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Abstract8

9

1. Video recordings of animals are used for many areas of research such as collective movement, animal10

space-use, animal censuses and behavioural neuroscience. They provide us with behavioural data at11

scales and resolutions not possible with manual observations. Many automated methods are being12

developed to extract data from these high-resolution videos. However, the task of animal detection and13

tracking for videos taken in natural settings remains challenging due to heterogeneous environments.14

2. We present an open-source end-to-end pipeline called Multi-Object Tracking in Heterogenous environ-15

ments (MOTHe), a python-based application that uses a basic convolutional neural network for object16

detection. MOTHe allows researchers with minimal coding experience to track multiple animals in their17

natural habitats. It identifies animals even when individuals are stationary or partially camouflaged.18

3. MOTHe has a command-line-based interface with one command for each action, for example, finding19

animals in an image and tracking each individual. Parameters used by the algorithm are well described20

in a configuration file along with example values for different types of tracking scenario. MOTHe21

doesn’t require any sophisticated infrastructure and can be run on basic desktop computing units.22

4. We demonstrate MOTHe on six video clips from two species in their natural habitat - wasp colonies23

on their nests (up to 12 individuals per colony) and antelope herds in four different types of habitats24

(up to 156 individuals in a herd). Using MOTHe, we are able to detect and track all individuals in25

these animal group videos. MOTHe’s computing time on a personal computer with 4 GB RAM and i526

processor is 5 minutes for a 30-second long ultra-HD (4K resolution) video recorded at 30 frames per27

second.28

5. MOTHe is available as an open-source repository with a detailed user guide and demonstrations at29

Github (https://github.com/tee-lab/MOTHe).30

1 Introduction31

Video-recording of animals is increasingly becoming a norm in behavioural studies of space-use patterns, be-32

havioural neuroscience, animal movement and group dynamics [1, 2]. High-resolution images from aerial pho-33

tographs and videos can also be used for animal census [3, 4, 5]. This mode of observation can help us gather34

high-resolution spatio-temporal data at unprecedented detail and help answer a novel set of questions that were35

previously difficult to address. For example, we can obtain movement trajectories of animals to describe space-36

use patterns of animals, to infer fine-scale interactions between individuals within groups and to investigate37

how these local interactions scale to emergent properties of groups [6, 7, 8, 9, 10, 11, 12, 13]. To address these38

questions, as a first step, videos need to be converted into data - typically in the form of positions and trajec-39

tories of animals. Manually extracting this information from videos can be time-consuming, tedious and, often40

not feasible at all. Therefore, increasingly, automated tools are being developed to detect and track animals41

[14, 15, 16, 17, 18, 19, 20].42

However, tools developed so far work best in controlled conditions. Tracking animals from videos recorded in43

natural settings poses many challenges that remain unresolved. These challenges include- variability in lighting44

conditions, camera vibration, disappearance and appearance of animals across video frames, and heterogeneous45

backgrounds. Under such conditions, existing tools which rely on traditional computer vision techniques – e.g.46
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image subtraction, colour thresholding, feature mapping, etc. – don’t perform well. In the image subtraction47

method [21], the motion of individuals is tracked based on differences between pixel values of two frames; this48

method is prone to false-detection if the camera moves, objects other than animals of interest (e.g. grass)49

move or if the animals don’t move. The color thresholding method [22] identifies animals in images based on50

their difference in colour from their background. For this method to be efficient, a consistent color/intensity51

difference between animals and background is necessary; this is seldom the case in natural settings because of52

variability in lighting conditions over both space and time and presence of other objects in the scene. Likewise,53

manual features (e.g. shape, orientation, edges, etc) extraction - which can be considered a generalisation of the54

colour thresholding - too requires consistent attributes of animals in relation to their background; consequently,55

this method is also likely to fail in the wild. Therefore, many popular object detection tools in ecology that56

use the above computer vision algorithms, although efficient for videos taken under controlled conditions, are57

likely to fail to detect or track animals in natural settings [23, 17].58

To resolve this problem, we implement a deep learning approach. One technique found to be efficient in59

solving detection problems in heterogeneous backgrounds is the use of Convolutional Neural Networks (CNN)60

[24, 25, 26, 27, 28]. Neural network-based algorithms are designed based on the principles of how neurons in61

the visual cortex process inputs from the environment and produce an output in terms of object classification.62

CNNs are used to classify (or assign) categories to an image or objects within images. In the context of object63

detection, parts of an image are passed to the network and the network assigns a category to this image. This64

goal can be achieved using different approaches such as sliding window, region proposals, single-shot detector.65

For the classification task (i.e. assigning a category), the network uses a training dataset to learn how to classify66

images (i.e. sets of input pixels) to different types of output categories (e.g. animals, background, other objects67

of interest). The trained neural network will then be able to classify new images. Despite the promise offered by68

CNN-based algorithms for object detection in heterogeneous environments, only a few adaptations of them are69

available in the context of animal tracking [3, 29]. Recently, a few CNN-based algorithms for object detection70

in heterogeneous environments have been developed [30, 31, 32], but these usually require high-performance71

computing units such as high-end CPUs and GPUs. Additionally, implementation often requires reasonable72

proficiency in computer programming together with a great amount of customization. Hence, there is a need73

for an easily customizable end-to-end application that automates the task of object detection and is usable even74

on simple desktop machines.75

Here, we provide an open-source package, Multi-Object Tracking in Heterogeneous environment (MOTHe),76

which is easy to customize for different datasets and can run on relatively basic desktop units. MOTHe can77

detect and track multiple individuals in heterogeneous backgrounds. It uses a color thresholding approach78

followed by a small CNN architecture to detect and classify objects within images, allowing fast training of the79

network even on relatively unsophisticated desktop computing units. The network can then be used on new80

images to detect animals. The code then generates individual tracks from detections using a Kalman filter.81

It provides an end-to-end pipeline that automates each step including the training data generation, detection,82

and tracking. In this paper, we have implemented MOTHe on six video clips from two species (wasps on83

the nests and antelope herds in four different types of habitats). These videos were recorded in natural and84

semi-natural settings having background heterogeneity and varying lighting conditions. We also provide an85

open to use GitHub repository (https://github.com/tee-lab/MOTHe) along with a detailed user guide for the86

implementation.87

2 Working principle & features88

MOTHe is a python-based library and it uses a Convolutional Neural Network (CNN) architecture for object89

detection. CNNs are specific types of neural network algorithms designed for image classification (assigning a90

category to an image or part thereof). It takes a digital image as an input and processes pixel values through91

a network and assigns a category to the image. To achieve this, CNN is trained via a large amount of labeled92

training data and learning algorithms; this learning procedure enables the network to learn features of objects93

of interest from the pool of training data. Once the CNN models are trained, these models can be used to94

classify new data (images). In the context of tracking multiple animals in a video, an object detection task95

would involve identifying locations and categories of objects present in an image. MOTHe works for 2-category96

classification e.g. animal and background.97

In this section, we present a broad overview of features and principles on which MOTHe works. Details of98

all user-inputs and guidelines to run and customize the modules are available in a user manual on the Github99

repository and also in the supplementary material. MOTHe’s network architecture and parameters are fixed100
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to make it user-friendly for beginners. However, advanced users can modify these parameters and tweak the101

architecture in the code files.102

MOTHe is divided into four independent modules (see Figure 1):103

(i) Generation of training dataset - Dataset generation is a crucial step in object detection and tracking.104

Generating enough data for training takes a lot of time if done manually. In this step, we automate the105

data-generation. Users run the command line code to extract images for the two categories i.e. animal and106

background. It allows users to crop regions of interest by simple clicks over a Graphical User Interface and107

saves the images in appropriate folders. On each run, users can input the category for which the data will be108

generated and specify the video from which images will be cropped. Outputs from this module are saved in109

two separate folders one containing images of animals (yes) and the other containing background (no).110

(ii) Network training - The network training module is used to create the network and train it using the111

dataset generated in the previous step. Users run a command-line script to perform the training. Once training112

is complete, the training accuracy is displayed and the trained model (classifier) is saved in the repository. The113

accuracy of the classifier is dependent on how well the network is trained, which in turn depends on the quality114

and quantity of training data (see section "How much training data do I need?" in Supplementary Materials).115

Various tuning parameters of the network, for e.g; number of nodes, size of nodes, convolutional layers etc., are116

fixed to render the process easy for the user.117

(iii) Object detection - To perform the detection task, we first need to identify the areas in an image118

where the object can be found, this is called localization or region proposal. Then we classify these regions119

into different categories (eg whether an animal or background?), this step is called classification. The object120

detection module uses the trained CNN model and performs above two key tasks on any given input image:121

Localisation and classification. The localisation step is performed using an efficient thresholding approach122

that restricts the number of individual classifications that need to be performed on the image. The first stage123

grayscale thresholding will output pixels that contain animals along with false positives (i.e. the locations in124

the background that have a similar color profile to the animals). The classification at each location is then125

performed using the trained CNN generated in the previous module. The outputs, detected animals, are in the126

form of .csv files that contains locations of identified animals in each frame.127

(iv) Track linking - This module assigns unique IDs to the detected individuals and generates their128

trajectories. We have separated detection and tracking modules so that the package can also be used by129

someone interested only in the count data (eg. surveys). This modularisation also provides flexibility by130

allowing the use of more sophisticated tracking algorithms to experienced users. We use a standard approach131

for track linking that uses a Kalman filter to predict the next location of the object and the Hungarian algorithm132

to match objects across frames. This script can be run once the detection output is generated in the previous133

step. Output is a .csv file that contains individual IDs and locations in each frame. Video output with unique134

IDs on each individual is also generated.135

2.1 Localisation and compact network136

Two features make MOTHe fast to train and run on new videos - localisation using grayscale-thresholding137

approach and a compact CNN architecture. In MOTHe, to achieve localisation, we use threshold on the138

grayscale image to identify key-points where an animal may be located. This step reduces the computation139

time compared to a sliding window approach [33]. To further reduce the computation time, we have used a140

compact architecture with only six convolutional layers. The use of a compact CNN architecture also has the141

advantage of requiring smaller training datasets and is less prone to overfitting than deeper networks.142

A trade-off of the above two approaches is the reduced generality of the trained model across different types143

of datasets. To deal with this drawback, we provide options to change parameters for different datasets so that144

the network retains its accuracy for a specific detection task. We demonstrate our software pipeline on two145

different video datasets which are explained in the next section.146

3 Implementation on example videos147

To demonstrate our the application of repository„ we used videos of two species - blackbuck (Antilope cervi-148

capra)and a tropical paper wasp (Ropalidia marginata). These two species present varying complexity in terms149

of the environment (natural and semi-natural settings), background, animal speed, behaviour and overlaps150

between individuals (Figure 2). Below, we provide a description of these datasets and describe the steps to151

implement MOTHe (see Figure 1 for overview).152
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Figure 1: The layout of our Github repository. A configuration file is generated in the first step, which maintains
directory paths and parameter values used by subsequent modules. Tracking happens in two steps- first, we need to train
the network on training dataset; second, object detection is done usingthe trained CNN on the image. Each step here is
a separate module that can be run by users. Black arrows represent the directional flow of executable files. Blue arrows
represent input/output flow of data in the modules.

3.1 Data description153

3.1.1 Collective behaviour of blackbuck herds154

We recorded blackbuck (Antilope cervicapra) group behaviour in their natural habitat. Blackbuck herds exhibit155

frequent merge-split events [34]. These herds consist of adult males & females, sub-adults and juveniles [35,156

36]. They are sexually dimorphic and the colour of adult males also changes with testosterone levels [37].157

This colour variation makes it difficult to use color segmentation based techniques to detect them. Major158

source of complexity in this system arises from their heterogeneous habitat, comprising of semi-arid grasslands159

with patches of trees and shrubs. While many blackbuck don’t move across many video frames, there is a160

substantial movement of grasses and shrubs in the background. These conditions pose challenges for applying161

basic computer vision methods such as colour thresholding and image subtraction.162

We recorded blackbuck movement in different habitat patches - grasslands, shrublands, and mudflats. These163

recordings were collected using a DJI quadcopter flown at a height of 40-45 meters (Phantom Pro 4) equipped164

with a high-resolution camera (4K resolution at 30 frames per second). The average size of an adult blackbuck165

is 120 cms from head to tail which corresponds to around 35 pixels in our videos.166

3.1.2 Nest space-use by wasps167

We used videos of a tropical paper wasp Ropalidia marginata recorded under semi-natural conditions [38]. Here,168

individuals were maintained in their natural nests in laboratory conditions and were allowed to forage freely.169
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Figure 2: Variation in the appearance of animals and background in different videos. Blackbuck herds in a (a) grassland,
(b) habitat having patches of grass, (c) mudflat area of the park, (d) bush dominated habitat. Wasp nest with a majority
of (e) older wasps, (f) newly eclosed wasps.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.01.10.899989doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.899989
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nests of Ropalidia marginata are sites for social interactions between mobile adults as well as between adults170

and immobile brood [39]. These nests are made of paper, which offers a low contrast to the dark-bodied social171

insects on the nest surface. Nest comprises of cells in which various stages of brood are housed and thus add172

to the heterogeneity of the background. Additionally, different nest colonies differ in the age composition of173

individuals, contributing to the variation in the appearance of wasps across videos. Therefore, this system174

too presents challenges to classical computer vision methods used to detect animals from the background.175

Recordings were done using a video camera (25 frames per second). The size of wasp is 1 cm from head to the176

abdomen which corresponds to around 150 pixels in our videos.177

3.2 Parametrisation178

For the ease of use, we have kept the parameterisation process minimal. Therefore, the various tuning parameters179

of the network architecture are fixed. However, advanced users can change the parameters in the code to180

customise it for more sophisticated tasks. The only step which requires some amount of parameter scanning181

by users is choosing the color thresholds for animals. As mentioned earlier, to improve speed of processing,182

we use a color thresholding approach as the localisation step. For this technique, users need to input values183

of the minimum and maximum threshold of the pixel values that may potentially correspond to the animal;184

these numbers are to be edited in the config.yml file. To choose the values for any generic dataset, we provide185

detailed instructions under the section Choosing color threshold of the Github repository.186

3.3 Data generation and CNN Training187

To generate data for training the CNN, we run a simple one-line command which then displays frames from188

the videos; for each of these frames, we select animals and background examples that are used in the training189

step. The resulting output is automatically stored in separate folders for animals and backgrounds (see Using190

MOTHe, Step 2 in the Github repository).191

To generate training samples for blackbuck videos, we used 2000 frames from 45 different videos; these192

videos were from different types of habitats. The number of individuals in these videos ranges from 30-300193

individuals. We fixed the values of the gray-scale threshold for blackbuck to be [0,150]. We then run the CNN194

training command (see Using MOTHe, Step 3 in the Github repository).195

Likewise, to generate data and train the network with features of wasps we used equally spaced 1000 frames196

from 6 different videos. We fixed the values of the gray-scale threshold for wasps to be [150,250].197

3.4 Detection and track-linking198

We now present results after running the trained CNN on four sample videos of blackbuck herds, representing199

different habitat types and the group sizes (Figure 2 (a)-(d)) and two sample videos of wasps, representing two200

different colonies (Figure 2 (e)-(f)). The sample videos were all 30 seconds long. The maximum number of201

individuals present in these videos are 156 and 12 for blackbuck and wasps, respectively.202

In Figure 3, the first column shows the results of running object detection on these video clips and the203

second column displays the results after implementing track linking on the detections. We observe that the204

package is able to detect and track nearly all individuals in all types of habitat. However, as expected, there205

are some errors in animal detection using MOTHe.206

To quantify these error rates in MOTHe, we prepared ground-truth data by visually counting the number of207

individuals present in each frame and compared it with the number of detections obtained by running MOTHe;208

this was repeated for 30 frames spaced at 1 second and for each of the videos. This quantification gives us209

ground-truth values of animals and detections. We then compared this with the detections of animals using210

the MOTHe on the same set of frames to obtain (i) the percentage true detections and (ii) percentage false211

detections (i.e. arising from the wrong classification of background objects as animals). The results, shown in212

Table 1, demonstrate fairly high true detection rates (of 80% and above) and low false detection rates (close to213

zero in most videos).214

We emphasise that even if some animals were not detected in particular frames, they were detected in the215

subsequent frames. Therefore, all the wasps and blackbuck present in our video clips were tracked by MOTHe216

(see Supplementary Videos).217

We also show the time taken to run detection on these video clips (Table 1) on an ordinary laptop (4 GB218

RAM with an Intel Core i5 processor); we find that the number of frames processed in one second ranged from219

0.5 to 2.5. This efficiency can be improved considerably by running MOTHe on workstations, GPUs or cloud220

services.221
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Video Group
size

Habitat % true
detections

% false
detections

Run time (Frames
processed per sec.)

Blackbuck-1 28 Patchy grass 89.3 14.2 1.99
Blackbuck-2 78 Grass 83.1 0 0.82
Blackbuck-3 156 Grass 97.4 0.64 0.51
Blackbuck-4 34 Shrubs 91.4 0 2.44
Wasp-1 15 Colony with

majority
older wasps

86.6 0 1.11

Wasp-2 16 Colony
with newly
eclosed
wasps

93.75 0 1.06

222

Table 1: Results after running MOTHe on blackbuck videos in various habitat and wasp videos in two colonies. Each
video clip is of 30 seconds in duration and these results are averaged over 30 frames spaced at 1 second for each video.
% true detections show the number of individuals that were correctly detected in a frame and % false positives show the
background noise identified as an animal. For computing efficiency, run-time in frames processed per second is reported.223

4 Discussion224

We demonstrate that MOTHe is relatively easy to use software pipeline that allows users to generate datasets,225

train a simple neural network and use that to detect multiple objects of interest in the heterogeneous background.226

We demonstrated the application of MOTHe on two relatively different types of systems in which the animal227

species, their movement type, animal-background contrast, and background heterogeneity all differ. We argue228

that MOTHe is potentially applicable to a wide variety of animal videos in their natural conditions.229

The use of machine learning for classification enables MOTHe to detect stationary objects. This bypasses230

the necessity of relying on the motion of animals for the detection of animals [15]. MOTHe has various built-in231

functions and is designed to be user-friendly; advanced users can customize the code to improve the efficiency232

further. MOTHe is modular, organized and (semi-)automated which helps the user to achieve object tracking233

with relatively minimum efforts. MOTHe can be used to track objects on a desktop computer or a basic234

laptop. Alternative methods for object detection, such as YOLO [31] or RCNN [28, 27] that perform both235

localisation and classification, are expected to reduce error rates compared to our approach and do not require236

colour thresholding. However, these types of neural network require access to high specification GPUs. Using237

these kinds of specialised object detectors for animal tracking requires sufficient user proficiency to configure.238

Furthermore, these methods are not typically tailored to the detection of small objects in high-resolution images.239

MOTHe performs well even in scenarios with poor object contrast with the background, bad lighting,240

background noise, and viewpoint. The use of CNN in this package accounts for morphological variations and241

scaling issues. The use of machine learning algorithms makes MOTHe highly versatile and training the CNN242

with sufficient sample images results in high accuracy for detection in complex settings. However, like most243

tracking algorithms [14, 15, 16, 17, 18, 19], MOTHe is incapable of resolving tracks of individuals in close244

proximity (usually, when less than one body length). As a trade-off to its computational efficiency, we did not245

incorporate issues arising from a shaking camera in the MOTHe application. Nonetheless, it can be used in246

combination with image stabilizing algorithms to solve camera shake issues or could be resolved by smoothing247

the trajectories after processing.248

In our examples, the maximum number of individuals presented to the detection algorithm was 156 and249

MOTHe was able to detect all 156 individuals. We surmise that it should be able to detect even larger250

numbers of individuals as long as the distance between individuals is at least one body length. In table 3, we251

compare MOTHe’s qualitative performance with some popular tracking solutions. In future studies, a detailed252

quantitative comparison of several computer-vision based object detection techniques on different types of253

datasets could be useful for researchers to choose among many options available.254

In summary, MOTHe allows researchers with relatively minimal coding experience to track stationary as255

well as moving animals in their natural habitats. For each step of the detection and tracking process, users256

need to run a single command. MOTHe is available as an open-source repository with a detailed user guide257

and demonstrations via Github. We believe that this end-to-end package will encourage more researchers to258
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Figure 3: Detection and Tracking results in six example videos. (a1) and (b1) Moderate size blackbuck herd in a
grassland; (a2) and (b2) A big herd (blackbuck - 158 individuals) in the grassland; (a3) and (b3) blackbuck herd in a
shrubby area; (a4) and (b4) blackbuck herd in the mudflats; (a5) and (b5) Nest with a majority of older wasps and (a6)
and (b6) Nest with a majority of newly eclosed wasps. All images are zoomed and scales at different levels for visibility.
The size of wasps is around 1 cm and blackbuck is around 1 meter.
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use video observations for studying animal group behaviour in natural habitats and would be of use to a larger259

research community.260
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Features MOTHe Tracktor idTracker Yolo v3 BioTracker ToxTrac
V

id
eo

C
om

p
le

xi
ty

Detection against heterogeneous back-
ground?

yes for single indi-
vidual

no yes no no

Multiple individual tracking? yes in homogeneous
background

yes yes yes yes

Identifies stationary animals as well? yes yes yes yes no NA

E
as

e
of

u
se

Requires sophisticated infrastructure?
(GPUs)

no no minimum 8GB
RAM

yes no no

Interface and installation Command
based

Command
based

GUI Command
based

GUI GUI

Click and drag functionality for training-
data generation

yes NA NA no NA NA

P
er

fo
rm

an
ce

Maximum number of individuals tracked
in test run

156 8 35 - 11 in the exam-
ple figure

20

Computational efficiency 180
frames/minute
for 4K resolu-
tion video*

9 minutes 43
seconds for 33
MB video (fish
schooling)

2s per frame for
a HD video with
20 medaka fish

5
frames/minute
for 4K resolu-
tion video*

NA 25 frames per
second in HD
videos using
modern com-
puters

Species on which testing was done Antelope, Wasp Fish, spider,
termite, mice,
tadpole

Fish, ant, mice,
flies

Wildebeest, Ze-
bra

Fish Fish, mice,
cockroach, ant

Tested in conditions Natural and
semi-natural

Controlled
environment
for multiple
individuals

Common lab
conditions and
manipulations

Natural Controlled Controlled

274

Table 2: Comparison of MOTHe with other popular tracking solutions in terms of three qualitative features: video complexity, ease of use and performance. * Performance
quantified by running these techniques on blackbuck videos, all other run-time are as reported by the authors.275
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