulk mixtures (“scalingT”, y-axis) and the single-
cell expression matrices (“scalingC”, x-axis). DWLS, MuSiC and SCDC consistently showed the 
highest performance (comparable to the top-performers from the bulk methods, see also Figure 
3) across the different choices of normalization strategy (with the exception of row-
normalization, column min-max and TPM).  While these results are consistent for deconvSeq, 
MuSiC, DWLS and SDCD regardless of the dataset and pseudo-bulk cell pool size, we observed 
a substantial performance improvement in BisqueRNA when the pool size increased or when the 
dataset contained single-cell RNA-sequencing from more individuals (E-MTAB-5061 and 
GSE81547, with n=6 and 8 respectively) (Supplementary Figure 8). Note that it was not feasible 
to evaluate all combinations (empty locations in the grid), see Supplementary methods for a 
detailed explanation.   

The set of markers used in bulk deconvolution methods impacts deconvolution results 

Based on the previous results, we wanted to evaluate whether different marker selection 
strategies had an impact on the deconvolution results starting from bulk expression data in 
linear scale. To that end we assessed the impact of eight different marker selection strategies 
(see Methods) on the deconvolution results using bulk deconvolution methods (Figure 5, 
Supplementary Figure 9). This analysis was not done with the single-cell methods because they 
do not require marker genes to be known prior to performing the deconvolution.  
The use of all possible markers (“all” strategy) showed the best performance overall, followed 
by positive fold-change markers (“pos_fc”; negative fold-change markers are those with small 
expression values in the cell type of interest and high values in all the others) or those on the 
top 50% of average expression values (“top_50p_AveExpr”) or log fold-changes 
(“top_50p_logFC”). As expected, the use of random sets of 5 markers per cell type (“random5”; 
negative control in our setting) was consistently the worst choice across all datasets regardless 
of the deconvolution method. Using the bottom 50% of the markers per cell type based on 
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average expression levels (“bottom_50p_AveExpr”) or log fold changes (“bottom_50p_logFC) 
also led to sub-optimal results. Specifically in the baron and PBMC datasets, the use of the top 
2 markers per cell type (“top_n2”) led to a) optimal results when used with DSA; b) similar 
results as using the bottom_50p_AveExpr or bottom_50p_logFC with ordinary linear 
regression strategies; c) worse results than random when used with penalized regression 
strategies (lasso, ridge, elastic_net, DCQ) and CIBERSORT.  

 
Figure 5 – RMSE values between the expected (known) proportions in 1000 pseudo-bulk tissue mixtures (linear scale; 
pool size = 100 cells per mixture) and the output proportions from the baron dataset, using eight different marker 
selection strategies. Each boxplot contains all normalization strategies that were tested in combination with a given 
marker strategy across the different bulk deconvolution methods. 
 

Removing cell types from the reference matrix results in substantially worse 
deconvolution results compared to reference matrices composed of all cell types present 
in the mixtures 

Based on the results from all the analyses thus far, we decided to evaluate the impact of removing 
cell types with the data in linear scale and using all available markers (“all” marker selection 
strategy). Furthermore, we selected nnls and CIBERSORT as representative top-performing 
bulk deconvolution methods and DWLS and MuSiC as top-performing single-cell methods. To 
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also be able to evaluate the impact of the normalization strategy, we included a representative 
sample of normalization strategies that result in small RMSE and high Pearson correlation 
values (see Figure 4 and Supplementary Figures 7-8): column, median ratios, none, TMM and 
TPM for nnls and CIBERSORT; column, scater, scran, none, TMM and TPM for DWLS and 
MuSiC.  

We assessed the impact of removing a specific cell type by comparing the absolute RMSE values 
between the ideal scenario where the reference matrix contains all the cell types present in the 
pseudo-bulk mixtures (leftmost column in Figures 6c-d and 7c-d, with grey label “none”) and 
the RMSE values obtained after removing one cell type at a time from the reference (all other 
grey labels).  

 
Figure 6 – Effect of cell type removal on the deconvolution results using the PBMCs dataset [100-cell pseudo-bulk 
mixtures in linear scale]. a) pairwise Pearson correlation values between expression profiles for the different cell types, 
using a subset of the reference matrix containing only the markers used in the bulk deconvolution; b) pairwise Pearson 
correlation values between complete expression profiles for the different cell types; c) results using bulk deconvolution 
methods (nnls and CIBERSORT); d) results using single-cell deconvolution methods (only DWLS because the scRNA-
seq data comes from only one individual). In c) and d), each grey column represents a specific cell type removed. Each 
data point conforming a boxplot represents a different scaling/normalization strategy used.  
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Figure 7 – Effect of cell type removal on the deconvolution results using the GSE81547 dataset [100-cell pseudo-bulk 
mixtures in linear scale]. a) pairwise Pearson correlation values between expression profiles for the different cell types, 
using a subset of the reference matrix containing only the markers used in the bulk deconvolution; b) pairwise Pearson 
correlation values between complete expression profiles for the different cell types; c) results using bulk deconvolution 
methods (nnls and CIBERSORT); d) results using single-cell deconvolution methods (MuSiC and DWLS). In c) and d), 
each grey column represents a specific cell type removed. Each data point conforming a boxplot represents a different 
scaling/normalization strategy used.  
 
We then focussed on those cases where the median absolute RMSE values between the results 
using the complete reference matrix (depicted as “none” in Figures 6c-d and 7c-d) and all other 
scenarios where a cell type was removed, increased at least 2-fold. In the PBMC dataset (Fig 
6c-d), removing CD19+, CD34+, CD14+ or NK cells had an impact on the computed T-cell 
proportions (between a three and six-fold increase in the median absolute RMSE values, both 
in bulk and single-cell deconvolution methods). The GSE81547 dataset (Figure 7c-d) shows that 
removing acinar cells has a dramatic impact in all other cell type proportions. Supplementary 
Figures 10 and 11 showed the results for baron and E-MTAB-5061 datasets, respectively. 
Remarkably, no method and normalization combination was able to provide accurate cell type 
proportion estimates when the reference missed a cell type. 
To investigate whether the proportion of the omitted cell type was re-distributed equally among 
all remaining cell types or only among those that are transcriptionally most similar, we computed 
pairwise Pearson correlation values between the expression profiles of the different cell types 
(Figure 6a-b and Figure 7a-b). Figure 6a-b shows that CD14+ monocytes were mostly correlated 
with dendritic cells (Pearson = 0.85 when computing pairwise correlations on the reference 
matrix containing only marker genes and 0.94 when using the complete expression profiles from 
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all cell types, respectively) and Figure 6c-d shows that, when removing CD14+ monocytes, the 
highest RMSE value was found in dendritic cells. Figure 7a-b shows that acinar cells are not 
correlated with any other cell type (Pearson values close to zero with all other cell types) and 
Figure 7c-d shows that, when removing acinar cells, all cell type proportions estimates have 
higher RMSE values compared to the case where no cell type is missing (“none”, leftmost panel).  
For the baron dataset (Supplementary Figure 10): the removal of ductal cells (highest correlation 
with quiescent stellate and endothelial cells) led to highest RMSE values for both quiescent 
stellate and endothelial cells while the removal of endothelial cells (mostly correlated with 
quiescent stellate, beta and ductal cells) led to the highest RMSE values for quiescent, ductal 
and beta cells. For the E-MTAB-5061 dataset (Supplementary Figure 11): no cell type is 
correlated to one another and removing any cell type from the reference matrix led to distorted 
proportions for all other cell types. 

Discussion 
Using both Pearson correlation and RMSE values as measures of the deconvolution performance, 
we comprehensively evaluated the combined impact of four data transformations, twenty 
scaling/normalization strategies, seven marker selection approaches and twenty different 
deconvolution methodologies on four different single-cell RNA-seq datasets. These datasets 
encompass two different biological sample types (human pancreas and peripheral blood 
mononuclear cells) and three different sequencing protocols (CEL-Seq, Smart-Seq 2 and 
GemCode Single-Cell 3′). Additionally, we assessed the impact of using different number of cells 
when making the pseudo-bulk mixtures and the impact of removing cell types from the reference 
matrix that were actually present in the mixtures.  

Even though the four datasets used throughout this manuscript encompass different sequencing 
protocols that led to hundred-fold differences in the number of reads sequenced per cell (Table 
1), our findings were consistent regardless of the dataset being evaluated or the number of cells 
used to make the pseudo-bulk mixtures.  

The logarithmic transformation is routinely included as a part of the pre-processing of omics 
data in the context of differential gene expression analysis 27,28, but Zhong and Liu6 showed that 
it led to worse results than performing computational deconvolution in the linear (un-
transformed) scale. Silverman et al.29 showed that using log counts per million with sparse data 
strongly distorts the difference between zero and non-zero values and Townes et al.30 showed 
the same when log-normalizing UMIs. Tsoucas et al.23 showed that when the data was kept in 
the linear scale, all combinations of three deconvolution methods (DWLS, QP or SVR) and 
three normalization approaches (LogNormalize from Seurat, Scran or SCnorm) led to a good 
performance, which was not the case when the data was log-transformed. Here, we assessed the 
impact of the log transformation on both full-length and tag-based scRNA-seq quantification 
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methods and confirmed that the computational deconvolution should be performed on linear 
scale to achieve the best performance.  

Data scaling or normalization is a key pre-processing step when analysing gene expression data. 
Data scaling approaches transform the data into bounded intervals such as [0, 1] or [-1, +1]. 
While being relatively easy and fast to compute, scaling is sensitive to extreme values. Therefore, 
other strategies that aim to change the observations so that they follow a normal distribution 
(= normalization) may be preferred. Importantly, these normalizations typically do not result 
in bounded intervals. In the context of transcriptomics, normalization is needed to only keep 
true differences in expression. Normalizations such as TPM aim at removing differences in 
sequencing depth among the samples. We refer the reader to Evans et al.31, for an in-depth 
analysis of RNA-seq normalization methods. Vallania et al. 11 assessed the impact of 
standardizing (= substracting the mean and dividing by the standard deviation) both the bulk 
and reference expression profiles into z-scores prior to deconvolution, which is performed by 
CIBERSORT but not in other methods. They observed high pairwise correlations between the 
estimated cell type proportions with and without standardizing the data, suggesting a 
neglectable effect. However, a high Pearson correlation value is not always synonym of a good 
performance. As already pointed out by Hao et al.32, high Pearson correlation values can arise 
when the proportion estimations are accurate (low RMSE values) but also when the proportions 
differ substantially (high RMSE values), making the correlation metric alone not sufficient to 
assess the deconvolution performance. Both for bulk and single-cell deconvolution methods, our 
analyses show that the normalization strategy had little impact (except for EPIC, 
DeconRNASeq and DSA bulk methods). Of note, quantile normalization (QN), an approach 
used by default in several deconvolution methods (e.g. FARDEEP, CIBERSORT), consistently 
showed sub-optimal performance regardless of the method.  

Schelker et al.33 and Racle et al.26 showed that the origin of the expression profiles had also a 
dramatic impact on the results, revealing the need of using appropriate cell types coming from 
niches similar to the bulk being investigated.  

Hunt et al.34 showed that a good deconvolution performance was achieved if the markers being 
used were predominantly expressed in only one cell type and with the expression in other cell 
types being in the bottom 25%. Monaco et al.35 showed similar conclusions when the reference 
matrix was pre-filtered by removing markers with small log fold change between the first and 
second cell types with highest expression. In our analyses, markers were selected based on the 
fold change with respect to the cell type with the second highest expression. Therefore, the pre-
filtering proposed by Hunt et al. and Monaco et al. was already implicitly done. Furthermore, 
when sub-setting the markers based on their average gene expression or fold changes, those in 

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the 

The copyright holderthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.897116doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.897116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

the top fifty percent led to smaller RMSEs compared to those in the bottom fifty percent (Figure 
5).  

Wang et al.24 explored the effect of removing one immune cell type at a time from the reference 
matrix on the estimation accuracy using artificial bulk expression of six pancreatic cell types 
(alpha, beta, delta, gamma, acinar and ductal) and removing one cell type from the single-cell 
expression dataset. They observed that, when a cell type was missing in the reference matrix, 
MuSiC, NNLS and CIBERSORT did not produce accurate proportions for the remaining cell 
types. Gong and Szustakowski20 also investigated this issue by performing a first deconvolution 
using DeconRNASeq, then removing the least abundant cell population from the reference/basis 
matrix, and finally repeating the deconvolution with the new matrix. They observed an uneven 
redistribution of the signal and observed that some initial proportions became smaller. Moreover, 
Schelker et al.33 investigated this phenomenon by looking at the correlation coefficient between 
the results obtained with the complete reference matrix and the results removing one cell type 
at a time.  

We performed similar analyses for four deconvolution methods (two bulk and two single-cell) 
and eleven normalization strategies (five for bulk, six for single-cell) on three single-cell human 
pancreas and one PBMC dataset, keeping the data in linear scale. We observed both cases where 
the choice of normalization strategy had no impact and other cases where it did. Interestingly, 
the removal of specific cell types did not affect all other cell types equally. Both bulk and single-
cell deconvolution methods showed similar trends when removing specific cell types. However, 
there were some discrepancies in the RMSE values (e.g. removal of beta cells had a substantial 
impact on the proportions of delta cells but CIBERSORT showed three times higher RMSE 
values compared to either nnls, MuSiC or DWLS). This may be explained by the fact that for 
bulk deconvolution methods, we removed both the cell type expression profile and its marker 
genes from the reference matrix whereas for the single-cell methods, only the cells from the 
specific cell type were excluded, without applying extra filtering on the genes (MuSiC, SCDC) 
or because a different signature was internally built (DWLS).  

Schelker et al. found that B cell and dendritic cell proportions were affected by removing 
macrophages or monocytes whereas NK cell proportions were affected by removing T cells. 
Sturm et al., also reported the impact of removing CD8+ T cells on NK cell proportions. Our 
results on the PBMC dataset agree with those from Schelker et al. and Sturm et al. but also 
include novel insights: removing CD19+ B-cells, CD34+, CD14+ monocytes or NK cells had an 
impact on the computed T-cell proportions and removing CD19+ B-cells, CD56+ NK or T cells 
had an impact on CD34+ cell proportions. 

Furthermore, we found a direct association between the correlation values among the cell types 
present in the mixtures and the effect of removing a cell type from the reference matrices.  
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Specifically, we hypothesize that: a) removing a cell type that is barely or completely 
uncorrelated (Pearson < 0.2) to all other cell types remaining in the reference matrix has a 
dramatic impact in the cell type proportions of all other cell types; b) removing a cell type that 
was strongly positively correlated (Pearson > 0.6) with one or more cell types still present in 
the reference matrix leads to distorted estimates for the most correlated cell type(s).  
EPIC26 shows a first attempt in alleviating this problem by considering an unknown cell type 
present in the mixture. Nevertheless this is currently restricted to a cancer setting, using markers 
of non-malignant cells that are not expressed in cancer cells.  

Methods 

Dataset selection and quality control   

Four different datasets coming from different single-cell isolation techniques (FACS and droplet-
based microfluidics) and encompassing both full-length (Smart-Seq2) and tag-based library 
preparation protocols (3’-end with UMIs) were used throughout this article (see Table 1).  After 
removing all genes (rows) full of zeroes or with zero variance, those cells (columns) with library 
size, mitochondrial content or ribosomal content further than three median absolute deviations 
(MADs) away were discarded. Next, only genes with at least 5% of all cells (regardless of the 
cell type) with a UMI or read count greater than 1 were kept. Finally, we retained cell types 
with at least 50 cells passing the quality control step and, by setting a fixed seed and taking 
into account the number of cells across the different cell types, each dataset was further split 
into “training” and “testing” datasets with a similar distribution of cells per cell type. 
Regarding E-MTAB-5061: cells with "not_applicable", "unclassified” and “co-expression_cell" 
labels were excluded and only cells coming from six healthy patients (non-diabetic) were kept.  

After quality control, we made two-dimensional t-SNE plots for each dataset. When adding 
coloured labels both by cell type and donor (Suppl. Fig 12), the plots showed consistent 
clustering by cell type rather than by donor, indicating an absence of batch effects. 

Table 1 – Details of the four datasets used. (*) Since this dataset originally contained six closely 
related T-cell subtypes (and other people have failed in their attempts of distinguishing them36,37) we re-
labelled all cells from these sub-types as “T cells”. Moreover, to reduce the memory and time requirements 
needed to run all combinations of data transformation, normalization and methodology, we randomly 
selected 10,000 cells out of the original 68,000. (**) 10X genomics data is not in a public repository but 
available at: https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/fresh_68k_pbmc_donor_a 
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Dataset Biological 
sample 
type 

Sequencing 
protocol 

Number of 
individual 
samples 

Number 
of cell 
types 

Number of 
cells after 
QC 

Number 
of 
genomic 
features 
after QC 

Median 
total 
counts per 
cell after 
QC 

Median 
number of 
non-zero 
features per 
cell after QC 

Ref 

Baron 
(GSE84133
) 

Human 
pancreatic 
islands 

inDrop 
platform + 
CEL-Seq 
protocol 

4 (2 male, 2 
female) 

10 7692 8386 4856 1723 [38] 

E-MTAB-
5061 

Human 
pancreatic 
tissue and 
islets 

FACS 
sorting into 
384-well 
plates + 
Smart-
Seq2 

6 (5 male, 1 
female) 

6 908 13899 329217 5521 [39] 

GSE81547 Human 
pancreatic 
tissue 

FACS 
sorting into 
96-well 
plates + 
Smart-
Seq2 

8 (6 male, 2 
female) 

5 2068 11694 481825 3072 [40] 

PBMCs** Human 
fresh 
peripheral 
blood 
mononucle
ar cells 

Chromium 
GemCode 
Single-Cell 
Instrument 
+ 
GemCode 
Single-Cell 
3′ Gel Bead 
and 
Library Kit 
(10x 
Genomics)  

1 6* 10000* 2175 1142 401 [41] 

Generation of reference matrices for the deconvolution 

Using the “training” splits from the previous section, the mean count across all individual cells 
from each cell type was computed for each gene, constituting the original (un-transformed and 
un-normalized) reference matrix (C in equation (I) from section “Computational deconvolution: 
formulation and methodologies”) and were used as input for the bulk deconvolution methods 
described in that section. Importantly, the “training” splits without applying the mean 
collapsing step were used by the single-cell deconvolution methods and for the marker selection 
step.  
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Cell-type specific marker selection  

TMM normalization (edgeR package42) was applied to the original (linear) scRNA-seq expression 
datasets and limma-voom43 was used to find out marker genes. Only genes with positive count 
values in at least 30% of the cells of at least one cell type were retained. Among the retained 
ones, those with absolute fold changes greater or equal to 2 between the first and second cell 
types with highest expression and BH adj p-value < 0.05 were kept as markers in all three 
pancreatic datasets. Since the PBMCs contained more closely related cell types, the fold-change 
threshold was lowered to 1.5. 

Once the set of markers was retrieved, the following approaches were evaluated: i) “all”: use of 
all markers found following the procedure described in the previous paragraph; ii) “pos_fc”: 
using only markers with positive fold-change (=over-expressed in cell type of interest; negative 
fold-change markers are those with small expression values in the cell type of interest and high 
values in all the others); iii) “top_n2”: using the top 2 genes per cell type with the highest log 
fold-change; iv) “top_50p_logFC”: top 50% of markers (per CT) based on log fold-change; v) 
“bottom_50p_logFC”: bottom 50% of markers based on log fold-change; vi) 
“top_50p_AveExpr”: top 50% of markers based on average gene expression (baseline 
expression); vii) “bottom_50p_AveExpr”: low 50% based on average gene expression; viii) 
“random5”: for each cell type present in the reference, five genes that passed quality control and 
filtering were randomly selected as markers. 

Generation of thousands of artificial pseudo-bulk mixtures 

Using the “testing” datasets from the quality control step, we generated matrices containing 
1,000 pseudo-bulk mixtures (matrix T in equation (I) from “Computational deconvolution: 
formulation and methodologies”) by adding up count values from the randomly selected 
individual cells. The minimum number of cells used to create the pseudo-bulk mixtures (pool 
size) was 100 and the maximum was determined by the second most abundant cell type (rounded 
down to the closest hundred, to avoid non-integer numbers of cells) in each of the four datasets. 
When the difference between the minimum and maximum values was greater than or equal to 
200, three different pool sizes were created by rounding up the mean value between both 
extremes to the closest hundred (n = 100, 700 and 1200 for Baron; n = 100, 300 and 400 for 
PBMCs). Due to this constraint, only two pool sizes were feasible for GSE81547 (n = 100 and 
200) and one for E-MTAB-5061 (n = 100). Each (feasible) pseudo-bulk mixture was created by 
randomly selecting the number of cell types to be present (between 3, 4 and 5) and their 
identities, followed by choosing the cell type proportion assigned to each cell type (enforcing a 
sum-to-one constraint) among all possible proportions between 0.05 and 1, in increasing intervals 
of 0.05. Finally, once the amount of cells to be picked up from specific cell types was determined, 
the cells were randomly selected (without replacement). 
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Data transformation and normalization 

The next step is applying four different data transformations to: i) the un-transformed and un-
normalized reference matrix C; ii) the un-transformed and un-normalized single-cell “training” 
splits and iii) the un-transformed and un-normalized matrix T containing the 1000 pseudo-bulk 
mixtures.  
Since count data from both bulk and single-cell RNA-seq show the phenomenon of over-
dispersion42,44, the following data transformations were chosen: a) leave the data in the original 
(linear) scale; b) use the natural logarithmic transformation (with the log1p function in R45) ; 
c) use the square-root transformation; d) variance-stabilizing transformation (VST). The second 
and third are simple and commonly used transformations aiming at reducing the skewness in 
the data due to the presence of extreme values28 and stabilizing the variance of Poisson-
distributed counts46, respectively. VST (using the varianceStabilizingTransformation function 
from DESeq2) removes the dependence of the variance on the mean, especially important for 
low count values, while simultaneously normalizing with respect to library size13.  

Each transformed output file was further scaled/normalized with the approaches listed on Table 
2. The mathematical implementation can be found at the original publications (“Ref” column) 
and in our GitHub repository (http://github.com/favilaco/deconv_benchmark). Due to the 
sparsity of the single-cell RNA-seq matrices (most genes with zero counts), the UQ normalization 
failed (all normalization factors were infinite or NA values) and thus was eventually not included 
in downstream analyses. TMM includes an additional step that uses the normalization factors 
to obtain normalized counts per million. LogNormalize and Linnorm include an additional 
exponentiation scale after normalization in order to transform the output data back into linear 
scale. Median of ratios can only be applied to integer counts in linear scale. 

Table 2 – Detailed description of different scaling/normalization approaches used in the benchmarking 

Scaling/normalization 
method 

Single-cell 
specific 

Output 
containing 
negative 
values 

Output 
bounded in 
[0,1] interval 

Reference 

Column-wise 
(=”Total count” or 
library size 
normalization) 

no no yes  [47] 
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Column min-max no no yes  [48] 

Column z-score no yes no [49] 

Row-wise no no yes  [50] 

Global min-max no no yes [48] 

Global z-score no yes no [49] 

Quantile 
normalization (QN) 

no no no [51] 

Upper quartile (UQ) no no no [52] 

Transcripts per 
million (TPM) 

no no no [53] 

Trimmed mean of M-
values (TMM) 

no no no [54] 

LogNormalize no no no [55] 

Median of ratios no no no [13] 

Scran yes no no [16] 

Scater yes no no [56] 

Linnorm yes no no [57] 

RNBR yes no no [15] 
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Computational deconvolution: formulation and methodologies  

The deconvolution problem can be formulated as T = C · P (I) 5 , where T = measured 
expression values from bulk heterogeneous samples; C = cell type-specific expression values and 
P = cell-type proportions. Specifically, T represents the 1000 pseudo-bulk mixtures from 
“Generation of thousands of artificial pseudo-bulk mixtures” and C is the reference matrix from 
“Cell-type specific marker selection and generation of reference matrices for the deconvolution”. 
In the context of this article, the goal is to obtain P using T and C as input.  

Fifteen bulk deconvolution methods a have been evaluated, including two traditional (ordinary 
least squares (OLS21) and non-negative least squares (NNLS22)) and one weighted least squares 
method (EPIC26); two robust regression (FARDEEP58, RLR59), one support-vector regression 
(CIBERSORT9)  and four penalized regression (ridge, lasso, elastic net60 and Digital Cell 
Quantifier (DCQ61)) approaches; one quadratic programming (DeconRNASeq20), one method 
that models the problem in logarithmic scale (dtangle34) and three methods included in the 
CellMix R package19: Digital Sorting Algorithm (DSA17) and two semi-supervised non-negative 
matrix factorization methods (ssKL and ssFrobenius18). Furthermore, five single-cell 
deconvolution methods have been evaluated: deconvSeq62, MuSiC24, DWLS23, Bisque63 and 
SCDC25. We refer the reader the original publications and our Github repository 
(http://github.com/favilaco/deconv_benchmark) for details about their implementation. 

Measures of deconvolution performance 

Changes in memory were assessed with the mem_change function from the pryr package64 and 
the elapsed time was measured with the proc.time function (both functions executed in R 
v.3.6.0). 
We computed both the Pearson correlation values and the root-mean-square error (RMSE) 
between cell type proportions from thousands of pseudo-bulk mixtures with known composition 
and the output from different deconvolution methods for each combination of data 
transformation, scaling/normalization choice and deconvolution method. Higher Pearson 
correlation and low RMSE values correspond to a better deconvolution performance. 

Evaluation of missing cell types in the reference matrix C 

For every cell type removed, the deconvolution was applied only to mixtures where the missing 
cell type was originally present. For bulk deconvolution methods, the marker genes of the cell 
type that was removed from the reference were also excluded (single-cell methods did not require 
a priori marker information). 
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Conclusion and future perspectives 
The three most relevant factors affecting the deconvolution results are: i) the data 
transformation, ii) all cell types being part of the mixtures must be represented in the reference 
matrix  and, for bulk deconvolution methods, iii) a sensible marker selection strategy. 

When performing a deconvolution task, we advise users to: a) keep their input data in linear 
scale; b) select any of the scaling/normalization approaches described here with exception of 
row scaling, column min-max, column z-score or quantile normalization; c) choose a regression-
based bulk deconvolution method (e.g. nnls, CIBERSORT or FARDEEP) and also perform the 
same task in parallel with DWLS, MuSiC or SCDC if single-cell data is available; d) use a 
stringent marker selection strategy that focuses on differences between the first and second cell 
types with highest expression values; e) use a comprehensive reference matrix that include all 
relevant cell types present in the mixtures. 

Finally, as more scRNA-seq datasets become available in the near future, its aggregation (while 
carefully removing batch effects) will increase the robustness of the reference matrices being 
used in the deconvolution and will fuel the development of methodologies similar to SCDC, 
which allows direct usage of more than one scRNA-seq dataset at a time.  
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