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Abstract 
Polycystic ovary syndrome (PCOS) is a common disease in women with consequences for 
reproductive, metabolic and psychological health. Women with PCOS have disrupted signalling in the 
hypothalamic-pituitary-gonadal axis and studies have indicated that the disease has a large genetic 
component. While a recent genome-wide association study of PCOS performed in up to 10,074 cases 
and 103,164 controls of European decent identified 14 PCOS-associated regions, much of the disease 
pathophysiology remains unclear. 
 
Here, we use a Bayesian colocalization approach to highlight genes that may have a potential role in 
PCOS pathophysiology and thus are of particular interest for further functional follow-up. We 
evaluated the posterior probabilities of shared causal variants between PCOS genetic risk loci and 
intermediate cellular phenotypes in one protein and two expression quantitative trait locus datasets, 
respectively. Sample sizes ranged from 80 to 31,684. In total, we identified seven proteins or genes 
with evidence of a shared causal variant for almost a third of PCOS signals, including follicle 
stimulating hormone (FSH) and the genes ERBB3, IKZF4, RPS26, SUOX, ZFP36L2, and C8orf49. 
Several of these genes and proteins have been implicated in the hypothalamic-pituitary-gonadal 
signalling pathway.   
 
In summary, our results suggest potential effector proteins and genes for PCOS association signals. 
This highlights genes for functional follow-up in order to demonstrate a causal role in PCOS 
pathophysiology.  
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Introduction 
Polycystic ovary syndrome (PCOS) is a common endocrinopathy, affecting between 6-10% of women 
of reproductive age (1). The disease has a heterogeneous clinical presentation (2–4), with 
consequences for reproductive, metabolic, and psychological health (2,3). Commonly, diagnosis is 
based on the Rotterdam criteria, which requires two out of three of 1) oligo- or anovulation, 2) signs 
of hyperandrogenism (clinical or biochemical), and 3) polycystic ovarian morphology, as well as 
exclusion of other diagnoses (3,4).  
 
PCOS pathophysiology is still largely unclear (2), although one mechanism may be disrupted  
gonadotropin signalling that disturbs normal follicular development and ovulation (3). In healthy 
women of reproductive age, the pituitary gland secretes the gonadotropins luteinizing hormone (LH) 
and follicle-stimulating hormone (FSH) in response to pulsatile secretion of gonadotropin releasing 
hormone (GnRH) (5,6). These GnRH pulses are more frequent in women with PCOS (3,7). This 
changed secretion pattern causes an imbalance between LH and FSH, and a higher LH/FSH ratio 
(3,7–11), which may contribute to e.g. hyperandrogenism and disturbances in follicular maturation 
and ovulation (3,12). Other possible contributing factors that have been suggested include for example 
insulin resistance and inflammation (3,8). There is also evidence for a strong genetic component, with 
genetic factors suggested to explain 66% of the disease variance (13). Previous genome-wide 
association studies (GWAS) have highlighted risk loci close to genes with a plausible connection to 
PCOS pathophysiology, including genes involved in for example insulin and hypothalamic-pituitary-
gonadal (HPG) signalling (e.g. INSR, the insulin receptor gene and FSHR, the FSH-receptor gene) 
(3,14–18). However, for most PCOS-associated loci the mediating genes and their functional effects 
remain to be identified and/or confirmed (17,18).  
 
One approach to improve biological understanding of a disease risk locus is through colocalization 
analysis of the disease and intermediate cellular phenotypes, such as gene expression and protein 
levels in different tissues (19). Therefore, to improve understanding of PCOS pathophysiology, we 
investigated the evidence of colocalization between 14 PCOS-associated loci identified in a recent 
GWAS in Europeans (18) and one study with protein and two studies with expression quantitative 
trait loci (pQTL and eQTL, respectively). Our results highlight several genes and proteins linked to 
the HPG axis and follicular development, including e.g. FSH, ZFP36L2, and RAD50, that may be of 
particular interest for further functional follow-up.  

Results 
Colocalization highlights genes with a potential mediating role  
We extracted 14 PCOS risk loci from a recent GWAS of up to 10,074 cases and 103,164 controls of 
European ancestry (Fig 1, Table 1) (18). We assessed the evidence for colocalization (19) between 
these loci and pQTL data from INTERVAL and eQTL data from the Genotype-Tissue Expression 
project (GTEx) and eQTLgen (20–23). PCOS summary statistics based on the full sample (including 
up to 10,074 cases and 103,164 controls) were only available for the 10,000 most robustly associated 
single nucleotide polymorphisms (SNPs). For the other SNPs, summary estimates were based on 
analyses excluding the 23andMe cohort (up to 4,890 cases and 20,405 controls). We therefore used 
summary statistics based on a combined version of the available data, with preference given to SNP 
statistics including the 23andMe cohort (denoted “Combined” dataset) and a window size spanning 2 
Mb around the most robustly associated PCOS SNP based on P-value (19,24,25).  
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We identified seven proteins and genes with evidence of colocalization (posterior probability (PP) ≥

0.75), including the protein FSH, and the genes SUOX, ERBB3, IKZF4, RPS26, C8orf49, and 
ZFP36L2 (26,27). In addition, four genes (RAD50, GDF11, NEIL2, C9orf3) showed nominal 
evidence of colocalization (PP > 0.50) (Fig 2 and Supplementary Tables 1-3; for a detailed description 
of genes not discussed below see the Supplement and Supplementary Figures 1-9). Some of these 
genes and proteins, such as RAD50, had evidence of colocalization in only one tissue, whereas others, 
such as RPS26 and SUOX, had evidence of colocalization in a large proportion of all tested tissues 
(Supplementary Tables 1-2). However, tissue sample size seemed to influence the evidence of 
colocalization and a large proportion of the colocalizing gene-tissue combinations used blood 
expression data from eQTLgen (sample size up to 31,684), but many of these analyses did not surpass 
the colocalization threshold using the smaller GTEx blood expression dataset (sample size up to 369) 
(Supplementary Table 2).  
 

Interaction-coloc analyses  
Several genes and proteins had evidence of colocalization in some loci, which might be due to shared 
regulatory mechanisms (Fig 2). In addition, identification of true causal genes/proteins is dependent 
on tissue- and timepoint relevant QTL datasets, an inherent problem in colocalization analyses 
(19,28). We therefore suggest an exploratory approach, an “interaction-coloc”-analysis, to further 
query the evidence for each colocalizing gene/protein.  
 
We reasoned that we could nuance the evidence of PCOS involvement for the colocalizing 
genes/proteins by assessing if other genes/proteins known to interact with them also had evidence of 
colocalization (Supplementary Figure 10). Specifically, if there is evidence of colocalization with 
PCOS for two genes/proteins known to interact with each other, this should in theory increase the 
likelihood of them and their affiliated pathway mediating the relationship with the disease (Fig 3). We 
therefore extracted protein-protein interaction data from Reactome (29) for the proteins and genes 
colocalizing (PP > 0.50) in our main analysis.  
 
We then performed colocalization for these “interactors” (including both their genes and any protein 
products) with PCOS risk. Using this approach, we found evidence of colocalization for FSHR 
expression (interacting with FSH), and nominal evidence of colocalization for RNF41 (interacting 
with ERBB3) and UIMC1 (interacting with RAD50) expression (Fig 3-5 and Supplementary Table 4) 
(29).  

 
Regulatory annotations and associations with other traits 
Next, we analyzed phenome-wide associations (PheWAS) of the PCOS loci by characterizing their 
associations with other traits using public data (Supplementary Tables 5-10) (30). We also assessed 
regulatory evidence using Haploreg (31).  
 
The colocalization results had highlighted circulating FSH as colocalizing at the rs11031005 locus 
(PP=0.76). We found that the rs11031005 C-allele was associated with both higher PCOS risk (OR 
1.17, 95% CI 1.12-1.23, P=8.7×10-13) and lower FSH-levels (-0.166 standard deviations, standard 
error = 0.035, P = 2.0×10-6). In addition, rs11031005 was associated with several traits related to 
female hormonal regulation in the PheWAS look-up, with the two traits showing the most robust 
associations being length of menstrual cycle (P=1.2×10-42) and age at menopause (P=1.4×10-15) 
(Supplementary Table 5) (30,32).  
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Other PCOS loci seemed more pleiotropic – at the rs2271194 locus, the results supported 
colocalization for four genes (ERBB3, IKZF4, RPS26, and SUOX), as well as nominal evidence for 
GDF11 (Fig 2, Supplementary Figures 1-5). The PheWAS of this locus highlighted associations with 
a range of different traits, including e.g. obesity, hematologic, and social traits (Supplementary Table 
6) (30). Look-up of the PCOS SNP and its proxies (r2>0.8 in Europeans) in Haploreg (31) gave 
further evidence for a regulatory function acting in a many different cell-types, including the presence 
of enhancer and promoter marks, location in DNase hypersensitivity sites, and binding of e.g. RNA 
polymerase II and transcription factors (31,33–37).  
 

Sensitivity analyses and choice of priors 
We performed several sensitivity analyses. Firstly, coloc uses SNP-associations to compute posterior 
probabilites (19), and association statistics are dependent on sample size. However, summary statistics 
for the entire PCOS sample (up to 10,074 cases and 103,164 controls) was only publicly available for 
the 10,000 most robustly associated SNPs. In contrast, full GWAS summary statistics were available 
for up to 4,890 cases and 20,405 controls (data based on analyses excluding the 23andMe cohort, 
denoted “Without-23” dataset). To ascertain similar sample sizes for all SNPs regardless of the 
strength of association, we therefore also performed colocalization using only the Without-23 PCOS 
dataset. Colocalization analyses using the Without-23 PCOS dataset generally had lower power 
(possible range 0-1, with a power >0.80 indicating strong power to determine colocalization) to detect 
colocalization, and generally a correspondingly lower PP of colocalization (Supplementary table 1-3) 
(24). For example, there was strong power and evidence for colocalization (power = 1.00 and PP = 
0.93) between PCOS risk and expression of ZFP36L2 at the rs7563201 locus using the Combined 
PCOS dataset, but considerably less power and PP using the Without-23 dataset (power = 0.28 and PP 
= 0.01). 
 
Secondly, the number of SNPs included in the analysis can affect the PP of colocalization (25). We 
therefore also conducted analyses using a region size of +/- 200 kb for all three e/pQTL datasets 
(19,25), as well as approximately independent regions of linkage disequilibrium (38) in INTERVAL 
(performed in INTERVAL only since the other datasets did not provide genome-wide summary 
statistics) (39). In general, there was good consistency between all three window sizes (Figure 2, 
Supplementary tables 1-2).  
 
Thirdly, we performed colocalization analysis using the software HyPrColoc to minimize the risk of 
software or coding errors (39). These results supported the main results (Supplementary Tables 1-2).  
 
Finally, coloc requires specification of prior probabilities for both the likelihood that a SNP is 
associated with each trait (p1 and p2, respectively) and for the likelihood that a SNP is associated with 
both traits (p12). A previous study has shown that p1 = p2 = 1×10-4 is a reasonable setting in most 
scenarios, but the choice of p12 is more complex (25). We therefore decided to set p12 = 1×10-6 in the 
main analysis, corresponding to a stricter p12 than suggested (25) and stricter than the standard setting 
(19). For the interaction-coloc analyses, we used the standard coloc setting of p12 = 1×10-5, given a 
hypothesized greater likelihood of colocalization in these analyses, as well as p12 = 1×10-6 as a 
sensitivity analysis (Figure 3, Supplementary Table 4).  
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Discussion 
Our results highlight several genes and proteins that may have a role in PCOS development by using a 
Bayesian colocalization approach. We identify seven genes and proteins with strong and a further four 
genes and proteins with some evidence of colocalization, respectively. Several of these genes and 
proteins have links to the HPG axis and follicular development, further highlighting disruption of 
these processes as likely pathophysiological mechanisms in the disease. As the mediating genes for 
most of the genetic risk loci are still unclear (17,18), our results offer a potential to focus further 
functional follow-up studies on genes with a higher likelihood of being involved in PCOS 
pathophysiology. 

 
Our results highlighted FSH (its beta-chain encoded by FSHB, located approximately 26 Kb from 
rs11031005 (33,40)) as a potential mediator at the rs11031005 locus. The results also implicated 
ZFP36L2 at the rs7563201 locus. Female mice with a disruption in the ZFP36L2 gene have disturbed 
oocyte maturation and ovulation, and its gene product has been implicated in regulation of LH-
receptor levels (33,41). There is previous evidence for disruptions in gonadotropin signalling, 
specifically FSH and LH, being involved in PCOS pathophysiology (8,42). FSH and LH are crucial 
hormones for follicular development and ovulation (5,6,8), The two hormones share an alpha chain 
(encoded by CGA (33)), and disruption of FSHB has been associated with higher LH levels in both 
humans and mice (43,44). SNPs in the FSHB region have also been associated with levels of both LH 
and LH/FSH (45–47). It is thus possible that the PCOS association at the rs11031005 locus may partly 
be caused by altered FSHB expression affecting LH-levels, although the interaction-coloc evidence 
for involvement of the FSH-receptor also implies a direct role of FSH in the disease. 

 
At the rs2271194 (at position 12:56477694 in GRCh 37 (48)) locus, two of the colocalizing genes – 
ERBB3 and RPS26 – are likely candidates for mediating PCOS risk based on the literature, with both 
of them connected to the HPG-axis (for a literature review of the other genes see Supplement). The 
gene ERBB3 encodes a tyrosine-protein kinase receptor (Receptor tyrosine-protein kinase erbB-3) 
(33). ERBB3 expression levels in granulosa cells vary over the estrous cycle in rats, with 
gonadotropins upregulating ERBB3 expression and data suggesting an important role in follicular 
development (49,50). There was evidence of colocalization for RNF41 (involved in regulation of 
Receptor tyrosine-protein kinase erbB-3 protein levels (33,51)) in the interaction-coloc analyses, but 
as the genes ERBB3 and RNF41 are in the same locus this cannot be regarded as additional evidence 
for ERBB3. The other likely candidate at the locus, RPS26, has been implicated in DNA damage 
response and female fertility (33,52,53). For example, oocyte-specific Rps26-knock-out mice have 
arrested oocyte growth, impaired follicle development, as well as poor response to gonadotropin 
stimulation (53), hence also implicating the HPG axis.  

 
Another promising gene candidate is RAD50. The gene encodes DNA repair protein RAD50 (33), 
which together with MRE11 and another protein forms part of the MRE11 complex, which is 
involved in DNA damage response processes (54–59). Female mice with disruptions in the Mre11 or 
Rad50 genes have reduced fertility (55,59). It may be that the MRE complex affects oocyte 
elimination in the presence of DNA damage and thereby plays a part in follicular development and 
oocyte development (57). Even though our results only provided nominal evidence for involvement of 
RAD50 in PCOS development, the evidence was strengthened by the interaction-coloc analyses that 
also gave nominal colocalization evidence for another gene (UIMC1) implicated in the same DNA 
repair processes as the MRE11 complex (33,60). 
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Importantly, shared regulatory mechanisms between e.g. different genes and tissues can result in 
several gene/protein and tissue combinations colocalizing. However, it is unlikely that all of them are 
involved in disease development – indeed, the true mediating gene and tissue combination may not 
even have been investigated in the analyses. Therefore, while colocalization can highlight genes and 
proteins that are more likely to be involved in PCOS pathophysiology, results should be seen as 
hypothesis-generating rather than definitive evidence of a causal role.  
 
Whereas some genes exhibit more tissue-specific effects, others have similar effects in a range of 
tissues (20,61,62). We assessed colocalization using datasets including a wide range of tissue types 
(e.g. GTEx (20)) and datasets with large sample sizes (e.g. eQTLgen (21)), which should increase the 
chance of identifying colocalizing genes and proteins.  
 
We also investigated if genes/proteins that may interact with the originally identified genes/proteins 
provided additional evidence of their involvement in PCOS pathophysiology. This is a novel 
approach, but whereas it in theory should provide a more independent confirmation of a gene/protein 
being involved in the disease, the results should be interpreted with caution. Some of the originally 
identified genes and proteins had many known interactors and others none, resulting in differing 
possibilities to identify colocalization. In addition, even though the interaction-coloc analysis 
delivered plausible results and presents a possible extension of colocalization methodology, it has not 
been validated.  
 
There are also caveats with our study. Firstly, if the causal SNP (or a proxy) is altering the coding 
sequence of a tested protein, it may cause false positive results through changed aptamer binding. 
Secondly, ancestral heterogeneity could potentially bias results due to different LD-structure (19), 
even though all datasets primarily consisted of participants of European decent (20–22,63). Thirdly, 
the protein and expression datasets included both men and women (20–22,63), whereas the PCOS 
GWAS (18) was performed in women only. If associations between genotypes and expression/protein 
levels differ between the sexes, it could bias results. Finally, coloc assumes a single causal variant per 
locus (19). Accordingly, loci with multiple SNPs independently associated with either the disease or 
the intermediate trait risk may result in false negative results (19).  
 
Conclusion 
In summary, our results highlight potential mediating genes and proteins for almost a third of PCOS 
risk loci. Several of these genes and proteins have links to the HPG axis and follicular development, 
including the hormone FSH and the genes ZFP36L2, ERBB3, RPS26, and RAD50. In combination 
with previous studies that have indicated these genes as being involved in physiologic processes 
associated with PCOS, these genes may be of particular interest for further functional follow-up.  
 

Materials and Methods 
Data on Polycystic ovary syndrome 
We obtained GWAS summary statistics for PCOS from Day et al. (18). In the study, 14 genome-wide 
significant loci were identified in up to 10,074 cases and 103,164 controls of European ancestry. 
Public summary statistics were available for the full sample for the 10,000 most robustly associated 
SNPs, and for all SNPs from analyses excluding the 23andMe cohort (resulting in a sample size of up 
to 4,890 cases and 20,405 controls). To maximize power, we used a combined version of these two 
datasets as our main dataset (denoted “Combined” dataset), with preference given to data from the top 
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10,000 SNPs dataset. As a sensitivity analysis, we also performed all analyses using the all-SNP 
dataset where the 23andMe cohort had been excluded (denoted “Without-23” dataset), to have 
roughly the same sample size for all SNPs. We then excluded SNPs found to be duplicated by 
position, missing relevant data, or indels. Genetic variants were matched to rsIDs using the file 
“All_20180423.vcf.gz”, available at 
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/ (48).  
 

Quantitative trait loci datasets 
We used publicly available protein and expression genetic association data from the INTERVAL 
study (22,23), the GTEx consortium (20), and the eQTLgen consortium (21).  
 
pQTL data were taken from the INTERVAL study, which had performed GWASs for 2,994 unique 
plasma proteins (3,283 measured aptamers) in 3,301 blood donors of European ancestry (22). For 
GTEx, we used data from version 7, which contains cis-eQTL data for between 80-491 samples in 48 
different tissues (20,63). Expression had been measured post-mortem, with ~85% of donors being of 
European (“White”) ancestry in the whole sample (63). Lastly, the eQTLgen Consortium had 
performed cis- and trans-eQTL analysis in up to 31,684 individuals, predominantly of European 
ancestry (21). Both cis-associations, containing SNPs within 1 Mb from the center of the gene, and 
trans-assocations, containing SNPs over 5 Mb from the center of the gene, are publicly available (21). 
For all these datasets, we then excluded SNPs that were duplicated by position, missing relevant data, 
or indels.   
 

Colocalization analyses 
Coloc 
We applied coloc (19), a Bayesian test for colocalization to evaluate the probability of a shared causal 
signal between each PCOS hit and each p/eQTL. We performed colocalization using the coloc.abf() 
function in the coloc R package, applying it to cis-genes using up to three different region sizes 
depending on QTL dataset. Gene positions and transcription start sites were determined using GRCh 
37 and the biomaRt R package where needed (64,65). 
 
For GTEx and eQTLgen, cis-association statistics were only available for SNPs within 1 Mb of the 
transcription start site and the centre of the gene, respectively (20,21). We therefore only included 
genes and proteins with a transcription start site or centre of gene +/- 800 kb of the top PCOS SNP (by 
P-value) for all three QTL datasets, to ascertain that we had a sufficiently large region on both sides of 
the association peak to determine colocalization. We further analysed two different region sizes in 
GTEx and eQTLgen – the entire 2 Mb cis-region available in these datasets in the main analysis and 
+/- 200 kb of the top SNP as a sensitivity analysis. For GTEx, we only performed the analysis if the 
top SNP had been analyzed for computational reasons. For INTERVAL (22), we evaluated three 
different region sizes – +/- 1 Mb  and +/- 200 kb of the top SNP, as well as the top SNP’s 
“independent region” (19,24,39,66). Independent regions were defined as the approximately 
independent regions of linkage disequilibrium in Europeans, as computed by Berisa et al. (38).  
 
We set the prior probabilities to p1 = 1×10-4, p2 = 10×10-4, and p12 = 1×10-6 (more stringent than 
default) (19,25). Minor allele frequencies from the PCOS dataset were used in all coloc analyses. For 
the number of cases and total sample size, we supplied 10,074 and 113,238 for the Combined dataset 
(albeit this would be smaller for the SNPs that were not in the top 10,000 SNPs dataset) and 4,890 and 
25,295 for the sensitivity-analysis using the Without-23 PCOS dataset (the dataset with estimates 
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based on approximately equal sample sizes for each SNP). For INTERVAL and GTEx, we used the 
sample size reported for each tissue and dataset. For eQTLgen we supplied the average sample size 
for the included SNPs. As the eQTLgen summary statistics did not include effect estimates and 
standard errors, we let the coloc.abf() function approximate effect estimates from the P-values for this 
dataset (19).  
 
Briefly, coloc evaluates the PP for five different hypotheses, which in this study correspond to: 

● H0: No causal association with either PCOS or the protein/gene 
● H1: Causal association with PCOS but not the protein/gene 
● H2: Causal association with the protein/gene but not PCOS 
● H3: Causal associations with both PCOS and the protein/gene, but with two separate causal 

SNPs  
● H4: Causal association with both PCOS and the protein/gene, with a shared causal SNP (19) 

 
Studies use different thresholds to evaluate whether there is evidence of a shared causal variant (H4), 
but the PP of colocalization can be seen as a numerical value of the certainty of the result (19,26,66–
68). Since we performed colocalization as a hypothesis-generating approach, all analyses with a PP 
>0.50 were seen as having nominal evidence of colocalization and analyzed further. A PP just above 
>0.50 should be regarded with caution (19), and we set the threshold for strong evidence of 
colocalization at PP ≥0.75 (26,27). We also computed the power for detecting colocalization for the 
results with any evidence of colocalization as the sum of the PPs for hypothesis 3 (no colocalization) 
and hypothesis 4 (colocalization) (24).  
 

HyPrColoc 
To ascertain robustness, we also computed the posterior probability of colocalization using 
HyPrColoc (39), a recently developed extension of coloc (19). We used a similar approach as for 
coloc, but only using the larger region sizes of 1 Mb for all three QTL datasets, as well as the 
independent regions for INTERVAL. Default priors (prior.1 = 1×10-4 and prior.2 = 0.98) were used, 
whereas we set both the regional and alignment probability thresholds to 0.8 (more stringent than 
default) (39). As eQTLgen only provided Z-scores, we estimated betas and SEs using the formulas:  
 

𝑏  =  𝑧 / 2𝑝(1 − 𝑝)(𝑛 + 𝑧 ) 

𝑆𝐸 =  1 / 2𝑝(1 − 𝑝)(𝑛 + 𝑧 ) 
 
Where z is the Z-score, p is the minor allele frequency in the eQTLgen dataset and n is the sample size 
(21,69).  
 

Protein-protein interaction follow-up analyses using coloc 
To identify genes/proteins that interact with the primarily identified genes/proteins, we downloaded 
data with protein-protein interactions in humans (available at 
https://reactome.org/download/current/interactors/reactome.homo_sapiens.interactions.tab-
delimited.txt) from Reactome (29). Genes listed as part of proteins interacting with any of our 
associated genes, and with ensembl gene identifiers, were extracted. For FSH, we only extracted 
interactions listed for the beta subunit (encoded by FSHB), since the alpha subunit (encoded by CGA) 
forms part of other hormones as well (70). We then extracted information of uniprot-identifiers, 
ensembl gene identifiers, gene positions and transcription start sites using GRCh 37 and the biomaRt 
R package to map between different datasets (64,65). We only included transcripts listed with a 
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numeric autosomal chromosome and with information available in biomaRt. We included SNPs 
within +/- 1 Mb from the average transcription start site in the colocalization analyses using 
INTERVAL dataset (22), for the other datasets all available SNPs were used. We then applied coloc 
(19), using +/- 1 Mb region sizes. As the genes and proteins in the interaction-coloc analyses already 
had evidence of protein-protein interactions with the genes identified in the main analyses, we 
considered the prior probability of colocalization higher and thus used a more lenient prior probability 
of colocalization than in the main analysis (p12 = 1×10-5, which is the same as the default setting in 
coloc (19)).  
 

PheWAS and in-silico investigations 
We followed up colocalizing regions with assessing PheWAS data for the top PCOS SNP using the 
Open Target Genetics platform (30). The significance threshold for a PheWAS association on the 
Open Targets Genetics platform is approximately P<1×10-5 (based on visual inspection of the plotted 
threshold, which corresponds to a Bonferroni-correction of the number of investigated traits (30)). We 
further corrected for the six SNPs we investigated and set the threshold to P<1.7×10-6 (1×10-5 
corrected for six SNPs). We also investigated the evidence for regulatory mechanisms for the 
colocalizing PCOS regions and the top SNP using Haploreg v4.1 (31).  
 

Software 
Analyses and plots were done using R versions 3.5.1 and 3.4.3 (71), bash version 4.1.2(2) (72), awk 
(73), and R packages coloc (19), hyprcoloc (39), LocusCompareR (74), tidyr (75), data.table (76), 
plyr (77), devtools (78), and ggplot2 (79).  
 

Data availability 
The PCOS GWAS summary statistics are available at 
https://www.repository.cam.ac.uk/handle/1810/283491 (18). The GTEx version 7 data are available at 
https://gtexportal.org/ (20). Effect allele frequencies for GTEx were taken from the files 
“GTEx_V7_cis_eqtl_summary.tar.gz (hg19)” (downloadable at 
http://cnsgenomics.com/software/smr/#DataResource). Independent regions as per Berisa et al. (38) 
can be accessed at https://bitbucket.org/nygcresearch/ldetect-data/downloads/. The summary statistics 
from the INTERVAL study is available at https://www.phpc.cam.ac.uk/ceu/proteins/ (22). Data from 
the eQTLgen consortia can be accessed at https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl 
(21). Human protein-protein interactions from Reactome pathways is available at 
https://reactome.org/download/current/interactors/reactome.homo_sapiens.interactions.tab-
delimited.txt. The PheWAS data were downloaded from the Open Targets Genetics website 
https://genetics.opentargets.org (30). In-silico functional investigations were done using Haploreg 
v4.1 at https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php (31). Individual-level data 
from UK Biobank cannot be shared publicly because of confidentiality but is available from the UK 
Biobank (https://www.ukbiobank.ac.uk/) for researchers who meet the criteria for access to 
confidential data. The UK Biobank has a Research Tissue Bank approval (Research Ethics Committee 
reference 16/NW/0274, this study’s application ID 11867).  
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Figure Legends 

 
Figure 1. Study overview.  
 

 
Figure 2. Posterior probabilities for genes and proteins with any evidence of colocalization.  
In the main approach, we used the Combined PCOS dataset and a region size spanning +/- 1 Mb. 
Only the results for the tissue with the highest posterior probability of colocalization in the main 
analysis are reported here (for full results and power calculations see Supplementary Table 1-3). 
Gene-tissue combinations with a posterior probability of colocalization >0.50 were seen as having 
some evidence in favour of colocalization, whereas the threshold for strong evidence was set at ≥0.75. 
PCOS, polycystic ovary syndrome; PP, posterior probability.  
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Figure 3. Posterior probabilities for genes with nominal evidence of colocalization in the 
interaction-coloc analyses. 
In the main approach, we used the Combined PCOS dataset and a set the prior probability of 
colocalization to p12 = 1×10-5. Sensitivity analyses included a more stringent prior probability of p12 
= 1×10-6. Note that RNF41 – implicated in the same pathway as ERBB3 – was also located in the 
rs2271194 locus. PP, posterior probability.  
 
 

 
 
Figure 4A and 4B. Associations between genetic variants and PCOS risk, using Combined 
PCOS dataset, +/- 1 Mb region sizes for (A) FSH protein levels in blood (B) FSHR expression 
levels in testis 
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In each plot, each dot is a genetic variant. The SNP with the most significant P-value for PCOS is 
marked, with the other SNPs colour-coded according to linkage disequilibrium (r2) in Europeans with 
the lead variant. SNPs with missing linkage disequilibrium information are also coded dark blue. In 
the left panels, -log10 P-values for associations with PCOS risk are on the x-axes, and -log10 P-values 
for associations with the protein/transcript levels on the y-axes. On the right panels, genomic positions 
are on the x-axes, and the y-axes show -log10 P-values for PCOS on the upper panel and -log10 P-
values with the protein/expression levels on the lower panel for the corresponding region. FSH, 
follicle stimulating hormone; PCOS, polycystic ovary syndrome; SNP, single nucleotide 
polymorphism.  
 

 
Figure 5A and 5B. Associations between genetic variants and PCOS risk, using Combined 
PCOS dataset, +/- 1 Mb region sizes for (A) RAD50 expression levels in left ventricle of the heart 
(B) UIMC1 expression levels in blood (GTEx) 
In each plot, each dot is a genetic variant. The SNP with the most significant P-value for PCOS is 
marked, with the other SNPs colour-coded according to linkage disequilibrium (r2) in Europeans with 
the lead variant. SNPs with missing linkage disequilibrium information are also coded dark blue. In 
the left panels, -log10 P-values for associations with PCOS risk are on the x-axes, and -log10 P-values 
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for associations with the expression levels on the y-axes. On the right panels, genomic positions are 
on the x-axes, and the y-axes show -log10 P-values for PCOS on the upper panel and -log10 P-values 
with the expression levels on the lower panel for the corresponding region. PCOS, polycystic ovary 
syndrome; SNP, single nucleotide polymorphism.  
 
 
 
 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901116doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901116


16 

Tables 
 

SNP Chr Pos EA NEA EAF Estimate (95% CI) P 

rs2178575 2 213391766 A G 0.15 1.18 (1.13-1.23) 3.34×10-14 

rs11031005 11 30226356 C T 0.15 1.17 (1.12-1.23) 8.66×10-13 

rs804279 8 11623889 A T 0.26 1.14 (1.10-1.18) 3.76×10-12 

rs11225154 11 102043240 A G 0.09 1.20 (1.13-1.26) 5.44×10-11 

rs9696009 9 126619233 A G 0.07 1.22 (1.15-1.30) 7.96×10-11 

rs13164856 5 131813204 T C 0.73 1.13 (1.09-1.18) 1.45×10-10 

rs1784692 11 113949232 T C 0.82 1.15 (1.10-1.21) 1.88×10-10 

rs7563201 2 43561780 G A 0.55 1.11 (1.08-1.15) 3.68×10-10 

rs8043701 16 52375777 T A 0.18 1.14 (1.09-1.18) 9.61×10-10 

rs1795379 12 75941042 C T 0.76 1.12 (1.08-1.17) 1.81×10-09 

rs853854 20 31420757 T A 0.50 1.10 (1.07-1.14) 2.36×10-09 

rs2271194 12 56477694 A T 0.42 1.10 (1.07-1.14) 4.57×10-09 

rs10739076 9 5440589 A C 0.31 1.12 (1.07-1.16) 2.51×10-08 

rs7864171 9 97723266 G A 0.57 1.10 (1.06-1.13) 2.95×10-08 

 
Table 1. Summary statistics for the top 14 single nucleotide polymorphisms associated with 
polycystic ovary syndrome from Day et al. (18). SNP: single nucleotide polymorphism; Chr: 
chromosome; Pos: position (hg19); EA: effect allele; NEA: non-effect allele; EAF: effect allele 
frequency; CI: confidence interval; P: P-value. 
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Abbreviations 
eQTL, expression quantitative trait locus 
FSH, follicle-stimulating hormone 
GnRH, gonadotropin-releasing hormone 
GTEx, Genotype-Tissue Expression project  
GWAS, genome-wide association study 
HPG, hypothalamic-pituitary-gonadal  
LH, luteinizing hormone 
PCOS, polycystic ovary syndrome 
PheWAS, phenome-wide association study 
PP, posterior probability  
pQTL, protein quantitative trait locus 
SNP, single nucleotide polymorphism 
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