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Abstract

A recurring problem in biomedical research is how to isolate signals of distinct populations (cell
types, tissues, and genes) from composite measures obtained by a single analyte or sensor. Existing
computational deconvolution approaches work well in many specific settings, but they might be suboptimal
in more general applications. Here, we describe new methods that were obtained via an open innovation
competition. The goal of the competition was to characterize the expression of 1,000 genes from 500
composite measurements, which constitutes the approach of a new assay, called L1000, used to scale-up
the Connectivity Map (CMap) — a catalog of millions of perturbational gene expression profiles. The
competition used a novel dataset of 2,200 profiles and attracted 294 competitors from 20 countries. The
top-nine performing methods ranged from machine learning approaches (Convolutional Neural Networks
and Random Forests) to more traditional ones (Gaussian Mixtures and k-means). These solutions were
faster and more accurate than the benchmark and likely have applications beyond gene expression.

Keywords: connectivity map; open innovation competition; crowdsourcing; deconvolution algorithm;
machine learning; gene expression.

1 Introduction

Deconvolution problems are commonplace in many areas of science and engineering. In the context of
biomedical research, a recurring issue is how to isolate signals of distinct populations (cell types, tissues, and
genes) from composite measures obtained by a single analyte or sensor. This problem often stems from the
prohibitive cost of profiling each population separately [1, 2] and has important implications for the analysis
of transcriptional data in mixed samples [3, 4, 5, 6], single-cell data [7], and the study of cell dynamics [8],
but it also appears in the analysis of imaging data [9].

Existing computational deconvolution approaches work well in many specific settings [10] but they might
be suboptimal in more general applications. Machine learning techniques can potentially improve upon
current methods. A typical advantage is the ability to capture complicated patterns that can be hard
to model otherwise, especially in complex and massive datasets as those frequently used in biomedical
research. However, introducing machine learning in the field presents several challenges; some of which are
validation, adaptation to complex datasets, and identification of the best machine-learning approaches to
specific problems.

Here we describe how we addressed these challenges in the context of the Connectivity Map (CMap). CMap
is a catalog of over 1.3 million human gene-expression profiles of genetic or pharmacologic perturbation
that, coupled with powerful pattern matching algorithms, enables rapid hypothesis development in multiple
areas of biomedical research, including drug discovery and development [1]. To produce data of that scale,
CMap has developed a novel assay called L1000. L1000 uses a 500-plex fluorescence-based flow cytometry
system to measure 1,000 “landmark” genes that were selected to largely capture the cell’s transcriptional
state. This reduced representation of the transcriptome enables L1000 to achieve a significant cost reduction
compared to more traditional methods, such as RNA-sequencing. However, a key technical challenge is to
deconvolute the 500 measurements into separate 1,000 gene expression values. The current approach, a
k-means algorithm called “dpeak”, is slow and susceptible to errors. Below we report new methods, obtained
via an open innovation challenge, that represent improvements to the current algorithm.
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For the evaluation of these new methods, we generated a novel experimental dataset of L1000 profiles for 122
different perturbagens (shRNA and compounds) at multiple replicates for a total of over 2,200 gene expression
experiments. We varied the detection mode for acquiring L1000 data between the current dual-detection
procedure (DUO) that obtains a raw composite measure of two genes per analyte color, and a more expensive
uni-detection procedure (UNI) that measures one gene per analyte color. The deconvolution algorithm
processes the DUO data and assigns the correct expression level to each of the two genes measured by the
same analyte type. This procedure is not needed with the UNI data. Hence, the UNI data served as “ground
truth” that enabled us to evaluate the accuracy of different deconvolution methods applied to the DUO data.

Leveraging this data set, we then explored different deconvolution approaches through an open innovation
competition [11, 12]. We ran the contest on Topcoder (Wipro, India), a popular crowdsourcing platform.
The contest challenged participants to use the novel dataset to improve the L1000 deconvolution algorithm.
The contest drew about 300 competitors from 20 different countries and resulted in a diversity of approaches.
The top approaches included machine-learning methods, such as Random Forests and Convolutional Neural
Networks (CNNs), as well as more traditional models such as Gaussian mixtures and k-means. These
approaches performed significantly better than the L1000 benchmark in various measures of accuracy and
computational speed, and likely have application beyond gene expression.

2 Methods

We provided competitors with a problem statement, access to training and testing data, and a well-defined
scoring function. Figure 1 shows a schematic illustration of these three elements.

The problem statement described L1000’s deconvolution task and the current solution. The key insight was
that the distribution of the composite expression measurements of two genes should have two peaks and the
size of each peak should reflect the proportion of measurements for the corresponding gene. L1000 takes full
advantage of this fact by pairing genes optimally, trying to maximize the average difference in their expression
levels, and by mixing genes in a 2:1 proportion to enable the assignment of the correct expression levels to
each gene within each pair [see 1, for the details]. A deconvolution algorithm is then used to detect the peaks
within the composite distribution. The current dpeak solution is based on a k-means clustering algorithm that
partitions the composite measurements for each profile into k clusters by minimizing the within-cluster sum
of squares. It then associates the largest cluster to the gene with higher bead proportion, and the smallest
cluster to the gene with lower bead proportion, assigning their median values to the corresponding gene.

The training and testing datasets are publicly available (S1 Data). These data consisted of six 384-well per-
turbagen plates, each containing mutually exclusive sets of compound and short-hairpin (shRNA) treatments
(S1 Table and S2 Table show a complete list of the perturbagens). Multiple cell lines and perturbagen were
used to avoid potentially over-fitting problems. The compound and shRNA perturbagen plates were arbitrarily
grouped into pairs, and to avoid any potential ‘information leakage’ each pair was profiled in a different cell
line. The resulting lysates were amplified by Ligation Mediated Amplification (LMA, Subramanian et al. [1]).
The amplicon was then split and detected in both UNI and DUO detection modes, resulting in three pairs of
data generated under comparable circumstances. The training data was available for all the contestants to
develop and validate their solutions offline. The testing data was used for submission evaluation during the
contest and to populate a live leaderboard. The holdout data was used for final evaluation, thus guarding
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against over-fitting. Prizes were awarded based on performance on the holdout dataset.

The scoring function combined measures of accuracy and computational speed (S1 Appendix). The accuracy
metric was the product of two different metrics. The first was the average genewise Spearman’s rank
correlation between the deconvoluted expression values and the ground truth. The second was the Area Under
the receiver operating characteristic Curve (AUC) in the prediction of extremely modulated genes. Speed
was measured by executing each submission on comparable multi-core machines, thus allowing competitors
to employ multithreading techniques, and the corresponding score was the average runtime in units of the
benchmark runtime.

The contest lasted 21 days. A prize purse of $23,000 in cash was offered to competitors as an incentive to be
divided among the top 9 submissions.

3 Results

The contest attracted 294 participants who made 820 submissions using a variety of different methods (S1
Table). We report the top four methods based on the holdout data.

The winning solution (by a competitor from the United States with a degree in Physics from the University of
Kansas) used a random forest algorithm. The algorithm combines predictions from 10 different trees trained
on 60 derived data features. These features include a combination of low-peak and high-peak estimates for
each gene pair and aggregate measures that are sensitive to systematic bias at the perturbagen, analyte, and
plate level.

The second solution (by a competitor from Poland with a Master’s degree in Computer Science from Lodz
University of Technology) used the Expectation-Maximization (EM) algorithm to fit a mixture of two
log-normal models to the data for each gene pair. This algorithm does not assume any a priori probability
(the 2:1 ratio) of assignment to clusters, but learns it from the data by fitting a plate-wide distribution of
cluster sizes.

The third solution (by a competitor from India with a bachelor’s degree in Computer Science) uses a fast
k-means algorithm with a random initialization procedure that tends to avoid local minima and is more
robust to extreme outliers.

The fourth solution (by a competitor from Ukraine with a bachelor’s degree in Computer Science from the
Cherkasy National University) used a Convolutional Neural Network (CNN). This algorithm first filters and
transforms the data into a 32-bin histogram for each pair of genes. Then, it uses the U-net architecture [13],
comprising a contracting path to capture context and a symmetric expanding path, to provide adequate
representation of the data. The output of this network is then used to assign each of the 32 bins to one of the
two genes for each pair, and to predict the exact value within the bin. This second step uses two subnetworks
with the same architecture and a mean squared error loss function.

3.1 Clustering by method and perturbagen type

We evaluated the top-nine performing methods on the accuracy of their predictions, as well as their speed.
Using the holdout dataset, we generated the contestants’ deconvolution data (DECONV) and the corresponding
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differential expression (DE) values [as in 1]. We then compared the results using a two-dimensional t-SNE
projection, run once on each of the entire DECONV and DE datasets [14].

The DECONV data clustered well by pertubagen type and less by algorithm type (Figure 2, A and B),
although with some notable commonalities in the predictions generated by similar approaches (Figure 2, C).
For example, the decision tree regressor (DTR) algorithms have similar ‘footprints’ in the projection, as do
the k-means and Gaussian mixture model (GMM) algorithms. After the transformation to DE data, however,
the t-SNE projection was more homogenous, with no particular clustering by perturbagen and algorithm
type (Figure 2 D), which was reassuring given standard CMap analysis is performed on DE values.

3.2 Correlation accuracy

To evaluate the deconvolution accuracy, we used the genewise Spearman rank correlation (ρ) between the
UNI data and the values obtained by the competitors through the deconvolution of DUO data. We did so for
the shRNA and compound perturbagens separately, comparing the results between the subsets of 488 genes
in high and low bead proportion.

The winner’s cumulative distribution of ρ’s was significantly shifted towards higher values compared to the
benchmark’s (p < 0.001; Figure 3, a and b) with an average improvement that was twice as large with genes
in low bead proportion compared to those in high bead proportion (5 and 2 percentage points, respectively).

The other competitors showed similar improvements on average (Figure 3, c and d), although the average
improvement was generally smaller compared to the winning method and, for the genes in low bead proportion,
insignificantly different from the benchmark (Figure 3, c and d).

To evaluate the extent to which the winning algorithm outperformed the others, we ranked the top-nine
algorithms by the average correlation metric for each gene (1 = highest, 9 = lowest). We then computed
the percentage of genes for which a given algorithm was ranked first. The winner was ranked first for 30%
of the genes, followed at some distance by the second-placed gaussian-mixture method (20%), and by the
CNN method (13%). Thus, the top two submissions combined outperformed the rest for about half of the
genes. Even so, all but a few algorithms were the best performers for at least 5% of the genes, suggesting
some complementarity between these algorithms.

3.3 Detection of extreme modulations

To evaluate the accuracy at the DE level, we used the detection accuracy of extreme modulations (genes
notably up- or down-regulated by perturbation). We used the UNI data with DE values above a threshold as
the ground truth; and we evaluated the detection accuracy of each solution by computing the corresponding
AUC for each perturbagen type. The detection accuracy of extreme modulations was generally high for both
shRNA and compound samples (AUC > 0.87 and AUC > 0.91, respectively), with the competitors achieving
notable improvements over the benchmark (Figure 4, a). Compared to the benchmark, the winning solution
detects about 4 thousand less extreme modulations (40.8 and 44.2 thousand, respectively), thus being more
conservative. However, when we restricted the comparison to extreme modulations detected by UNI as well
(thus controlling for detection precision), the winning solution detects about 1.5 thousand more extreme
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modulations than the benchmark (27.1 and 25.6 thousand, respectively), representing a sensible 6% increase
in “true” detections.1

We complemented the above analysis by using targeted gene knockdown (KD) experiments as the ground
truth for a subset of data. These are experiments in which a landmark gene was targeted by an shRNA,
and hence we expect to observe a significant decrease in expression for the targeted gene. We evaluated the
KD detection accuracy of each solution by computing the corresponding percentage of successful KD genes
identified or recalled by the algorithm (defining a successful KD as one gene in which the DE value and
the corresponding gene-wise rank in the experiment are less than a given threshold, -2 and 10 respectively).
We computed the percentage recall for the UNI data as well, which yielded an estimate of the maximum
achievable recall of 0.80. Relative to this level, nearly all algorithms achieved a good recall and precision,
with values that were higher than the benchmark solution for all but two methods (Figure 4, b).

3.4 Reduced variation across replicate samples

To evaluate the reproducibility of the results, we leveraged the several replicate samples for each shRNA
and compound experiment in our dataset (about 4 and 10 replicates, respectively). We computed the mean
gene-wise coefficient of variation (CV) for each method, which is a measure of inter-replicate variability
computed as the average ratio between the interquartile range and the median value across all the replicates.
Using this measure, we found all solutions achieved significant improvements over the benchmark (Figure 5);
and the winning method, which was the most accurate on average, also achieved the lowest inter-replicate
variation overall.

3.5 Computational speed

The speed improvements over the benchmark were substantial. While dpeak took about 4-5 minutes per
plate, the fastest algorithm took as little as 5 seconds per plate (more than a 60x speedup compared to
the benchmark) and the slowest was well below one minute. These speed improvements are not directly
attributable to the use of multiple cores, since both the benchmark and contestant algorithms leverage
multi-core techniques. We observed no particular trade-off between speed and accuracy.

3.6 Ensembles

Lastly, we assessed the performance of ensembles combining the predictions of different computational
methods by taking the median value across all 10 predictions (including the benchmark). By focusing on the
subset of the data with shRNA experiments (ignoring the data with compound experiments), the performance
in both Spearman correlation and the AUC metrics of the ensemble tended to increase with the number of
models involved (Figure 6). However, the maximum performance in both metrics tended to plateau (or even
decrease) after combining the results of 3 or more models. This result suggested limited gains from having
ensembles, although it may be worth exploring more sophisticated aggregation approaches.

1These results are for the dataset with shRNA experiments. We expect similar results for the dataset of compound experiments.
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4 Discussion

We created a novel dataset of L1000 profiles for over 120 shRNA and compound experiments with several
replicates for a total of 2,200 gene expression profiles of genes measured independently, and in tandem. This
dataset constitutes now a public resource (S1 Data) to all the researchers in this area who are interested in
testing their deconvolution approaches.

Using an open innovation competition, we collected and evaluated multiple and diverse deconvolution methods.
The best approach was based on a random forest, which is a collection of decision tree regressors. This method
achieved: (i) the highest global correlation between the ground-truth and the corresponding deconvoluted
data, (ii) the lowest inter-replicate variation, and (iii), compared to the benchmark, was able to detect more
than a thousand additional extremely modulated genes, while reducing the false positives at the same time.
Our analysis further showed that these gains are considerable when the gene populations were sampled in
different proportions (here, genes in high and low bead proportions), with the k-means benchmark approach
being systematically less accurate because it does little to mitigate the discrepancy in variability between the
genes measured with high and low bead proportion.

In addition, the random-forest approach achieved these improvements with only 10 trees on 60 features. Thus,
the algorithm is also relatively fast and easy to implement. By comparison, the fastest approach used a more
traditional Gaussian mixture model (with plate-level adjustments), which turned out to be less accurate.
Hence, and overall, our analysis provided evidence of the tremendous potential of using random-forest methods
for deconvolution problems in biology.
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5 Tables and Figures

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.897363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.897363


Figure 1

Schematic illustrating the computational problem, generated data, and scoring function. Panel
(a) provides a schematic description of the L1000 DUO detection mode and the associated deconvolution
problem to be addressed by the contestants. Panel (b) shows the data generated for the contest comprising 6
different sets of perturbational experiments with 3 plates of compound (CP) and shRNA treatments (KD)
each. Each plate was detected using DUO (2 genes per analyte) and UNI (one gene per analyte) with UNI
serving as the ground truth. Contestants were given two plates of data for training their models offline; a
second set of two plates was used during the contest for testing and to populate the live leaderboard; and
the third set of two was used as holdout to determine the final contestant placements. Panel (c) illustrates
the accuracy component of the scoring function that was used to evaluate the solutions submitted by the
competitors. A solution’s overall accuracy score was the product of the genewise Spearman rank correlations
with ground truth (DECONV data) and the AUC of extreme modulations (DE data).
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Figure 2

Clustering of solutions. Each point represents the two-dimensional t-SNE projection of a sample generated
by UNI ground truth (GT) or by applying a deconvolution algorithm to DUO data. t-SNE was run on the 2
plates of holdout data, one each containing compound and shRNA treatments. t-SNE was run once on all
DECONV data and once on all DE data. The resulting projections were colored and subset to generate the
following panels: DECONV data colored by perturbagen type (a) and algorithm type (b). DECONV (c) and
DE (d) data colored by algorithm type and stratified by each individual implementation.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.897363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.897363


Figure 3

Correlation between ground-truth and deconvolution samples. This figure shows the cumulative
distribution of the genewise Spearman correlation coefficients between the ground-truth (UNI) and the
deconvolution data (DUO) achieved by the winning random-forest method against the k-means benchmark
(dpeak*) for the subset of genes in low bead proportion (a) and in high bead proportion (b) for the shRNA
and compound perturbagen types. It also shows the mean (across genes) correlation and 95% CI for the
top-nine performing solutions and the benchmark for the compound data of genes in low bead proportion
(c) and those in high bead proportions (d), as well as the shRNA data of genes in low bead proportion (e)
and those in high bead proportion (f). Asterisks indicate statistical significance at *** 0.001, ** 0.05, and *
0.1 level of a Wilcoxon-rank-sum test of location difference between the competitor’s distribution and the
corresponding distribution of the benchmark.
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Figure 4

Detection of extreme modulations and targeted knockdown genes. This figure shows the AUC
for the predicted differential expressions (DE data) obtained by the top-nine performing methods and the
k-means benchmark (dpeak) and the corresponding ground-truth extreme modulations (as detected in the
UNI data) both for the shRNA and compound samples (a). It also shows the computed recall and precision
of the top-nine methods and the benchmark for the detection of the targeted knockdown genes for a subset of
shRNA experiments (b).
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Figure 5

Variation across replicates for the top-four performing methods and the (dpeak) benchmark.
This figure shows the mean coefficient of variation for each compound perturbagen in our sample. The mean
coefficient of variation is computed as the average of the gene-wise percent ratio between the interquartile-range
and the median of the deconvoluted values across 10 replicates. These values are computed separately for the
subset of genes in low bead proportions (a) and of those in high bead proportions (b). The perturbagens on
the x-axis are ordered by increasing mean coefficient of variation of the benchmark. This was computed for
all the genes, allowing a direct comparison across the panels.
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Figure 6

Performance of ensembles. This figure shows the performance in the (a) correlation metric and (b) AUC
metric of the ensemble based on the median prediction of all possible combinations of a given size of the top
9 algorithms plus the benchmark. The median performance of the ensemble tends to increase with its size.
However, the maximum performance in both metrics tends to plateau (or even decrease) after the ensamble
reaches a size equal to 3.
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S1 Table

Top-nine performing solutions. This table lists the top-nine solutions and the languages and algorithms
each used, as well as the average speedup per plate relative to the k-means benchmark.

rank handle language method category speedup

1 gardn999 Java random forest regressor DTR 17x

2 Ardavel C++ Gaussian mixture model GMM 62x

3 mkagenius C++ modified k-means k-means 24x

4 Ramzes2 Python/C++ ConvNet CNN 10x

5 vladaburian Python/C++ Gaussian mixture model GMM 7x

6 balajipro Python/C++ modified k-means k-means 21x

7 AliGebily Python boosted tree regressor DTR 5x

8 LastEmperor Python modified k-means k-means 7x

9 mvaudel Java other other 55x
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S2 Table

Compound perturbagens descriptives. This table shows componud perturbagen names (pert_iname),
unique id (pert_id), time of treatment (pert_itime), dose (pert_idose), and number of replicates
(num_replicates).

pert_iname pert_id pert_itime pert_idose num_replicates

abiraterone(cb-7598) BRD-K50071428 24 h 10 um 11

acalabrutinib BRD-K64034691 24 h 10 um 11

afatinib BRD-K66175015 24 h 10 um 11

artesunate BRD-K54634444 24 h 10 um 11

azithromycin BRD-K74501079 24 h 10 um 11

betamethasone dipropionate (diprolene) BRD-K58148589 24 h 10 um 11

CGS-21680 BRD-A81866333 24 h 10 um 11

chelidonine BRD-K32828673 24 h 10 um 11

clobetasol BRD-K84443303 24 h 10 um 11

digoxin BRD-A91712064 24 h 10 um 11

disulfiram BRD-K32744045 24 h 10 um 10

emetine hcl BRD-A77414132 24 h 10 um 10

eplerenone BRD-K19761926 24 h 10 um 11

epothilone-a BRD-K71823332 24 h 10 um 9

flumetasone BRD-K61496577 24 h 10 um 11

fluocinolone BRD-K94353609 24 h 10 um 11

genipin BRD-K28824103 24 h 10 um 11

hydrocortisone BRD-K93568044 24 h 10 um 10

hyoscyamine BRD-K40530731 24 h 10 um 11

indirubin BRD-K17894950 24 h 10 um 10

L-745870 BRD-K05528470 24 h 10 um 10

nTZDpa BRD-K54708045 24 h 10 um 11

oligomycin-a BRD-A81541225 24 h 10 um 11

PRIMA1 BRD-K15318909 24 h 10 um 11

RITA BRD-K00317371 24 h 10 um 11

spironolactone BRD-K90027355 24 h 10 um 11

tanespimycin BRD-K81473043 24 h 10 um 11

tretinoin BRD-K71879491 24 h 10 um 10

UB-165 BRD-A14574269 24 h 10 um 11

ursolic-acid BRD-K68185022 24 h 10 um 11
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pert_iname pert_id pert_itime pert_idose num_replicates

WAY-161503 BRD-A62021152 24 h 10 um 11

ZM-39923 BRD-K40624912 24 h 10 um 11
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S3 Table

Short-hairpin (shRNA) perturbagens descriptives. This table shows shRNA perturbagen names
(pert_iname), unique id (pert_id), and number of replicates (num_replicates).

pert_iname pert_id num_replicates

ABCB6 TRCN0000060320 4

ADI1 TRCN0000052275 4

ALDOA TRCN0000052504 4

ANXA7 TRCN0000056304 4

ARHGAP1 TRCN0000307776 4

ASAH1 TRCN0000029402 4

ATMIN TRCN0000141397 4

ATP2C1 TRCN0000043279 4

B3GNT1 TRCN0000035909 4

BAX TRCN0000033471 4

BIRC5 TRCN0000073718 4

BLCAP TRCN0000161355 4

BLVRA TRCN0000046391 4

BNIP3L TRCN0000007847 4

CALU TRCN0000053792 4

CCDC85B TRCN0000242754 4

CCND1 TRCN0000040038 4

CD97 TRCN0000008234 4

CHMP4A TRCN0000150154 4

CNOT4 TRCN0000015216 4

DDR1 TRCN0000000618 4

DDX10 TRCN0000218747 4

DECR1 TRCN0000046516 4

DNM1L TRCN0000001097 3

ECH1 TRCN0000052455 4

EIF4EBP1 TRCN0000040206 4

EMPTY_VECTOR TRCN0000208001 15

ETFB TRCN0000064432 4

FDFT1 TRCN0000036327 4

GALE TRCN0000049461 4

GFP TRCN0000072181 16
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pert_iname pert_id num_replicates

GRN TRCN0000115978 4

GTPBP8 TRCN0000343727 4

HDGFRP3 TRCN0000107348 4

HIST1H2BK TRCN0000106710 4

IKBKAP TRCN0000037871 4

INPP4B TRCN0000230838 4

INSIG1 TRCN0000134159 4

ITFG1 TRCN0000343702 3

JMJD6 TRCN0000063340 4

LBR TRCN0000060460 4

LGMN TRCN0000029255 4

LPGAT1 TRCN0000116066 4

LSM6 TRCN0000074719 4

MAPKAPK2 TRCN0000002285 4

MAPKAPK3 TRCN0000006154 4

MAPKAPK5 TRCN0000000684 4

MIF TRCN0000056818 4

MRPL12 TRCN0000072655 4

NT5DC2 TRCN0000350758 4

NUP88 TRCN0000145079 4

PARP2 TRCN0000007933 4

PLCB3 TRCN0000000431 4

POLE2 TRCN0000233181 4

PPIE TRCN0000049371 4

PRKAG2 TRCN0000003146 4

PSMB10 TRCN0000010833 4

PTPN6 TRCN0000011052 4

RAB11FIP2 TRCN0000322640 4

RALB TRCN0000072956 4

RHEB TRCN0000010425 3

RNF167 TRCN0000004100 4

RPN1 TRCN0000072588 4

SLC25A4 TRCN0000044967 4

SNX11 TRCN0000127684 4
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pert_iname pert_id num_replicates

STK25 TRCN0000006270 4

STUB1 TRCN0000007525 4

STXBP1 TRCN0000147480 4

SYPL1 TRCN0000059926 4

TATDN2 TRCN0000049828 4

TM9SF3 TRCN0000059371 4

TMEM110 TRCN0000127960 4

TMEM50A TRCN0000129223 4

trcn0000014632 TRCN0000014632 4

trcn0000040123 TRCN0000040123 4

trcn0000220641 TRCN0000220641 4

trcn0000221408 TRCN0000221408 4

trcn0000221644 TRCN0000221644 4

TSKU TRCN0000005222 4

UGDH TRCN0000028108 4

USP14 TRCN0000007428 4

USP6NL TRCN0000253832 4

VAT1 TRCN0000038193 4

VDAC1 TRCN0000029126 4

WIPF2 TRCN0000029833 4

YME1L1 TRCN0000073864 4

ZW10 TRCN0000155335 4
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S1 Data

LINK TO DATA REPOSITORY on http://CLUE.io WILL BECOME AVAILABLE AFTER PUBLICATION
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S1 Appendix

Scoring function. This appendix describes the scoring function used in the contest to evaluate the
performance of the competitors’ submissions.

Submissions were scored based on a scoring function that combines measures of accuracy and computational
speed. Accuracy measures were obtained by comparing the contestant’s predictions, which were derived from
DUO data, to the equivalent UNI ground truth data generated from the same samples.

The scoring function combines two measures of accuracy: correlation and AUC, which are applied to
deconvoluted (DECONV ) data and one to differential expression (DE) data, respectively.

DE is derived from DECONV by applying a series of transformations (parametric scaling, quantile normaliza-
tion, and robust z-scoring) that are described in detail in Subramanian et al. [1]. The motivation for scoring
DE data in addition to DECONV is because it is at this level where the most bilogically interesting gene
expression changes are observed. Of particular interest is obtaining significant improvement in the detection
of, so called, “extreme modulations.” These are genes that notably up- or down-regulated by pertubation and
hence exhibit an exceedingly high (or low) DE values relative to a fixed threshold.

The first accuracy component is based on the Spearman rank correlation between the predicted DECONV
data and the corresponding UNI ground truth data.

For a given dataset p, let MDUO,p and MUNI,p denote the matrices of the estimated gene intensities for
G = 976 genes (rows) and S = 384 experiments (columns) under DUO and UNI detection. Compute the
Spearman rank correlation matrix, ρ, between the rows of these matrices and take the median of the diagonal
elements of the resulting matrix (i.e., the values corresponding to the matched experiments between UNI and
DUO) to compute the median correlation per dataset,

CORp = median(diag(ρ(MDUO,p,MUNI,p))).

The second component of the scoring function is based on the Area Under the receiver operating characteristic
Curve (AUC) that uses the competitor’s DE values at various thresholds to predict the UNI’s DE values
being higher than 2 (“high”) or lower than -2 (“low”).

For a given dataset p, let AUCp,c denote the corresponding area under the curve where c = {high, low}; then,
compute the arithmetic mean of the area under the curve per class to obtain the corresponding score per
dataset:

AUCp = (AUCp,high + AUCp,high)/2.

These accuracy components were integrated into a single aggregate scores:

SCORE = SCOREmax · (max(CORp, 0))2 ·AUCp · exp(−Tsolution/(3 · Tbenchmark)),

where Tsolution is the run time for deconvoluting the data in each plate, and Tbenchmark is the deconvolution
time required by the benchmark dpeak implementation.
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S2 Appendix

L1000 Experimental Scheme The L1000 assay uses Luminex bead-based fluorescent scanners to detect
gene expression changes resulting from treating cultured human cells with chemical or genetic perturbations
[Subramanian 2017]. Experiments are performed in 384-well plate format, where each well contains an
independent sample. The Luminex scanner is able to distinguish between 500 different bead types, or colors,
which CMap uses to measure the expression levels of 978 landmark genes using two detection approaches.

In the first detection mode, called UNI, each of the 978 landmark genes is measured individually on one of
the 500 Luminex bead colors. In order to capture all 978 genes, two detection plates are used, each measuring
489 landmarks. The two detection plates’ worth of data are then computationally combined to reconstruct
the full 978-gene expression profile for each sample.

By contrast, in the DUO detection scheme two genes are measured using the same bead color. Each bead
color produces an intensity histogram which characterizes the expression of the two distinct genes. In the
ideal case, each histogram consists of two peaks each corresponding to a single gene. The genes are mixed
in 2:1 ratio, thus the areas under the peaks have 2:1 ratio (see Figure 1), which enables the association of
each peak with the specific gene. The practical advantage of the DUO detection mode is that it uses half
of the laboratory reagents as UNI mode, and hence DUO is and has been the main detection mode used
by CMap. After DUO detection, the expression values of the two genes are computationally extracted in a
process called ‘peak deconvolution,’ described in the next section.
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