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Abstract 16 

Coral reefs are among the many communities believed to exhibit regime shifts between 17 
alternative stable states, single-species dominance, and coexistence. Proposed drivers of regime 18 
shifts include changes in grazing, spatial clustering, and ocean temperature. Here we distill the 19 
dynamic regimes of coral-macroalgal interaction into a three-dimensional geometry, akin to 20 
thermodynamic phase diagrams of state transitions, to facilitate analysis. Specific regime-shifting 21 
forces can be understood as bifurcation vectors through the cubic regime geometry. This 22 
geometric perspective allows us to understand multiple forces simultaneously in terms of the 23 
stability and persistence of interacting species. For example, in a coral-macroalgae community, 24 
grazing on macroalgae can lead to alternative stable states when there is no spatial clustering 25 
(e.g., high habitat connectivity). However, with spatial clustering, grazing can lead to 26 
coexistence because of elevated local intraspecific competition. The geometrical analysis of 27 
regime shifts is applicable to any two-species communities and can help conservation efforts 28 
navigate complexity and abrupt changes.  29 
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I. Introduction 30 
 Regime shifts and alternative stable states have been implicated in many communities, 31 
including coral reefs (Hughes et al. 2017), shallow lakes (Scheffer et al. 1993), kelp beds (Ling 32 
et al. 2014), and terrestrial forests (Hirota et al. 2011). Discontinuous shifts in community 33 
dynamics due to gradual environmental changes imply that conservation and management may 34 
have to anticipate and confront historical legacy traps (Scheffer et al. 2001, Tekwa et al. 2019a). 35 
The potential for regime shifts is a pressing concern in the Anthropocene, as exemplified by 36 
recent heat waves driving coral reefs to a depauperate state (Hughes et al. 2019). Coral reefs 37 
have been intensely studied and share general features with a wide range of other communities 38 
suggested to exhibit regime shifts, particularly those that feature two species whose interactions 39 
are selectively mediated by grazers, nutrients, fire, or temperature (Mumby et al. 2007, Staver 40 
and Levin 2012, Graham et al. 2015, Schmitt et al. 2019). However, there remains disagreement 41 
about the evidence for regime shifts and alternative stable states among coral reefs (Bruno et al. 42 
2009, Dudgeon et al. 2010, Mumby et al. 2013) and other communities (Schröder et al. 2005). 43 
One possible explanation for this disagreement is that there are different mechanisms leading to 44 
regime shifts even within one ecosystem type such as coral reefs (van de Leemput et al. 2016), 45 
such that empirical examinations focusing on one mechanism will yield negative results across 46 
sites. 47 

In the coral reef literature, multiple regime shift mechanisms have been modelled 48 
separately, including interspecific competition among coral species, interspecific competition 49 
between coral and macroalgae, predator-prey interaction, and grazer-mediated interaction 50 
(Knowlton 1992, Mumby et al. 2007, Petraitis and Hoffman 2010, van de Leemput et al. 2016). 51 
These mechanisms hinge on space being a limiting resource for benthic coral reef communities 52 
(McCook et al. 2001, Sandin and McNamara 2012), as is evident by the common use of coral 53 
cover (maximum of 100%) in the literature (Jokiel et al. 2015). However, models that track coral 54 
cover often treat space as if it were any other limiting non-spatial resource, without explicitly 55 
incorporating spatial dynamics (Elmhirst et al. 2009, Anthony et al. 2011, Blackwood et al. 2011, 56 
Baskett et al. 2014, Fabina et al. 2015, McManus et al. 2019). However, we know from the 57 
broader ecological literature that spatial clustering, arising from low habitat connectivity or 58 
limited dispersal, can strongly determine species stability in communities even with linear 59 
interaction responses (Bolker and Pacala 1999, Chesson 2000). There is therefore a need to 60 
synthesize the variety of spatial and non-spatial mechanisms of coral reef regime shifts in general 61 
ecological terms. 62 

Here we propose simple modifications to a bi-linear mathematical model (Volterra 1926, 63 
Lotka 1978, Neuhauser and Pacala 1999) so as to use generic community ecological terms to 64 
synthesize spatial, temperature, and grazing effects on coral macroalgal interactions. This model 65 
reveals the basic ingredients that lead to alternative stable states or coexistence of corals and 66 
macroalgae on coral reefs, as well as what these species stability outcomes mean for the 67 
aggregate community. We then distill the model to three parameters that completely define the 68 
possible dynamic regimes and that can be visualized as a cubic volume. We show how 69 
previously suggested bifurcating factors—such as grazing, spatial clustering, and warming—are 70 
different vectors traversing this cubic parameter space. The ultimate goal of this formalism is the 71 
identification of generic bifurcation dimensions (local competition and intrinsic growth metrics) 72 
that will allow scientists and conservation managers to generate and test hypotheses regarding 73 
the presence or absence of regime shifts without narrowly focusing on single region- or system-74 
specific mechanisms. 75 
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II. Methods 76 
 We first present the Lotka-Volterra model as a foundation for two-species interactions, 77 
then show that a coral-macroalgae model can be analyzed as a special case and extended to 78 
incorporate temperature dependence. We then incorporate spatial clustering into the models, 79 
arriving at a general Spatial Lotka-Volterra formulation of dynamic regimes in two-species 80 
systems. Finally, we add temperature dependent growth. The specific spatial and temperature-81 
dependence introduced for coral-macroalgal interactions allow us to subsequently explore how 82 
grazing, spatial clustering, and warming affect coral reef communities’ dynamic regimes. 83 
 84 
Lotka-Volterra Model 85 
 86 
Table 1. Model equations. The dynamic equations are given in the form of 87 
dNi/(Nidt)=∑(coefficient ⨉ state) where each coefficient is highlighted in orange and the 88 
corresponding state is the bracketed variable given in the header row. Subscript i refers to the 89 
focal species and j≠i. All symbols are defined in Table 2. 90 
 91 
Model Species 

(i) 
Density 
changes 

Intrinsic 
rate 
(⨉1) 

Intraspecific 
interaction 
(⨉Ni) 

Interspecific 
interaction 
(⨉Nj) 

Higher-order 
interspecific 
interaction 
(⨉(Nj2+Nj3+…)) 

Lotka-
Volterra 

1 "#$
#$"%

= Σ  r1-m1 -r1a11 -r1a12 0 

2 "#(
#("%

= Σ  r2-m2 -r2a22 -r2a21 0 

Mumby 
model 

1 coral "#$
#$"%

= Σ  r-d -r -(r+a) 0 

2 algae "#(
#("%

= Σ  𝛾-g -𝛾 -(𝛾+g-a) -g 

Spatial 
Lotka-
Volterra 

1 "#$
#$"%

= Σ  r1-m1 -r1a11C11 -r1a12C12 0 

2 "#(
#("%

= Σ  r2-m2 -r2a22C22 -r2a21C12 0 

 92 
 We first restate the classic two-species competitive Lotka-Volterra equations and their 93 
well-known implications for bistability and coexistence (Volterra 1926, Lotka 1978). The 94 
species in these equations can represent coral and macroalgae. The Lotka-Volterra model 95 
assumes that each species has intrinsic growth rate (ri) and mortality (mi). In addition, 96 
competition between species i and j results in linear per-capita growth rate changes (-riaij) that 97 
scale with the density of the other species (Nj) (Table 1). There are three non-trivial equilibria 98 
sets, including species 1 dominance (case 1), species 2 dominance (case 2), and coexistence 99 
(Table A1). Stability analysis (Appendix: Lotka-Volterra Model) shows that the single-species 100 
equilibrium for species i is stable if: 101 

Equation 1  *+,
*,,
> ./+01+

/+
2 3/,01,

/,
45  102 

 That is, if the ratio of interspecific competition (of species j on i, aji) over intraspecific 103 
competition (of i, aii) is greater than the ratio of species j’s isolated equilibrium density ((rj-104 
mj)/rj) over species i’s isolated equilibrium density ((ri-mi)/ri) (when intraspecific competitions 105 
are equal, a11=a22), then the dominance of species i (with j locally extirpated) is stable. If the 106 
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condition in Equation 1 is true for only i=1 but not i=2, then species 1 competitively excludes 107 
species 2 deterministically, and vice versa for species 2 competitively excluding species 1. If the 108 
condition is false for both species, then coexistence is stable. However, if Equation 1 is true for 109 
i=1 and for i=2, then coexistence is unstable and alternative stable states occur, with either 110 
species dominating depending on initial conditions. 111 
 112 
Table 2. Symbol definitions. Parameter values are for Figures 2-4. 113 
Definition Species 1 (coral) 

parameter values 
Species 2 (macroalgae) 
parameter values 

Coral-Macroalgae Model (without spatial + temperature 
dependence) 

 

macroalgal overgrowth on coral a=1.1 
coral mortality d=0.5  
grazing rate  g=[0.55 – 0.85] 
birth rate r=1 𝛾 =1.1 
Lotka-Volterra Equivalent (with spatial + temperature 
dependence) 

 

intraspecific interaction effect a11=Cii a22=Cii 

interspecific interaction effect a12= (r1+a)C12/r1 a21= (r2+g-a)C12/r2 
relative (intra-to-inter) clustering Cii/Cij=[1, 2, 4] 
intraspecific clustering Cii=[1,1.19,1.41] 
mortality m1=d m2=g 
density or cover 0≤Ni ≤1 
intrinsic growth rate r·exp(-ΔT2/(2𝜎12)) 𝛾·exp(-ΔT2/(2𝜎22)) 
thermal tolerance 𝜎1=1 𝜎1=√2 
actual - optimal temperature ΔT=[0, 1] 

 114 
 115 
Coral-Macroalgae Model 116 
 We next we show that models based on the Lotka-Volterra formulation can help 117 
understand competitive exclusion, bistability, and coexistence conditions in prominent coral-118 
macroalgae models. The Mumby model (Mumby et al. 2007) and related models (Li et al. 2014) 119 
consider coral (N1) and macroalgal (N2) cover. These models exhibit bistability when an implicit 120 
herbivore’s grazing rate on macroalgae (g) is at an intermediate value. The Mumby model can be 121 
rewritten in Lotka-Volterra form, with terms arranged according to intraspecific and interspecific 122 
interactions (Table 1, Appendix: Coral-Macroalgae Model). 123 

With this formulation, it becomes clear that the Mumby model is a particular 124 
specification of the Lotka-Volterra model in which grazing reduces the intrinsic growth rate of 125 
and increases the interspecific competition on macroalgae. This formulation also reveals the 126 
implicit assumptions about competition, namely that interspecific competition is greater than 127 
intraspecific competition for corals under any grazing rate. Interspecific competition is also 128 
greater than intraspecific competition for macroalgae when grazing rate is sufficiently high 129 
(Appendix, Table 1). Thus, the alternative stable states observed in the model can be understood 130 
in terms of the Lotka-Volterra terminology of interspecific versus intraspecific competition 131 
(Equation 1).   132 
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In addition, the Mumby model features a negative grazing effect on macroalgae that 133 
increases in magnitude geometrically with coral cover (N12+ N13+…+N1∞) (Appendix, Table 1). 134 
Dropping these higher-order interactions shrinks but does not eliminate the bistable region and, 135 
in fact, the alternative stable states remain identical (Figure A1, Equation 10, see Table 2 for 136 
parameter values). Therefore, the Lotka-Volterra model appears sufficiently nuanced to represent 137 
alternative stable state dynamics between coral and macroalgae. 138 
 We note that Lotka-Volterra-based models traditionally define species state (Ni) as 139 
density (biomass or abundance per area), while the coral literature tracks proportion of habitat 140 
covered by biomass (maximum of one or 100%) (Jokiel et al. 2015). Given any arbitrary area 141 
unit, density in the Lotka-Volterra model can also be set to a maximum of one both locally and 142 
globally by adjusting the competition coefficients aij. Thus, density and percent cover are 143 
interchangeable for the subsequent results. 144 
 Having established the connection between the Lotka-Volterra model and the Mumby 145 
model, we now proceed to incorporate space into the Lotka-Volterra model. 146 
 147 
 148 
Spatial Lotka-Volterra Model 149 

Spatial competition is an implicit assumption in the coral-macroalgal interaction 150 
(McCook et al. 2001, Sandin and McNamara 2012). Here we explicitly consider how spatial 151 
dynamics affect coral and macroalgae using the Lotka-Volterra formulation. The Lotka-Volterra 152 
model can be changed into a spatial version using the spatial moment framework (Durrett and 153 
Levin 1994, Bolker and Pacala 1999, Lion and Baalen 2008, Tekwa et al. 2015). According to 154 
the spatial moment framework, interaction neighbour densities for a focal species i in a non-155 
spatial model (Nj) can be replaced by the local density Nij, or CijNj (related to the second spatial 156 
moment, see Appendix) where Cij is a continuous-space clustering coefficient. This clustering 157 
coefficient is relevant across a variety of ways of thinking about space, including continuous 158 
space (with neighbours weighted by distance), discrete space such as habitat networks or 159 
metacommunities (with neighbours being within a patch), or social networks (with neighbours 160 
being connected nodes) (Lion and Baalen 2008, Tekwa et al. 2017). Nij or CijNj expresses the 161 
average number of species j neighbours that an individual of species i interacts with per area per 162 
time, and can be different from Nj, the average number of neighbours that an individual would 163 
interact with if all were randomly distributed or if the interaction neighbourhood were the entire 164 
community (Figure 1). In network terminology with two species, Nii is the average node degree 165 
in the within-species network, whereas Nij (i≠j) is the average node degree in the bipartite 166 
network (where the links are between species). 167 

The clustering coefficient is convenient because it captures spatial clustering effects as a 168 
single multiplicative factor, indicating how many more (when Cij>1) or fewer (when Cij<1) times 169 
an individual of species i encounters an individual of species j than the global density of j. The 170 
higher the value of Cij, the more clustered j is around i. This also allows one to write an 171 
interaction effect on population growth rate (dNi/Nidt) as aijCijNj. In this form, it is clear that the 172 
dynamic equations are the same as the non-spatial Lotka-Volterra equations, with interaction 173 
coefficients aij replaced by aijCij. That is, spatial clustering scales up the effective interaction 174 
effects. By definition, Cij=Cji  (Tekwa et al. 2015). Spatial clustering can be due to either 175 
endogenous (low dispersal and pattern formation) or exogenous (habitat connectivity and matrix 176 
constraint) processes. In particular, low dispersal leads to Cij being greater than one within 177 
species (Cii>1) and less than one between species (Cij<1) because offspring tend to be near 178 
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parents (Bolker and Pacala 1999, Lion and Baalen 2008, Tekwa et al. 2019b). Here we assume 179 
that clustering is constant through time and ignore possible dependency on Ni or higher moments 180 
(Bolker and Pacala 1999). Among species or morphs that are very similar, as in an incremental 181 
evolutionary process without population size dynamics, it has been shown that relative clustering 182 
(Cii/Cij)  is constant (Tarnita et al. 2009, Nathanson et al. 2009, Tekwa et al. 2015). In the more 183 
general ecological case where species can be very different, more habitat connectivity or higher 184 
movement rates are still expected to create less relative clustering (approaching one with the 185 
highest connectivity or movement rates) (Bolker and Pacala 1997, Tarnita et al. 2009, Tekwa et 186 
al. 2019b). Thus, the constant clustering assumption is an approximation that should roughly 187 
capture spatial effects on regime dynamics. 188 

Spatial clustering affects coral and macroalgal competition terms under the Spatial Lotka-189 
Volterra framework. By matching terms in the Spatial Lotka-Volterra model and the coral-190 
macroalgae model (Table 1), we find that intraspecific competition is 1 without spatial 191 
clustering, and increases with within-species clustering (Cii, Table 2). Interspecific competition 192 
effects, on the other hand, are moderated by both space (Cij, Table 2). 193 

  194 
Figure 1. Descriptions of spatial clustering. The spatial clustering of individuals (circles) of 195 
two species can be conceptualized in three different ways. First, patches (hexagons) in a habitat 196 
network can delimit which individuals are interaction neighbours. Second, links (thin lines) in a 197 
social network can specify which pair of individuals interact at a given time. Third, interaction 198 
kernels (circular shades) can weigh individuals within a certain distance as neighbours. The 199 
spatial clustering discussed in the main text can be described under any of these three 200 
frameworks with continuous-space clustering coefficients Cij. These coefficients can be tallied in 201 
terms of the average number of neighbours (or node degree) j that i experiences (Nij) and the 202 
global average number of individuals i per area or patch (Ni). Sample calculations of Ni, Nij, Cij, 203 
and relative clustering (Cii/Cij) are obtained by taking averages and ratios of individual and 204 
neighbour counts (see box). 205 

 206 
With spatial considerations the stability criterion for species i dominance becomes: 207 

Equation 2  7,+*+,
7,,*,,

> ./+01+

/+
2 3/,01,

/,
45   208 
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This inequality is harder to attain when relative clustering (Cii/Cij) is high. Thus, 209 
clustering can lead to global coexistence, even when locally there tends to be one or the other 210 
species dominating. The finding is congruent with the well-known hypothesis that spatial 211 
variation promotes coexistence (Chesson 2000). 212 
 213 
Temperature Dependence 214 
 Warming is recognized as one of the most dramatic factors affecting coral reefs (Hughes 215 
et al. 2019). As a simple and analytically tractable way to consider temperature, we assume that 216 
intrinsic growth rates ri are maximal when temperature matches the historical temperature (r for 217 
corals and 𝛾 for macroalgae), and that growth rates decrease when temperature deviates from 218 
these optima according to (non-standardized) Gaussian functions. A species’ thermal tolerance is 219 
the standard deviations of the Gaussian function. Further, we assume that macroalgae have a 220 
wider thermal tolerance (𝜎1) than corals (𝜎2, Table 2). Mortality rates are assumed constant in 221 
temperature for corals (d) and for macroalgae (g). 222 

 223 
 224 
III. Results 225 
 We use stability criteria in the spatial Lotka-Volterra model to show how dynamic 226 
regimes in two-species (e.g., coral-macroalgal) communities can be generically described using 227 
simple geometry with only three parameters for competition and growth. We then show how the 228 
effects of grazing, spatial clustering, and warming translate to changes in these three competition 229 
and growth parameters to affect dynamic outcomes in the coral-macroalgal system. We aim to 230 
show that diverse mechanisms of community regime shifts can be synthesized under a common, 231 
low-dimensional geometric framework. 232 
  233 
Geometry of Dynamic Regimes 234 
  The community dynamic regimes of a two-species spatial Lotka-Volterra model are 235 
determined by two inequalities involving three parameters. From Equation 2, the three 236 
parameters are 1) the local species 1 intra-to-interspecific cross competition ratio 𝛼1; 2) the local 237 
species 2 intra-to-interspecific cross competition ratio 𝛼2; and 3) the intrinsic growth inequality 238 
ratio between species 2 and 1, f21 (see Table 3). The competition ratios are called “cross 239 
competition”, because they are ratios of the intraspecific competition effect on the focal species 240 
relative to the interspecific competition effect on the other species. Competition ratios also 241 
encapsulate the effect of spatial clustering, which is positive and multiplicative. Table 3 shows 242 
that the possible combinations of inequalities produce the four dynamic regimes of alternative 243 
stable states, species 1 only, species 2 only, and coexistence. The points where the three 244 
parameters coincide (1/𝛼1=𝛼2=f21), for example at 𝛼1=𝛼2=f21=1, are “quadruple points” where the 245 
four dynamic regimes collide (named after the triple point in the thermodynamic phases of solid, 246 
liquid, and gas) (Maxwell and Harman 1990). Some illustrative bifurcation calculations are 247 
shown in Table A2 and Table A3 to demonstrate that increases in relative clustering shift 248 
dynamics from “alternative stable states” to “species 2 only” and eventually to “coexistence.” 249 
Similarly, increases in grazing shifts the dynamics from “species 2 only” to “alternative stable 250 
states” to “species 1 only.” 251 
 252 
 253 
 254 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.899179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.899179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Table 3. Conditions for each community dynamic regime. The variables that determine 255 
dynamic regimes are 1) intra-to-interspecific cross competition ratio 𝛼9 =

7$$*$$
7($*($

, 2) intra-to-256 

interspecific cross competition ratio 𝛼: =
7((*((
7$(*$(

, and 3) intrinsic growth inequality 257 

𝑓:9 = 3/(01(
/(

4 3/$01$
/$

4< . 258 

Conditions Community Dynamic Regimes 
1/𝛼1 > f21 > 𝛼2 alternative stable states 
1/𝛼1 > f21 < 𝛼2 species 1 only 
1/𝛼1 < f21 > 𝛼2 species 2 only 
1/𝛼1 < f21 < 𝛼2 coexistence 

 259 
 260 

 261 
Figure 2. Geometric representation of the relationship between Lotka-Volterra parameters 262 
and the four possible dynamic regimes. The dimensions are the species 1 intra-to-interspecific 263 
cross-competition log-ratio (log2(𝛼1)), the species 2 cross-competition log-ratio (log2(𝛼2)), and 264 
the intrinsic growth log-inequality of species 2 over species 1 (log2(f21)). (A) The two-species 265 
spatial Lotka-Volterra model’s dynamic regimes are separated by two planes that define the 266 
marginal stability of each species’ dominance. These planes bisect each other and create four 267 
dynamic regimes (B), which are illustrated using three two-dimensional cross-sections (colored 268 
regimes with white text). Bifurcation vectors (black arrows and text) show the effects of grazing, 269 
warming, and spatial clustering. Letters A-F corresponding to subplots in Figure 3. Series of 270 
circles colored by regimes represent how equidistant increments in grazing in a coral-macroalgae 271 
model traverse the regime geometry. The series start at three different and fixed spatial clustering 272 
and two warming levels. 273 
 274 
 The three parameters constitute the coordinates in which the stability of each species can 275 
change. The planes 1/𝛼1 = f21 and f21=𝛼2 bisect, respectively, regions where species 1 and species 276 
2 dominance are marginally stable. In particular, in log-space these planes are flat (because all 277 
dimensions are ratios, Figure 2A). Using these planes, we construct a volume with the three 278 
dimensions as axes, and dynamic regime as categorical outcomes coded by color (Figure 2B). 279 
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This cube completely describes all possible dynamic regimes and their relationships to 280 
parameters in the spatial Lotka-Volterra model. 281 

The dynamic regime geometry distills the spatial Lotka-Volterra model into three 282 
bifurcation dimensions that summarize competition and intrinsic growth properties (𝛼1, 𝛼2, f21). 283 
This is a drastic dimensionality reduction from the original spatial Lotka-Volterra model (11 284 
dimensions: a11, a12, a21, a22, C11, C12, C22, m1, m2, r1, r2) and the linearized coral-macroalgal 285 
model (5 dimensions: a, d, g, 𝛾, r) (Table 1 and Table 2). The dimensionality reduction also 286 
means that there are multiple ways (multiple combinatorial changes in the original parameters) to 287 
achieve the same bifurcations. For example, equal changes to either relative clustering C11/C21 or 288 
to the local competition ratio a11/a21 results in the same change in 𝛼1 and therefore the same 289 
sequence of regime shifts – either from coexistence to species 1 only, or from species 2 only to 290 
alternative stable states depending on f21 (Figure 2B). 291 

We focussed here on coral-macroalgal competition, but the results in this section apply to 292 
any two species by virtue of the generic spatial Lotka-Volterra formulation. 293 
 294 
System-Specific Outcomes 295 
 The categorization of dynamic regimes and dimensional reduction allow one to take a 296 
geometric approach to reasoning. Here we illustrate the utility and limitation of geometric 297 
reasoning by comparing it against species-level outcomes from a particular set of parameters. In 298 
this system, we explore how changes in grazing (Mumby et al. 2007), spatial clustering (Bolker 299 
and Pacala 1999), and warming (Hughes et al. 2019) affect dynamic regimes – quantities that 300 
should be obtainable from geometric reasoning alone. We also explore effects on coral and 301 
macroalgae covers or densities – quantities that are related to but are more specific than 302 
categorical regimes (see Table A4 for parameter values and numerical outcomes from this 303 
example).  304 

First, we show how parameter changes can be represented as bifurcation vectors 305 
corresponding to the geometric coordinates of 𝛼1, 𝛼2, and f21 (series of circles in Figure 2B). As 306 
grazing increases, it decreases the relative growth of macroalgae versus coral (f21) and decreases 307 
the cross-competition ratio (relative intraspecific competition) for macroalgae (𝛼1). A major 308 
effect is to drive the system towards the lower part of Fig. 2B. In contrast, increases in spatial 309 
clustering increase the cross-competition ratios for both species (𝛼1, 𝛼2), driving the system 310 
towards the front left corner of Fig. 2B.  311 

The effect of warming is more complicated. Warming decreases the cross-competition 312 
ratios (𝛼1, 𝛼2) independently from clustering and grazing. Less intuitively, warming increases the 313 
growth inequality (f21) at low grazing due to macroalgae’s wider thermal tolerance, but decreases 314 
the growth inequality at high grazing where even a slight drop in 𝛾 pushes macroalgae closer to 315 
zero growth (see Table 1). The result is an expanded range of f21 values traversed by grazing 316 
variation when combined with warming. 317 

We next compare coral and macroalgal cover changes (Figure 3) to corresponding regime 318 
shifts from the geometric perspective (Figure 2). Under no warming and no spatial clustering, 319 
increases in grazing transition the community from macroalgal dominance to alternative stable 320 
states to coral dominance (Figure 3A). With more clustering, macroalgal dominance is only 321 
realized at low grazing, and coexistence becomes more likely at high grazing (Figure 3B, C). 322 
With increased temperatures, grazing traverses a larger competition-growth parameter space and 323 
therefore its effects are magnified. The regions for macroalgae (at low grazing) or coral 324 
dominance (at high grazing) increase, and the regions for coexistence or alternative stable states 325 
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decrease (Figure 3D-F) when compared to the case with baseline temperatures (Figure 3A-C). 326 
The geometrically predicted alternative stable states and coexistence regimes, corresponding to 327 
cases in Figure 3A and F, are confirmed with phase diagrams where transient trajectories with 328 
different initial conditions converge on the expected number of stable equilibria (Figure 4). 329 

 330 

 331 
Figure 3. Regime shifts and coral-macroalgal density changes driven by changes in grazing. 332 
Results are from the spatial Lotka-Volterra model (see Table 2 for parameterization). Plots show 333 
macroalgal cover or density (green line), coral cover (yellow line), macroalgae or coral with the 334 
other artificially removed (dotted lines, to contrast with coexistence effects), and total cover of 335 
both taxa during coexistence (maroon line). (A-C) Baseline temperatures, with relative clustering 336 
(Cii/Cij) at 1, 2, or 4 (from left to right). (D-F) 1 °C warming, with relative clustering being 1, 2, 337 
and 4. The shades indicate the regimes of macroalgal dominance (green), alternative stable states 338 
(blue), coral dominance (yellow), and coexistence (red). Yellow and green dots in patch 339 
diagrams at the bottom illustrate cases of low (left) versus high (right) relative clustering. 340 

 341 
In summary, the outcomes for the specifically parameterized coral-macroalgae system 342 

illustrate levels of dynamic precision that cannot be gleaned from geometric reasoning alone; but 343 
the dynamic regime predictions from geometry remain accurate. The most detailed features of a 344 
dynamic system – transient trajectories (Figure 4) – are only partly captured by equilibrium 345 
analyses (Figure 3). Equilibria, or expected coral and macroalgal densities, are in turn not 346 
captured by regime geometry (Figure 2). Nevertheless, with only three coordinates 𝛼1, 𝛼2, and f21 347 
(Figure 2 vectors and matching color codes in Figure 3 and Table A4), regime shifts caused by 348 
multiple bifurcating forces including grazing, warming, and spatial clustering can be inferred 349 
using geometric reasoning alone (series of circles in Figure 3B). 350 
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 351 
Figure 4. Phase diagrams of Lotka-Volterra coral-macroalgal dynamics. Trajectories (blue) 352 
are shown for 100 time steps starting at evenly spaced initial densities, with darker colour 353 
indicating densities at later times. Filled circles are analytically derived stable equilibria, while 354 
open circles are unstable equilibria. A. Trajectories corresponding to baseline temperatures, no 355 
spatial clustering, and a grazing rate of 0.75 showing alternative stable states (scenario in Figure 356 
3A). B. Trajectories corresponding to an increased temperature, high spatial clustering, and a 357 
grazing rate of 0.75 showing coexistence (scenario in Figure 3F). 358 
 359 
 360 
IV. Discussion 361 
 Regime shifts have been a focus of conservation in an era of change (Steffen et al. 2015), 362 
and coral reefs have served both as a model for understanding such shifts and as an important 363 
biome that is a focus of substantial conservation efforts (Hughes et al. 2017). Conservation 364 
efforts are, however, confounded in part by the diverse and disparate proposals for mechanisms 365 
that drive regime shifts in coral reefs (Mumby et al. 2013, van de Leemput et al. 2016, Hughes et 366 
al. 2019). Here, we provided a theoretical synthesis that captures the essential dynamics within 367 
coral reefs and other competitive communities. Further, we found that the dynamic regimes of 368 
alternative stable states, single-species dominance, and coexistence can be fully determined by 369 
only three synthetic parameters. These three parameters are a drastic dimensionality reduction, 370 
an approach that has proven useful for related studies of dynamic transitions (Jiang et al. 2018). 371 
The reduced parameter set summarizes intraspecific versus interspecific spatial competition 372 
effects (𝛼1, 𝛼2), as well as intrinsic growth differences between species (f21). The three 373 
parameters form a cubic volume that allows for a geometric analysis of regime shifts. 374 
Ecologically realistic bifurcations or regime-shifting forces, such as grazing, spatial clustering 375 
changes, and warming, can be visualized as vectors through the dynamic regime cube.  376 

The regime perspective produces conservation-relevant insights despite ignoring species-377 
specific outcomes. In a coral-macroalgae system, we showed that grazing decreases the intrinsic 378 
growth difference f21 and moves the system away from macroalgal dominance. Warming 379 
stretches the geometric space that grazing variation traverses, thereby increasing the likelihood 380 
of either coral or macroalgae dominating. Spatial clustering on the other hand moves the system 381 
towards higher intraspecific competition relative to interspecific competition (𝛼1 and 𝛼2), which 382 
promotes coexistence and reduces the effectiveness of grazing in inducing coral dominance. 383 
These geometric reasonings suggest that the protection of grazers will have an enhanced positive 384 
effect on coral conservation under warming in conjunction with low spatial clustering (such as, 385 
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for example, by maintaining habitat connectivity between reefs). In contrast, if grazer protection 386 
fails in the face of fishing pressure (Botsford et al. 1997, Costello et al. 2016, Tekwa et al. 387 
2019a), then high clustering through low habitat connectivity (e.g., from greater distance 388 
between protected areas) may actually enhance coral persistence through spatial coexistence 389 
mechanisms (Chesson 2000), although at much lower levels than if both grazers and habitat 390 
connectivity are protected. These geometric results illustrate that multiple management tools, 391 
such as controls on grazing and connectivity, can interact to produce conservation outcomes. 392 

The geometry of regime shifts resembles other uses of graphical reasoning such as 393 
population growth isoclines (Tilman 1980, Knowlton 1992, McCann and Yodzis 1995) and 394 
economic phase diagrams (Gordon 1954, Solow 1956). Our approach differs due to its basis in 395 
synthetic stability criteria (see Appendix: Lotka-Volterra Model) that directly provide intuition 396 
regarding community outcomes rather than flows. The approach also focuses on how dynamic 397 
regimes shift with all possible parameter changes, in contrast to traditional Lotka-Volterra 398 
studies that often explored transient dynamics and equilibria at fixed parameterizations or 399 
variations along one parameter (Bomze 1983, Neuhauser and Pacala 1999). Regime geometry is 400 
most analogous to phase diagrams of thermodynamic states, such as the p-v-T (pressure-volume-401 
temperature) diagram of a substance’s transitions between solid, liquid, and gas states (van der 402 
Waals 1873, Gibbs 1873, Verwiebe 1939, Maxwell and Harman 1990). If regime geometry and 403 
thermodynamic phase diagrams are truly analogous, then dynamics deviating from the spatial 404 
Lotka-Volterra model (nonlinear terms) could appear as modified marginal planes and regime 405 
volumes in the competition-growth space. The success of thermodynamic phase diagrams for 406 
different substances has facilitated engineering advances such as the motor and refrigeration, 407 
suggesting that regime geometry can provide a boost for conservation and ecosystem engineering 408 
by moving theoretical reasoning from mathematics to a more intuitive visualization. 409 

The ability to geometrically represent system-specific bifurcations in generic ecological 410 
terms allows for a synthetic understanding of a wide variety of ecological communities. Regime 411 
shifts in lakes (Scheffer et al. 1993), kelp forests (Ling et al. 2014), and terrestrial forests (Hirota 412 
et al. 2011) share both similarities and differences with coral reefs, but can all be placed within 413 
the same geometry defined by the dimensions of competition and growth. The spatial Lotka-414 
Volterra model that the geometry represents is also testable using data from these diverse 415 
ecosystems, because it makes specific predictions about when and what kind of shifts should 416 
occur as competition and growth ratios vary. Such a cross-system empirical synthesis can 417 
potentially facilitate the exchange of diverse conservation experiences. Moreover, the geometry 418 
highlights that regime shifts (Scheffer and Carpenter 2003) should be considered more broadly to 419 
include transitions between coexistence and single-species dominance, rather than being solely 420 
associated with alternative stable states. Coral reefs (Hughes et al. 2017, Darling et al. 2019) and 421 
other ecosystems (Waters et al. 2016) face multiple stressors and perturbations simultaneously in 422 
the Anthropocene, resulting in challenging complexities unless ecological theory sheds light on 423 
their commonalities and interactions. The geometric perspective is one potential tool to distill 424 
complexity, avoid simplistic explanations, and facilitate multiple management options for 425 
conservation success. 426 
  427 
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Appendix 438 
 439 
Lotka-Volterra Model 440 

The stability of an equilibrium set is indicated by whether the eigenvalues of the Jacobian 441 
matrix are negative. The eigenvalues for the first case of single-species equilibrium (Table A1), 442 
with only species i surviving, are: 443 

 444 

Equation 3  =
−(𝑟A − 𝑚A)

𝑟D E1 +
*+,
*,,
31,
/,
− 14H −𝑚D

 445 

 446 
 The first line is always negative, so the sufficient and necessary condition for species i 447 
stability hinges on line two, which translates to the inequality in Equation 1. 448 
 449 
Coral-Macroalgal Model 450 

Mumby et al.’s model (Mumby et al. 2007) of coral cover (N1), algal turf cover (T), and 451 
macroalgae (N2) contains five parameters: coral birth rate (r), coral mortality (d), macroalgal 452 
birth rate (𝛾), macroalgal overgrowth rate on coral (a), and grazing rate (g). The model consists 453 
of three equations: 454 
 455 
Equation 4  "#$

#$"%
= 𝑟𝑇 − 𝑑 − 𝑎𝑁:  456 

 457 
Equation 5  "#(

#("%
= 𝑎𝑁9 −

M
#(NO

+ 𝛾𝑇  458 
 459 
Equation 6  𝑇 = 1 − 𝑁9 − 𝑁:  460 
 461 
Turf is simply empty space from the perspective of corals and macroalgae. The solutions are: 462 
 463 
Equation 7 464 

[𝑁9∗, 𝑁:∗] =

⎩
⎪⎪
⎨

⎪⎪
⎧

0,0

1 −
𝑑
𝑟
, 0

0,1 −
𝑔
𝛾

1 −
𝑑
𝑟 − 31 +

𝑎
𝑟4𝑀

∗,𝑀∗

 465 

 466 
where 467 

 468 
The dynamic equations for N1 and N2 can be written in Lotka-Volterra form. First, the 469 

growth of coral is: 470 
 471 

Equation 8  "#$
#$"%

= 𝑟(1 − 𝑁9 − 𝑁:	) − 𝑑 − 𝑎𝑁: 472 

M* = −
r a4 + 2 a3 r − 4 g a3 + 2 a2 d γ + a2 r2 − 8 g a2 r + 4 g a2 γ + 2 a d r γ − 4 g a r2 + 4 g a r γ + d2 γ2 + 2 a2 d − a r2 − a2 r + 2 a d r − 2 a d γ − d r γ

2 a (a + r) (a + r − γ)
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= 𝑟 − 𝑑 − 𝑟𝑁9 − (𝑟 + 𝑎)𝑁:  473 
 474 

Clearly, interspecific competition with macroalgae (-r-a) is stronger than intraspecific 475 
competition within coral (-r). In this form, it is clear that the interactions modelled are predation, 476 
competition for empty space, and grazing. The term a is an antisymmetric predator-prey (+/-) 477 
interaction effect between macroalgae and corals. 478 

Second, the growth of macroalgae is: 479 
 480 

Equation 9  "#(
#("%

= 𝑎𝑁9 −
M

#(N90#(0#$
+ 𝛾(1 − 𝑁9 − 𝑁:) 481 

= 𝛾 + (𝑎 − 𝛾)𝑁9 −
M

90#$
− 𝛾𝑁:  482 

= 𝛾 − 𝑔 − 𝛾𝑁: − (𝛾 + 𝑔 − 𝑎)𝑁9 − 𝑔(𝑁9: + 𝑁9\ + ⋯) 483 
 484 

The interaction is negative for macroalgae through grazing (g) but can be positive when 485 
a>𝛾+g and N1 is low. The negative effect of coral on macroalgae is amplified at increasing N1 486 
(through the Taylor series). In the simplified case of a=𝛾, when macroalgae overgrows corals 487 
and turf at the same rate, the interaction with coral is simply -g/(1-N1) or -g(1+N1+N12+N13+…) 488 
according to the geometric power series (when |N1|<1), which is increasingly negative as N1 489 
increases. In general, interspecific competition can be stronger than intraspecific competition 490 
when g>a, even without higher order terms; this becomes even more likely with higher order 491 
terms. 492 

For macroalgae, 𝛾 is a spatial competition rate among themselves and with corals, 493 
whereas for corals, r is the analogous spatial competition rate. Additionally, macroalgae is 494 
removed by corals at a rate proportional to 1/(1-N1), although corals do not directly benefit from 495 
this process. 496 
 If we drop the nonlinear terms (N12+N13+…), the equilibria are, according to the Lotka-497 
Volterra solutions (Table 1): 498 
 499 
Equation 10  500 

[𝑁9∗, 𝑁:∗] =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0,0

1 −
𝑑
𝑟 , 0

0,1 −
𝑔
𝛾

−
𝑎𝑔 − 𝑎𝛾 + 𝑔𝑟 − 𝑑𝛾

𝑟𝛾 .(𝑎 + 𝑟)(𝑔 − 𝑎 + 𝛾)𝑟: − 12
,
𝑔𝑟 + 𝛾(𝑔 − 𝑎 + 𝛾 − 𝑟) − 𝑑𝛾(𝑔 − 𝑎 + 𝛾)𝑟

𝑟𝛾 .(𝑎 + 𝑟)(𝑔 − 𝑎 + 𝛾)𝑟: − 12

 501 

 502 
 503 
Spatial Model 504 

The term CijNj is the local density of species j around species i, and can also be written as 505 
Nj+cij/Ni where cij is the average spatial covariance weighted by an interaction kernel (Bolker and 506 
Pacala 1999). Thus, Cij= 1+cij/(NiNj). Note by definition C12=C21. Assuming interactions only 507 
occur within a fixed local area (an interaction kernel that takes the value of 1 within the local 508 
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area, and 0 everywhere else), cij=E[(ni-Ni)(nj-Nj)], where ni is the number of individuals of 509 
species i at a location. For i=j, cij is just the spatial variance in the number of i individuals. 510 

Consider the simplified symmetric case where mi=0, C11=C22, a11=a22, and a12=a21. Then, 511 
the total density at coexistence is: 512 

Equation 11  𝑁O∗ =
:^7,,*,,07,+*,+_

37,,
(*,,

(07,+
(*,+

( 4
 513 

 514 
 An increase in intraspecific clustering (Cij) and a decrease in interspecific clustering (Cij), 515 
as expected with decreased dispersal or connectivity (Bolker and Pacala 1999), would cause NT* 516 
to decrease. However, this total density can still be greater than the non-clustering single-species 517 
population if: 518 
 519 

Equation 12  :^7,,*,,07,+*,+_

37,,
(*,,

(07,+
(*,+

( 4
> 9

*,,
 520 

 521 
This condition simplifies to:	522 

 523 
Equation 13  𝐶AA <

:*,,07,+*,+
*,,

 524 

 525 
 Thus, intraspecific clustering should be relatively small for the stable coexisting 526 
community to be denser than a single-species population (a positive diversity effect). A sufficient 527 
but not necessary condition is Cii<2 (obtained by assuming complete segregation between 528 
species, Cij=0). On the other hand, the stable coexistence condition in this simplified symmetric 529 
example is (reverse of Equation 2 where the right-hand-side equals 1): 530 
 531 
Equation 14  7,,

7,+
> *,+

*,,
 532 

 533 
This condition states that intraspecific clustering should be large relative to interspecific 534 

clustering for stable coexistence. We obtain the condition (Equation 15) for a community’s total 535 
density to be greater than a non-clustering single-species population by joining Equation 13 and 536 
Equation 14. 537 

 538 
Equation 15  2𝑎AA − 𝐶AD𝑎AD > 𝐶AA𝑎AA > 𝐶AD𝑎AD 539 
 540 
The relationship between interspecific and intraspecific clustering (Cij vs. Cii) can be 541 

complicated. The ratio Cij/Cii can be derived exactly for two-player games on graphs assuming 542 
constant total population size (Matsuda et al. 1992, Nathanson et al. 2009), but only 543 
approximately for population dynamics in continuous space (Bolker and Pacala 1997, 1999) as a 544 
function of growth and movement rates. The latter framework and other simulations (Tekwa et 545 
al. 2019b) show that intraspecific clustering characteristically increases with decreased 546 
movement rate, while interspecific clustering decreases at a comparatively slower rate with 547 
decreased movement rate. Thus, we assumed a characteristic relationship Cij=Cii-3, which creates 548 
the three relative clustering levels [1, 2, 4] and corresponding intra- [1, 1.19, 1.41] and 549 
interspecific clustering [1, 0.59, 0.35] used for the spatial clustering bifurcation (Table 2, Figure 550 
2, and Figure 3). 551 
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Appendix Figures 552 
 553 

 554 
Figure A1. Coral-macroalgal model solutions. (A) The original Mumby model with non-linear 555 
coral competition affecting macroalgae. (B) A linearized Lotka-Volterra version of the Mumby 556 
model. The solid lines are analytical stable states, and the dashed curves are the unstable saddle-557 
nodes.  558 
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Appendix Tables 559 
 560 
Table A1. Model equilibria. All symbols are defined in Table 2, and M* (coexistence 561 
macroalgal cover) is given in Equation 7. 562 
Model Species 

(i) 
Equil-
ibrium 
1 (Ni*) 

Equil-
ibrium 
2 (Ni*) 

Coexistence equilibrium (Ni*) 

Lotka-
Volterra 

1 /$01$
/$*$$

  0 𝑟9𝑟:(𝑎:: − 𝑎9:) + 𝑎9:𝑚:𝑟9 − 𝑎::𝑚9𝑟:
𝑟9𝑟:(𝑎99𝑎:: − 𝑎9:𝑎:9)

 

2 0 /(01(
/(*((

  𝑟9𝑟:(𝑎99 − 𝑎:9) + 𝑎:9𝑚9𝑟:−𝑎99𝑚:𝑟9
𝑟9𝑟:(𝑎99𝑎:: − 𝑎9:𝑎:9)

 

Mumby 1 
Coral 

1 − "
/
  0 1 − "

/
− 31 + *

/
4𝑀∗  

2 
Algae 

0 1 − M
c
  𝑀∗  

Spatial 
Lotka-
Volterra 

1 /$01$
/$*$$7$$

  0 𝑟9𝑟:(𝑎::𝐶:: − 𝑎9:𝐶9:) + 𝑎9:𝐶9:𝑚:𝑟9 − 𝑎::𝐶::𝑚9𝑟:
𝑟9𝑟:(𝑎99𝐶99𝑎::𝐶:: − 𝑎9:𝑎:9𝐶9:: )

 

2 0 /(01(
/(*((7((

  𝑟9𝑟:(𝑎99𝐶99 − 𝑎:9𝐶9:) + 𝑎:9𝐶9:𝑚9𝑟: − 𝑎99𝐶99𝑚:𝑟9
𝑟9𝑟:(𝑎99𝐶99𝑎::𝐶:: − 𝑎9:𝑎:9𝐶9:: )

 

Table A2. Effect of clustering on two-species community outcomes. Parameters are: 563 
aii/aji=0.5 (intra-to-interspecific cross-competition ratio) and ((r2-m2)/r2)/((r1-m1)/r1)=1.5 564 
(intrinsic growth inequality). Relative clustering is defined as intra-to-interspecific clustering 565 
ratio (Cii/Cji). 566 

Relative clustering: 
(Cii/Cji) 

Conditions for exclusion stability: 
𝑪𝟐𝟏𝒂𝟐𝟏
𝑪𝟏𝟏𝒂𝟏𝟏

> 3𝒓𝟐0𝒎𝟐
𝒓𝟐

4 3𝒓𝟏0𝒎𝟏
𝒓𝟏

4< > 𝑪𝟐𝟐𝒂𝟐𝟐
𝑪𝟏𝟐𝒂𝟏𝟐

  
Outcome: 

1 2>1.5>0.5 alternative stable states 
2 1≯1.5>1 species 2 only 
4 0.5≯1.5≯2 coexistence 

Table A3. Effect of grazing on two-species community outcomes. Parameters are: 567 
a11/a21=1.33/(1+g), a22/a12=0.5 (intra-to-interspecific cross-competition ratios), and ((r2-568 
m2)/r2)/((r1-m1)/r1)=(1-g)/0.66 (intrinsic growth inequality). Species 1 and 2 correspond to coral 569 
and macroalgae, respectively. Grazing rate on macroalgae is g. 570 

Grazing: (g) Conditions for exclusion stability: 
𝒂𝟐𝟏
𝒂𝟏𝟏

> 3𝒓𝟐0𝒎𝟐
𝒓𝟐

4 3𝒓𝟏0𝒎𝟏
𝒓𝟏

4< > 𝒂𝟐𝟐
𝒂𝟏𝟐

  
Outcome: 

0 0.75≯1.5>0.5 species 2 only 
0.4 1.05>0.9>0.5 alternative stable states 
0.8 1.35>0.3≯0.5 species 1 only 
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Table A4. Numerical outcomes of grazing bifurcations. Low and high grazing rates under the 571 
scenarios of no warming, warming, and a range of relative clustering (corresponding to Figure 2 572 
and Figure 3), as well as their corresponding parameters in competition (𝛼1, 𝛼2) and intrinsic 573 
growth (f21) terms. Regime outcomes for parameter sets are shown in color (yellow=species 1 or 574 
coral only, green=species 2 or macroalgae only, red=coexistence). 575 
Scenario low grazing (g=0.55) high grazing (g=0.85) 
+0°C log2(𝛼1) log2(𝛼2) log2(f21) log2(𝛼1) log2(𝛼2) log2(f21) 
(A) Cii/Cij=1 1 -1.1 0 0.37 -1.1 -1.1 
(B) Cii/Cij=2 2 -0.070 0 1.4 -0.070 -1.1 
(C) Cii/Cij=4 3 0.93 0 2.4 0.93 -1.1 
+1°C log2(𝛼1) log2(𝛼2) log2(f21) log2(𝛼1) log2(𝛼2) log2(f21) 
(D) Cii/Cij=1 0.64 -1.3 1.0 0.011 -1.3 -4.5 
(E) Cii/Cij=2 1.6 -0.27 1.0 1.0 -0.27 -4.5 
(F) Cii/Cij=4 2.6 0.73 1.0 2.0 0.73 -4.5 

  576 
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