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Abstract 15 

 16 

While it is expected for gene length to be influenced by factors such as intron number and 17 

evolutionary conservation, we have yet to fully understand the connection between gene length 18 

and function in the human genome. 19 

In this study, we show that, as expected, there is a strong positive correlation between gene 20 

length and the number of SNPs, introns and protein size. Amongst tissue specific genes, we find 21 

that the longest genes are expressed in blood vessels, nerve, thyroid, cervix uteri and brain, 22 

while the smallest genes are expressed within the pancreas, skin, stomach, vagina and testis. We 23 

report, as shown previously, that natural selection suppresses changes for genes with longer 24 

lengths and promotes changes for smaller genes. We also observed that longer genes have a 25 

significantly higher number of co-expressed genes and protein-protein interactions. In the 26 

functional analysis, we show that bigger genes are often associated with neuronal development, 27 

while smaller genes tend to play roles in skin development and in the immune system. 28 

Furthermore, pathways related to cancer, neurons and heart diseases tend to have longer genes, 29 

with smaller genes being present in pathways related to immune response and 30 

neurodegenerative diseases. 31 

We hypothesise that longer genes tend to be associated with functions that are important early 32 

in life, while smaller genes play a role in functions that are important throughout the organisms’ 33 

whole life, like the immune system which require fast responses. 34 

 35 

 36 

 37 

 38 
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Author Summary 39 

Even though the human genome has been fully sequenced, we still do not fully grasp all of its 40 

nuances. One such nuance is the length of the genes themselves. Why are certain genes longer 41 

than others? Is there a common function shared by longer/smaller genes? What exactly makes 42 

gene longer? We tried answering these questions using a variety of analysis. We found that, 43 

while there was not a particular strong factor in genes that influenced their size, there could be 44 

an influence of several gene characteristics in determining the length of a gene. We also found 45 

that longer genes are linked with the development of neurons, cancer, heart diseases and 46 

muscle cells, while smaller genes seem to be mostly related with the immune system and the 47 

development of the skin. This led us to believe that, whether the gene has an important function 48 

early in our life, or throughout our whole lives, or even if the function requires a rapid response, 49 

that its gene size will be influenced accordingly.  50 
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Background 51 

With the sequencing of the human genome [1–3] there arose a great interest in understanding 52 

the relationship between genotype and phenotype, especially concerning human health [4,5]. 53 

However, despite the recent advancements, we have yet to fully understand the human genome 54 

and its complexity [6]. 55 

Several studies have tried to decipher a connection between the length of a gene and its 56 

function. It is believed that genes that are more evolutionarily conserved are often associated 57 

with longer gene length and higher intronic burden [7–10]. In contrast, smaller gene length is 58 

often associated with high expression, smaller proteins and little intronic content [11]. This 59 

hypothesis is further supported by the house keeping genes, which are widely expressed and 60 

have characteristics similar to smaller gene length genes [12]. It was hypothesised that, due to 61 

this great levels of expression for smaller genes, there is selective pressure to maximize protein 62 

synthesis efficiency [11]. If that is the case, then the next question should be what functions 63 

serve longer genes to compensate for their expensive production of proteins. Gene length has 64 

been importantly associated with biological timing. The smaller genes produce smaller proteins 65 

faster, and these proteins often play a part in the regulation of longer proteins, which are 66 

expressed much later into the response. This allows for regulatory mechanisms to be set up in 67 

preparation for important protein expression [13]. On the other hand, longer genes have been 68 

associated with some important processes, including embryonic development [14] and 69 

neuronal processes [15]. Longer genes have also been previously shown to be related to 70 

diseases such as cancer, cardiomyopathies and diabetes [15]. 71 

In this present work, we used human genome data [16], to identify possible functions based on 72 

gene size. Correlation tests were used to search for relationships between gene length and other 73 

gene characteristics. In order to find the specific functions associated with gene size, the Gene 74 

Ontology (GO) and the KEGG Pathway were used. We observed that longer genes are expressed 75 

in the brain, heart diseases and cancer, while smaller genes mostly participate in the immune 76 
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system and in the development of the skin. Therefore, we hypothesize that genes with longer 77 

lengths are mostly associated with functions in the early development stages, while genes with 78 

smaller lengths have important roles in day-to-day functions.  79 
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Results 80 

Longest and shortest genes 81 

For all of the protein-coding transcripts in the human genome, a dataset was built selecting only 82 

the transcripts with the highest transcript length per gene (N=19,714 genes, S1 Table). Using 83 

mostly the transcript length for the rest of this analysis, stems from the fact that there is a very 84 

high correlation between the length of the longest transcript of a gene and its respective gene 85 

length (S1 Fig, Kendall test, tau = 0.72, p-value < 2.20E-16). The 5 biggest genes in terms of 86 

transcript length have all been studied previously, and we can see that they are associated with 87 

neuron functions [17–19], cardiac tissue [20] and cancer [21] (Table 1). However, the smallest 88 

genes might be annotation errors in the genome build. 89 

 90 

Table 1. List of the top 5 longest protein-coding transcripts in human. 91 

 92 

 93 

 94 

 95 

 96 

 97 

Transcript Stable ID Gene Gene name Transcript 

Length 

Exon 

Counts 

Intron 

Counts 

Number 

of SNPs 

Protein 

size 

Longest Genes 

ENST00000589042 ENSG00000155657 TTN 109224 363 362 74829 35991 

ENST00000397910 ENSG00000181143 MUC16 43816 84 83 42852 14507 

ENST00000262160 ENSG00000175387 SMAD2 34626 11 10 30781 467 

ENST00000330753 ENSG00000185070 FLRT2 33681 2 1 28178 660 

ENST00000609686 ENSG00000273079 GRIN2B 30355 13 12 98658 1484 
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Functional analysis 98 

One of the main objectives of the present study was to understand if gene function changed 99 

depending on the gene length. Keeping this in mind, and using a list of the top 5% protein 100 

coding genes with the longest and smallest transcript length, we performed an analysis, using 101 

tools like WebGestalt [22], DAVID [23,24], KEGG [25] and Molecular Signature Database [26,27]. 102 

The results for KEGG Pathways, were colour coded for each boxplot based on their association 103 

with the terms we found most relevant (brain, cancer, heart, immune system, muscle, 104 

neurodegenerative disease, skin and other). For cases where there was no direct association, a 105 

literature search was done for relevant articles that might show that genes in those pathways 106 

were related to brain [28–47], cancer [48], immune system [49–53] and skin [54–58]. 107 

For genes with longer gene length (Fig 1), most of the biological functions found seem to be 108 

associated with the brain, specifically in regards to neurons. This can also be confirmed when 109 

looking at the Cellular Component (S2A Fig) and Molecular Function (S2B Figure), and at the 110 

similar results produced using DAVID (S2 Table).  111 

 112 

 113 
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 114 

Fig 1. Biological Process terms found associated to genes with the longest transcript 115 

length. Overrepresentation Enrichment Analysis was performed with WebGestalt [22] 116 

and the visualization tool REViGO [59] was used to produce this figure. The significance 117 

level was p<0.05 and the FDR was set at 0.05. FDR estimation was done using the 118 

Benjamini–Hochberg method. 119 

 120 

For the genes with smaller gene length (Fig 2), most of the biological functions found are related 121 

to skin and the immune system. Similarly to what we observed before, Cellular Component (S2C 122 

Fig), Molecular Function (S2D Fig) and DAVID (S2 Table) results supported this observation.  123 

 124 
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 125 

Fig 2. Biological Process terms found associated to genes with the smallest transcript 126 

length. Overrepresentation Enrichment Analysis was performed with WebGestalt [22] 127 

and the visualization tool REViGO [59] was used to produce this figure. The significance 128 

level was p<0.05 and the FDR was set at 0.05. FDR estimation was done using the 129 

Benjamini–Hochberg method. 130 

 131 

Additionally, while looking at the KEGG Pathways results for longest transcript length, we 132 

identified pathways associated with the brain, cancer, heart disease and muscle (Fig 3A, S3 Fig), 133 

while the pathways with the smallest transcript length are mostly associated with the immune 134 

system, a few of them were also associated with skin and neurodegenerative diseases (Fig 3B, 135 

S3 Fig). 136 

 137 

The full KEGG Results (186 gene sets) can be found in the S3 Fig, and the KEGG Pathway IDs can 138 

be found in the S3 Table. 139 

 140 
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 141 

 142 

 143 

Fig 3. Transcript length distribution per KEGG Pathway for the longest and smallest 144 

genes. Colours illustrate what the KEGG pathway has been directly associated with (B for 145 

Brain, C for Cancer, H for Heart, IS for Immune system and ND for Neurodegenerative 146 

diseases), due to it being stated in the pathway itself, or indirectly associated with (Pub 147 

tag), by means of literature references.  KEGG Pathways and genes involved in said 148 

pathways were obtained from the Molecular Signature Database [26,27]. A: Top 20 149 
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Pathways with the longest genes, ordered by median; B: Top 20 Pathways with the 150 

smallest genes, ordered by median. 151 

 152 

 153 

Gene properties correlate with transcript length 154 

In order to understand the relationship between transcript length and other gene 155 

characteristics, a correlation analysis was done. When looking at the number of SNPs for each 156 

transcript (Fig 4A), there was a significant positive correlation with transcript length (Kendall 157 

test, tau = 0.45, p-value < 2.20E-16). Similar results were found, when comparing the number of 158 

SNPs per gene with gene length (S4A Fig, Kendall test, tau = 0.49, p-value < 2.20E-16). After 159 

comparing the number of introns and the transcript length (Fig 4B), we found a weak significant 160 

positive correlation between these two variables (Kendall test, tau = 0.35, p-value < 2.20E-16). 161 

The strongest positive correlation (Kendall test, tau = 0.48, p-value < 2.20E-16) was associated 162 

with the protein size (Fig 4C), and the weakest correlation (Kendall test, tau = 0.04, p-value = 163 

3.06E-14) was associated with the average gene expression (Fig 4D). 164 

  165 

 166 

 167 

 168 

 169 
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 170 

 171 

Fig 4. Correlation analysis between Transcript Length (bp) and several other gene 172 

characteristics. All figures have been logarithmically transformed in order to help 173 

visualize their relationship and/or account for the skewing introduced by outliers. The 174 

original versions of the figures can be found in the S4B, S4C, S4D and S4E Fig. A: 175 

Correlation between the log transformed number of SNPs and the log transformed 176 

Transcript Length (bp) (Kendall test, tau = 0.45, p-value < 2.20E-16). Number of SNPs and 177 

Transcript Length for each transcript were obtained using biomart; B: Correlation 178 

between the number of introns and the log transformed Transcript Length (bp) (Kendall 179 

test, tau = 0.35, p-value < 2.20E-16). Number of introns and Transcript Length for each 180 

transcript were obtained using biomart; C: Correlation between the log transformed 181 

Protein Size (aa) and the log transformed Transcript Length (bp) (Kendall test, tau = 0.48, 182 
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p-value < 2.20E-16). Protein Size and Transcript Length were obtained using biomart; D: 183 

Correlation between the Average Gene Expression and the log transformed Transcript 184 

Length (bp) (Kendall test, tau = 0.04, p-value = 3.06E-14). Average Gene Expression was 185 

obtained from the UCSC Genome browser, this value was derived from the total median 186 

expression level across all tissues and was based on the GTEx project. Transcript Length 187 

was obtained using biomart. 188 

 189 

 190 

Additionally, for the correlations with Transcript count (S4F Fig) and GC content (S4G Fig), we 191 

observed a weak significant positive correlation (Kendall test, tau = 0.22, p-value < 2.20E-16) 192 

and a weak significant negative correlation (Kendall test, tau = -0.19, p-value < 2.20E-16), 193 

respectively. 194 

 195 

We were also interested in understanding the effect of transcript length in some particular 196 

mutations. We observed some strong statistically significant correlations between transcript 197 

length and synonymous (S4H Fig, Kendall test, tau = 0.44, p-value < 2.20E-16) and missense 198 

(S4I Fig, Kendall test, tau = 0.42, p-value < 2.20E-16) mutations. However, in case of nonsense 199 

mutations (S4J Fig, Kendall test, tau = 0.21, p-value < 2.20E-16) a weaker significant positive 200 

correlation with transcript length was observed. This was followed by the calculation of 201 

Missense/Synonymous (MIS/SYN) and Nonsense/Synonymous (NONS/SYN) rates in order to 202 

measure the functional importance of gene length. We observed that this ratios had similarly 203 

negative correlations with transcript length, with MIS/SYN having a weaker significant 204 

correlation (S4K Fig, Kendall test, tau = -0.07, p-value < 2.20E-16) than NONS/SYN (S4L Fig, 205 

Kendall test, tau = -0.19, p-value < 2.20E-16). 206 

 207 
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In order to better understand if the correlations found were solely due to the transcript length 208 

or if other factors were influencing them, we built a correlation matrix with several gene 209 

characteristics (Fig 5). We observed that properties like intron counts, CDS length, protein size, 210 

number of SNPs and transcript count have some strong positive correlations amongst 211 

themselves, some of which were stronger than any other correlation with transcript length. This 212 

indicated that strong correlations with transcript length might not be due to the sole action of 213 

transcript length itself, but rather due to a combined action between several gene 214 

characteristics. 215 

 216 

 217 

 218 

Fig 5. Correlation matrix between gene properties. Kendall’s test was used as a 219 

measurement of correlation, with the numbers and the gradient of colours symbolizing 220 
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the Tau values for each comparison. Number of SNPs values is for each transcript. Values 221 

that are crossed out are not statistically significant. Values are clustered together based 222 

on their Tau values. 223 

 224 

 225 

Distribution of transcript length and expression in human tissues 226 

In this present work we have found that transcript length seems to peak at 2065 bp, with 227 

smaller transcripts being more common than longer ones (S5A Fig). As described previously [9], 228 

the distribution of the number of introns in the human genome (S5B Fig) has a mode of 3 229 

introns and there are very few genes with a large number of introns. The gene with the most 230 

introns is TTN, with 362 introns, which also leads the list of genes with the longest transcript 231 

length. 232 

To better understand the distribution of transcript length in the human tissue specific genes, we 233 

used Tau values obtained from GTEx data [60]. Tau was used has a measure of tissue specificity, 234 

based on the expression profile in different tissues, with values ranging from 0, for broadly 235 

expressed genes, to 1, for tissue specific genes [61]. For genes with a Tau value above 0.8 (Fig 6, 236 

S6 Fig for the non-log transformed version), we observed that longer tissue specific genes are 237 

often associated with the blood vessel, nerve, thyroid, cervix uteri and brain, while smaller 238 

tissue specific genes are found in the pancreas, skin, stomach, vagina and testis. 239 

 240 

 241 

 242 
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 243 

 244 

Fig 6. Log transformed Transcript length distribution for genes specifically expressed in 245 

the given Tissues. Tissue specificity was defined as a gene having a Tau specificity score 246 

greater than 0.8. 247 

 248 

 249 

Ageing and transcript length 250 

Ageing is an important factor in our lives, and it affects most organisms. We were curious to see 251 

if, for genes related to ageing, the distribution of transcript length was significantly different 252 

than the rest of the protein-coding genes. We observed (S7A Fig and S7B Fig) that genes 253 

associated with ageing (N = 307) [62] have longer transcript lengths (median = 3517) when 254 
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compared with the rest of our dataset (median = 2956), and that this difference of medians was 255 

significant (Wilcoxon rank sum test, p-value = 0.00036). 256 

 257 

To further understand if longer or smaller genes were more prominent with age, we used genes 258 

from ageing signatures obtained from a meta-analysis in human, mice and rat [60]. Genes from 259 

this signature were either overexpressed (NTotal = 449, NBrain = 147, NHeart = 35, NMuscle = 49) or 260 

underexpressed (NTotal = 162, NBrain = 16, NHeart = 5, NMuscle = 73) with age. Overall, the difference 261 

in medians for the distribution of transcript length in genes overexpressed (median = 3068) and 262 

underexpressed (median = 3026.5) with ageing was not observed to be significant (S7C Fig, 263 

Wilcoxon rank sum test, p-value = 0.81). However, tissue specific signatures showed that the 264 

brain favours smaller genes with age (S7D Fig, Wilcoxon rank sum test, p-value = 0.00086, 265 

median for overexpression in brain = 2651, median for underexpression in brain = 5824). 266 

 267 

 268 

Evolution and transcript length 269 

The relationship between intronic burden and evolution has been established before [9], but 270 

very few works approached this on a gene length front. Therefore we obtained the dN and dS 271 

values for three organisms paired with human, mouse (S8A Fig), gorilla (S8B Fig) and 272 

chimpanzee (S8C Fig), and we aimed to see how the distribution of transcript length happened 273 

in function of their dN/dS ratio. Overall, longer genes were associated with a dN/dS ratio lesser 274 

to 1 (median transcript length is 3294, 3377 and 3338 for mouse, chimpanzee and gorilla 275 

respectively), while smaller genes seem to be more associated with dN/dS ratios above or equal 276 

to 1 (median transcript length is 1171.5, 2229.5 and 2092 for mouse, chimpanzee and gorilla 277 

respectively) and the median of both groups was always significantly different (Wilcoxon rank 278 

sum test, p-value = 0.00073 for mouse and <2.2E-16 for both gorilla and chimpanzee). 279 
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 280 

 281 

Co-Expression Analysis and Protein-Protein Interactions 282 

Co-expression networks can help us to better understand the functions of genes that are often 283 

expressed together [63]. In order to see if the gene length influenced the amount of co-284 

expressed partners, we used data from GeneFriends [64] (S4 Table). We observed a rather weak 285 

correlation between transcript length and the number of co-expression partners in our dataset 286 

(S9A Fig, Kendall Test, tau = 0.10, p-value < 2.2E-16). However, despite this weak correlation, 287 

longer genes appeared to have more co-expressed gene partners than smaller genes (Fig 7A, 288 

Wilcoxon rank sum test, p-value < 2.2E-16, not-transformed figure in S9B Fig, median values of 289 

co-expression partners for longer genes = 2725, median values of co-expression partners for 290 

smaller genes = 32). We further analysed top and lowest hundred human co-expressed genes 291 

from the GeneFriends database (S4 Table) and observed that top highly co-expressed genes in 292 

the database have significantly higher transcript length (S9C Fig, Wilcoxon rank sum test, p-293 

value = 0.00072, median = 3880) with respect to the bottom ones (median = 2587.5). 294 

 295 

To determine if transcript length also influenced the number of protein-protein interactions, we 296 

used the protein-protein interaction data from BioGRID [65] (S5 Table). The results obtained 297 

were similar to the co-expression, where a weak correlation was observed between transcript 298 

length and the number of protein-protein interactions (S10A Fig, Kendall Test, tau = 0.06, p-299 

value < 2.2E-16).  300 

 301 

From such results, one would think that publication bias would have an effect on the number of 302 

interactions found. So, we obtained the number of publications for each gene studied here from 303 

PubMed and compared it to each gene length group and with the number of interactions (Fig 304 
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7B). We observed that the number of interactions and publications were significantly different 305 

between each gene length group (Wilcoxon rank sum test, p-value < 2.2E-16 for both 306 

comparisons), with both being higher for the group comprising of longer length genes. In order 307 

to assess the level of influence of publication bias in our protein-protein interaction dataset, we 308 

used correlations between the values of protein-protein interactions and the number of 309 

publications and we observed that, for both gene length groups, the correlations were not the 310 

strongest (Kendall test; Longest genes, tau = 0.26, p-value < 2.2E-16; Smallest genes, tau = 0.36, 311 

p-value < 2.2E-16), implying that while there might be some publication bias in effect, the 312 

strength of that effect is rather weak. 313 

 314 

However, for the group of the longest genes, 208 (21%) entries were of zero value, while for the 315 

smallest group of genes, 544 (55%) entries were of zero value. This means that there were 316 

either no physical interactions for those genes, or that there were no entries in BioGRID for 317 

them. In order to account for this, and similarly to what we did for the co-expression analysis, 318 

we extracted the top 100 genes with the most and fewest protein-protein interactors (without 319 

null values) in our dataset and we observed the distribution of their transcript length. We 320 

observed that genes with the highest protein-protein interactions were longer (median 321 

transcript length = 3737), than genes with the lowest amount of protein-protein interactions 322 

(S10B Fig, Wilcoxon rank sum test, p-value = 0.039, median transcript length = 2764). 323 

 324 
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 325 

 326 

Fig 7. Co-expression and protein-protein Interaction results pertaining to the longest and 327 

the smallest genes. The High group corresponds to the top 5% longest genes found in our 328 

original dataset  (NHigh = 986), while the Low group corresponds to the top 5% smallest 329 

genes found in our original dataset (NLow = 986). A: Distribution of the Log transformed 330 

number of co-expressed genes for long genes and small genes. Number of co-expressed 331 

genes was obtained from data publicly available in GeneFriends [64]; B: Distribution of 332 

the number of protein-protein interactions and the number of publications for longer 333 

and smaller genes, all Log transformed. Number of protein-protein interactions was 334 

obtained from BioGRID [65] and the number of publications was obtained from PubMed. 335 
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Discussion 339 

With this work, we tried to elucidate what factors affected gene length and whether gene length 340 

had a role in determining the function of their proteins in the cell. Even looking at the 5 longest 341 

genes, we can get a small glimpse into one these objectives. TTN is the longest transcript in the 342 

human genome, and serves several important functions in the skeletal and cardiac muscles, and 343 

is often involved in structure, sensory and signalling responses [20,66,67]. The mucin MUC16 344 

(or CA125) is mostly known as a biomarker in ovarian cancer and is used to monitor patients as 345 

an indicator of cancer recurrence [21,68,69]. SMAD family member 2 (SMAD2) is thought to play 346 

a critical role in neuronal function [17] and to have a protective role in hepatic fibrosis [70]. The 347 

gene FLRT2 is believed to have a role in tumour suppression in breast and prostate cancer 348 

[71,72] and, in mice models, FLRT2 has been found as a guiding agent in neuronal and vascular 349 

cells [18,73]. For the GRIN2B gene, it has been shown to play an important role in the neuronal 350 

development and cell differentiation in the brain [19,74]. We cannot obtain any information at 351 

the moment pertaining to the function of the 5 smallest genes, since all of them are either novel 352 

and have yet to be properly studied, or could be annotation errors in the assembly. 353 

 354 

In order to deeply understand the effects of gene length in protein function, we performed a 355 

functional analysis. For longer length genes, the GO terms obtained were mostly associated with 356 

neurons, for example terms like axon development, axon part, neuron to neuron synapse, actin 357 

and cell polarity [75] and GTPases [75]. For tissue specific genes, brain and nerve had the 358 

longest genes. Looking at the KEGG Pathways associated with the longest genes, the categories 359 

present are in the brain, cancer, heart diseases and muscle. Previous studies have associated 360 

longer length genes with neurons [76,77] and muscle [78]. Due to the very nature of longer 361 

genes, one expects high rates of mutation, not only due to their size, but also due to possible 362 

collisions between the RNA polymerase and the DNA polymerase, which causes instability and 363 

possible mutations [79]. It is not surprising to find associations between longer genes with 364 
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cancer [15] and hearth pathologies often caused by mutations in particularly long genes, like 365 

DSC2 and TTN [80–82].  366 

Looking at our smaller genes group, most of the GO terms provided were associated with the 367 

skin, for example skin development and cornified envelope, or with the immune system, for 368 

example, defence response to other organism and receptor agonist activity. Smaller tissue 369 

specific genes also have a major presence in the skin. With regards to the KEGG Pathways 370 

associated with the smaller genes, most pathways were involved in the immune system, with a 371 

few also being present in neurodegenerative diseases and in the skin. Previous studies have 372 

observed that most genes associated with immune functions are rather small in size [83]. 373 

However, there are no studies to support the association of smaller genes with skin 374 

development. The categorization on the basis of published work has its advantages, but there is 375 

often overlapping of functions within these categories, for example, calcium signalling also 376 

happens in the muscle [84] and immune system [85], Wnt signalling pathway also has a role in 377 

cancer [86], TGF-beta signalling pathway can also be associated with the immune system [87], 378 

among others.  In spite of this, our findings lead us to believe there is a disparity in gene sizes 379 

for genes that have a role or are present in tissues with very little to almost no development 380 

pos-natally (like neuron) and genes (not involved in housekeeping) that are quite frequently 381 

expressed during a human’s whole lifetime (like in skin development and immune response) or 382 

involved in providing functions with fast responses. Corroborating with our findings for the 383 

functional analysis, a recent preprint has showed that, with age, there is a downregulation of 384 

long transcripts and an upregulation of short transcripts, in a phenomena they named “length-385 

driven transcriptome imbalance”, which in humans it affects the brain the most [88]. As we 386 

observed, smaller genes can be associated with the immune system and inflammation has a role 387 

in many ageing-related diseases [89], while longer genes are mostly associated with brain 388 

development, a function that happens early in life.  389 

 390 
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To understand whether there were factors that had an influence in gene length, we performed 391 

several correlation analysis. Overall there was no really strong correlation observed between 392 

the gene characteristics studied and transcript length. The biggest significant positive 393 

correlations were with protein size and number of SNPs, with transcript count, number of 394 

introns, GC content, and average gene expression having a weak significant positive correlation. 395 

Results of the correlation between average gene expression and transcript length were not in 396 

line with previous observations, which suggested that highly expressed genes are often smaller 397 

in length [11]. We also observed that among smaller genes, the average gene expression was, in 398 

fact, the highest (S4D Fig). However, genes with smaller lengths also had a great variability in 399 

the average gene expression values, and there was almost no correlation between transcript 400 

length and average gene expression. What has been stated in the previous studies is relevant, 401 

but the whole image is not captured properly. Rather than stating that the smaller genes are 402 

highly expressed, it is more accurate to say that smaller genes have a greater variability of levels 403 

of expression than longer genes. Similar to the correlation results for number of SNPs, both 404 

synonymous and missense mutations were also highly correlated with transcript length. It is 405 

particularly interesting that the correlation values were so high for missense mutations, since 406 

these may cause loss of function in the resulting protein. Likewise, it could be one of the reasons 407 

why the correlation between nonsense mutations and transcript length is weaker than the other 408 

two. Other works [9] have used the MIS/SYN and NONS/SYN ratios as a measure of functional 409 

importance, and we can, albeit faintly, observe here that longer genes appear to be more 410 

functionally important than smaller gene. The negative correlation between these ratios showed 411 

that longer genes may have more mechanisms in place to prevent loss of function mutations, 412 

when compared with synonymous mutations. Moreover, we also have to take account of 413 

“outliers” when looking into the correlation between transcript length and protein size (S4C 414 

Fig), specifically for longer genes. One would expect that for longer genes, the proteins produced 415 

would have a size comparable to their length and not be extremely small. However, after 416 

observing these outliers and we found that their protein size was rather small due to the 417 
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presence of very long 3’UTR regions. While these regions still account for the calculation of gene 418 

size, they are not translated into the protein, causing the presence of these “outliers”. Previous 419 

studies have shown that the brain has a preference for these long 3’UTR regions [90,91]. 420 

 421 

Interestingly, we also noticed that genes associated with ageing tend to be longer than the rest 422 

of the protein-coding genome. Moreover, we also showed that the overall (not tissue 423 

dependent) expression of genes with age appears to disregard transcript length, and that the 424 

brain seems to favour the expression of smaller genes with age. This last result, seems on par 425 

with the previously mentioned observations by Stoeger et al. [88], where they also witnessed 426 

the upregulation of smaller transcripts with age, especially in the brain. However, the results 427 

pertaining to the overall expression of genes with age seems to be different between what 428 

Stoeger et al. observed, with transcript length as an important source of ageing-dependent 429 

changes in values of expression, and what we observed based on Palmer et al. signatures of 430 

ageing [60], where transcript length does not influence the expression of genes with age. It is 431 

possible that these two works found two different sets of genes whose expression is affected in 432 

the ageing process. As such, further works should prove useful in dictating whether or not 433 

transcript length plays a major role in the expression of genes with age. 434 

 435 

When comparing gene length with the dN/dS ratio for three organisms (Gorilla, Chimpanzee 436 

and Mouse), longer genes appeared to evolve under constraint, while for smaller genes there 437 

was a promotion for changes in the genes by natural selection. Previous studies have shown 438 

that, for genes classified as “old” (by virtue of having orthologues in older organisms), their 439 

length will be longer, they will have more introns and they evolve more slowly than smaller 440 

genes [7,8]. In terms of the co-expression analysis and protein-protein interactions, the longer 441 

genes, in general, had the most co-expression partners and protein-protein interactions. Further 442 
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validating our observations, we also saw that top hundred highest co-expression genes and PPI 443 

were longer in length as compared to lowest co-expression genes and PPI. 444 

 445 

As a result of this work we have noticed that not all genes are studied with the same depth. 446 

Some genes have more information related to expression or function than others. We observed 447 

this especially within our 5% list of longest and smallest genes. Longer length genes had more 448 

functional information readily available than smaller ones. We can also observe that in the 449 

publication bias analysis for protein-protein interactions, where genes with longer lengths had 450 

more publications than smaller genes. Indeed, other groups have found that gene length can be 451 

an important predictor of the number of publications, and that novel genes are not often studied 452 

to their full capacity [92], while others have found that genetic associations tend to be more 453 

biased towards longer genes [93,94]. 454 

 455 

The present study has its own limitations. One of the limitations for this sort of study is that, the 456 

results might be “time-specific”. With new discoveries related to the human genome and its 457 

genes, the trends here observed might change, specifically when it concerns the currently 458 

extremely untapped field of smaller genes. Similarly as we previously noted, longer genes have a 459 

lot more information related to them, when compared with their smaller counterparts. While 460 

our findings with respect to the longer genes might be mostly reliable, we cannot show the same 461 

confidence in case of the smaller genes, considering that a lot of these genes were novel and 462 

have yet to be properly studied. However even after taking account of the above limitations, the 463 

present study still provides some very interesting insights pertaining to gene length and its 464 

possible role in early life development, diseases and response time in the human genome. 465 
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Conclusion 466 

With this work we aimed to better understand the effects of gene length in gene function and 467 

factors that affected it. We observed that, for most of the factors studied, there was not a 468 

particularly strong correlation with transcript length. The strongest correlations here detected 469 

were associated with the number of SNPs and the protein size. We also showed that, for smaller 470 

genes, its association with high levels of expression is not entirely correct and that, instead, 471 

there is great variability of expression values among them. We also observed that longer genes 472 

appear to have the most co-expression partners and protein-protein interactions, in comparison 473 

to their smaller counterparts. 474 

In case of the functional analysis, we observed that longer genes favoured functions in the brain, 475 

cancer, heart and muscle, while smaller genes are strongly associated with the immune system, 476 

skin and neurodegenerative diseases. This lead us to believe that gene length could be 477 

associated with the frequency of usage of the gene, with longer genes being less often used past 478 

the initial development and smaller genes playing a frequent role daily in the human body. 479 

 480 

 481 

 482 

 483 

Methods 484 

Data retrieval and filtering 485 

All protein-coding human transcripts and genes (Ntranscripts = 92696), their length, transcript 486 

count and GC content were obtained using the biomart [16] website (GRCh38.p12, Ensembl 96, 487 

April 2019). Transcript length is defined by Ensembl as the total length of the exons in a gene 488 

plus its UTR regions lengths. Gene length was obtained using the R (version 3.5.2) package 489 
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EDASeq (version 2.14.1). Using R, the transcripts with the highest transcript length per gene 490 

were selected. In case of ties, due to multiple transcript having the same length per gene, we 491 

used some tags (APPRIS annotation was the principal one, if there was an entry in RefSeq or 492 

GENCODE) used by ensemble as a tie-breaker. Should that fail, the oldest transcript was chosen, 493 

by means of having a smaller numerical ID. Transcripts associated with PATCH locations or 494 

assemblies were removed from our dataset. For each transcript, we obtained data regarding 495 

their number of exons, CDS length, number of SNPs, synonymous (“synonymous_variant”), 496 

missense (“missense_variant“) and nonsense (“stop_gained”) SNPs, protein length, dN and dS 497 

values, using the biomart (version 2.38.0) package in R. For the dN and dS values, only values 498 

associated with One to One orthologues were selected for the present analysis. Average 499 

expression was obtained from the USCS Table browser tool [95], using expression as the group 500 

and the GTEx Gene track. Tissue specific Tau values of expression were obtained from a 501 

previous work [60]. The number of SNPs per gene was obtained using the Ensembl API, R and 502 

the httr (version 1.4.0) and jsonlite (version 1.6) packages.  503 

The whole file produced and used in the analysis for this work can be found on the 504 

Supplementary Table 1 (N = 19714). 505 

Gene names of genes related with ageing (N = 307) were obtained from GenAge (Build 19) [62]. 506 

 507 

Statistical tests, graphs and other packages 508 

R and the function corr.test were used to perform the correlation tests. Due to the abundance of 509 

the data, there were a lot of ties in the ranks, which prevented the usage of Spearman’s 510 

correlation, so instead we chose to use the Kendall test for the correlations. The figures 511 

produced in this work were created using the ggplot2 (version 3.2.0) package in R. Other 512 

packages used over the course of this work were: corrplot (version 0.84), psych (version 513 

1.8.12), ggpubr (version 0.2.1), stringr (version 1.4.0), dplyr (version 8.0.1), plyr (version 1.8.4) 514 

and tidyr (version 0.8.3). 515 
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 516 

Functional Analysis 517 

WebGestalt (2019 release) [22] was used to do the Overrepresentation Enrichment Analysis for 518 

each of the gene ontology categories (Biological Process. Cellular Component and Molecular 519 

Function). The top 5% genes, with the highest and lowest gene length, were ran against the 520 

reference option of genome. The significance level was FDR<0.05 and the multiple test 521 

adjustment was done using the Benjamini–Hochberg method. 522 

For confirmation of the results, the same two 5% lists were run on DAVID’s [23,24] annotation 523 

clustering option, using the complete human genome as background. Only terms with p-value 524 

and FDR smaller or equal to 0.05 were considered. Default categories were used except for the 525 

category “UP_SEQ_FEATURE”, since it was introducing a lot of redundant results. 526 

To help better visualize the GO terms obtained from the analysis above described, the tool 527 

REViGO [59] was used. The p-values here considered were the FDR values obtained previously, 528 

with the human database option used for the GO terms. 529 

In regards to the analysis done using the KEGG pathways, the grouping of genes and pathways 530 

was obtained from the Molecular Signature Database (version 6.2) [26,27,96–99], like it was 531 

done previously by another group [15]. Additionally, the colouring of the box plot was done 532 

based on the fact that the pathway in question is directly associated with the category (when 533 

the KEGG Pathway schematic shows cells from the category) or if they could be indirectly 534 

associated with the category (using available literature). For this last case, appropriate 535 

literature was selected if they mentioned elements of the KEGG Pathway being involved in said 536 

category. 537 

 538 
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Co-Expression Analysis 539 

Co-expression correlation values were extracted from GeneFriends [64]. For each gene (N = 540 

19714), in the whole dataset and in the top 5% lists of genes with the longest and smallest 541 

transcript length (N = 986 for each list), the number of genes with correlation values superior or 542 

equal to 0.6 or smaller or equal to -0.6 were obtained using R. From our original dataset 543 

(N=19714 genes), 1046 genes were not present in GeneFriends (whole dataset), of which, 25 544 

missing genes were within the High group and 110 missing genes were within the Low group. 545 

For obtaining the median values of genes present in the GeneFriends database, the co-546 

expression values for each gene across the database were merged and this was followed by 547 

calculation of median values using R. 548 

 549 

Protein-Protein Interaction Analysis 550 

BioGRID (release 3.5.174) REST API [65] in conjugation with the R package httr was used to 551 

obtain all protein-protein interactions for the whole dataset and for the top 5% longest and 552 

smallest genes. All redundant and genetic interactions were removed from this analysis. 553 

For the publication bias, the number of publications, in PubMed, per gene of each group was 554 

obtained using the Entrez Programming Utilities (E-utilities), and the R packages XML (version 555 

3.98-1.19), httr and biomart. 556 

 557 

 558 

 559 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


31 

 

Acknowledgements  560 

The authors wish to thank past and present members of the Integrative Genomics of Ageing 561 

Group for useful suggestions and discussion, in particular Kasit Chatsirisupachai and Daniel 562 

Palmer. 563 

  564 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


32 

 

References 565 

1.  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing 566 

and analysis of the human genome. Nature. 2001;409: 860–921. doi:10.1038/35057062 567 

2.  Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The Sequence of the 568 

Human Genome. Science. 2001;291: 1304–1351. doi:10.1126/science.1058040 569 

3.  International Human Genome Sequencing Consortium. Finishing the euchromatic 570 

sequence of the human genome. Nature. 2004;431: 931–45. doi:10.1038/nature03001 571 

4.  Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and 572 

disease. Annu Rev Med. 2012;63: 35–61. doi:10.1146/annurev-med-051010-162644 573 

5.  Goldfeder RL, Wall DP, Khoury MJ, Ioannidis JPA, Ashley EA. Human Genome Sequencing 574 

at the Population Scale: A Primer on High-Throughput DNA Sequencing and Analysis. Am 575 

J Epidemiol. 2017;186: 1000–1009. doi:10.1093/aje/kww224 576 

6.  Simonti CN, Capra JA. The evolution of the human genome. Curr Opin Genet Dev. 577 

2015;35: 9–15. doi:10.1016/j.gde.2015.08.005 578 

7.  Vishnoi A, Kryazhimskiy S, Bazykin GA, Hannenhalli S, Plotkin JB. Young proteins 579 

experience more variable selection pressures than old proteins. Genome Res. 2010;20: 580 

1574–81. doi:10.1101/gr.109595.110 581 

8.  Wolf YI, Novichkov PS, Karev GP, Koonin E V., Lipman DJ. The universal distribution of 582 

evolutionary rates of genes and distinct characteristics of eukaryotic genes of different 583 

apparent ages. Proc Natl Acad Sci. 2009;106: 7273–7280. doi:10.1073/pnas.0901808106 584 

9.  Gorlova O, Fedorov A, Logothetis C, Amos C, Gorlov I. Genes with a large intronic burden 585 

show greater evolutionary conservation on the protein level. BMC Evol Biol. 2014;14: 50. 586 

doi:10.1186/1471-2148-14-50 587 

10.  Grishkevich V, Yanai I. Gene length and expression level shape genomic novelties. 588 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


33 

 

Genome Res. 2014;24: 1497–503. doi:10.1101/gr.169722.113 589 

11.  Urrutia AO, Hurst LD. The signature of selection mediated by expression on human genes. 590 

Genome Res. 2003;13: 2260–4. doi:10.1101/gr.641103 591 

12.  Eisenberg E, Levanon EY. Human housekeeping genes are compact. Trends Genet. 592 

2003;19: 362–365. doi:10.1016/S0168-9525(03)00140-9 593 

13.  Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a 594 

biological timer to establish temporal transcriptional regulation. Cell Cycle. 2017;16: 595 

259–270. doi:10.1080/15384101.2016.1234550 596 

14.  Yang D, Xu A, Shen P, Gao C, Zang J, Qiu C, et al. A two-level model for the role of complex 597 

and young genes in the formation of organism complexity and new insights into the 598 

relationship between evolution and development. Evodevo. 2018;9: 22. 599 

doi:10.1186/s13227-018-0111-4 600 

15.  Sahakyan AB, Balasubramanian S. Long genes and genes with multiple splice variants are 601 

enriched in pathways linked to cancer and other multigenic diseases. BMC Genomics. 602 

2016;17: 225. doi:10.1186/s12864-016-2582-9 603 

16.  Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. 604 

Nucleic Acids Res. 2018;46: D754–D761. doi:10.1093/nar/gkx1098 605 

17.  Tao S, Sampath K. Alternative splicing of SMADs in differentiation and tissue 606 

homeostasis. Dev Growth Differ. 2010;52: 335–342. doi:10.1111/j.1440-607 

169X.2009.01163.x 608 

18.  Yamagishi S, Hampel F, Hata K, del Toro D, Schwark M, Kvachnina E, et al. FLRT2 and 609 

FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 2011;30: 2920–610 

2933. doi:10.1038/emboj.2011.189 611 

19.  Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF. Human GRIN2B variants in 612 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


34 

 

neurodevelopmental disorders. J Pharmacol Sci. 2016;132: 115–121. 613 

doi:10.1016/j.jphs.2016.10.002 614 

20.  Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient 615 

stratification. Nat Rev Cardiol. 2017;15: 241–252. doi:10.1038/nrcardio.2017.190 616 

21.  Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al. MUC16 617 

(CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014;13: 618 

129. doi:10.1186/1476-4598-13-129 619 

22.  Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with 620 

revamped UIs and APIs. Nucleic Acids Res. 2019;47: W199–W205. 621 

doi:10.1093/nar/gkz401 622 

23.  Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene 623 

lists using DAVID bioinformatics resources. Nat Protoc. 2009;4: 44–57. 624 

doi:10.1038/nprot.2008.211 625 

24.  Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 626 

comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37: 1–13. 627 

doi:10.1093/nar/gkn923 628 

25.  Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 629 

2000;28: 27–30. doi:10.1093/nar/28.1.27 630 

26.  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 631 

enrichment analysis: A knowledge-based approach for interpreting genome-wide 632 

expression profiles. Proc Natl Acad Sci. 2005;102: 15545–15550. 633 

doi:10.1073/pnas.0506580102 634 

27.  Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular 635 

Signatures Database Hallmark Gene Set Collection. Cell Syst. 2015;1: 417–425. 636 

doi:10.1016/j.cels.2015.12.004 637 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


35 

 

28.  Kerrisk ME, Cingolani LA, Koleske AJ. ECM receptors in neuronal structure, synaptic 638 

plasticity, and behavior. Prog Brain Res. 2014;214: 101–31. doi:10.1016/B978-0-444-639 

63486-3.00005-0 640 

29.  Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a 641 

different perspective. Cell Res. 2006;16: 857–871. doi:10.1038/sj.cr.7310107 642 

30.  Schnaar RL. Gangliosides of the Vertebrate Nervous System. J Mol Biol. 2016;428: 3325–643 

3336. doi:10.1016/j.jmb.2016.05.020 644 

31.  Bauer H-C, Krizbai IA, Bauer H, Traweger A. “You Shall Not Pass”-tight junctions of the 645 

blood brain barrier. Front Neurosci. 2014;8: 392. doi:10.3389/fnins.2014.00392 646 

32.  Lasky JL, Wu H. Notch Signaling, Brain Development, and Human Disease. Pediatr Res. 647 

2005;57: 104R-109R. doi:10.1203/01.PDR.0000159632.70510.3D 648 

33.  Kwok JCF, Warren P, Fawcett JW. Chondroitin sulfate: A key molecule in the brain matrix. 649 

Int J Biochem Cell Biol. 2012;44: 582–586. doi:10.1016/j.biocel.2012.01.004 650 

34.  Russo D, Della Ragione F, Rizzo R, Sugiyama E, Scalabrì F, Hori K, et al. Glycosphingolipid 651 

metabolic reprogramming drives neural differentiation. EMBO J. 2018;37: e97674. 652 

doi:10.15252/embj.201797674 653 

35.  Massaly N, Francès B, Moulédous L. Roles of the ubiquitin proteasome system in the 654 

effects of drugs of abuse. Front Mol Neurosci. 2014;7: 99. doi:10.3389/fnmol.2014.00099 655 

36.  Zeng Y, Zhang L, Hu Z. Cerebral insulin, insulin signaling pathway, and brain 656 

angiogenesis. Neurol Sci. 2016;37: 9–16. doi:10.1007/s10072-015-2386-8 657 

37.  Funderburgh JL. Keratan Sulfate Biosynthesis. IUBMB Life (International Union Biochem 658 

Mol Biol Life). 2002;54: 187–194. doi:10.1080/15216540214932 659 

38.  Noelanders R, Vleminckx K. How Wnt Signaling Builds the Brain: Bridging Development 660 

and Disease. Neurosci. 2017;23: 314–329. doi:10.1177/1073858416667270 661 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


36 

 

39.  Dermietzel R, Spray DC. Gap junctions in the brain: where, what type, how many and 662 

why? Trends Neurosci. 1993;16: 186–192. doi:10.1016/0166-2236(93)90151-B 663 

40.  Grube M, Hagen P, Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and 664 

SLC Transporters. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00354 665 

41.  Monje FJ, Kim E-J, Pollak DD, Cabatic M, Li L, Baston A, et al. Focal Adhesion Kinase 666 

Regulates Neuronal Growth, Synaptic Plasticity and Hippocampus-Dependent Spatial 667 

Learning and Memory. Neurosignals. 2012;20: 1–14. doi:10.1159/000330193 668 

42.  Frere SG, Chang-Ileto B, Di Paolo G. Role of phosphoinositides at the neuronal synapse. 669 

Subcell Biochem. 2012;59: 131–75. doi:10.1007/978-94-007-3015-1_5 670 

43.  Dickson EJ. Recent advances in understanding phosphoinositide signaling in the nervous 671 

system. F1000Research. 2019;8. doi:10.12688/f1000research.16679.1 672 

44.  Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural 673 

tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82: 674 

736–754. doi:10.1046/j.1471-4159.2002.01041.x 675 

45.  Stocker AM, Chenn A. The role of adherens junctions in the developing neocortex. Cell 676 

Adh Migr. 2015;9: 167–174. doi:10.1080/19336918.2015.1027478 677 

46.  Mei L, Nave K-A. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric 678 

diseases. Neuron. 2014;83: 27–49. doi:10.1016/j.neuron.2014.06.007 679 

47.  Russo E, Citraro R, Constanti A, De Sarro G. The mTOR Signaling Pathway in the Brain: 680 

Focus on Epilepsy and Epileptogenesis. Mol Neurobiol. 2012;46: 662–681. 681 

doi:10.1007/s12035-012-8314-5 682 

48.  Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 683 

2018;18: 33–50. doi:10.1038/nrc.2017.96 684 

49.  Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in 685 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


37 

 

Immune Cell Functions. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00090 686 

50.  Prentki M, Madiraju SRM. Glycerolipid Metabolism and Signaling in Health and Disease. 687 

Endocr Rev. 2008;29: 647–676. doi:10.1210/er.2008-0007 688 

51.  Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of 689 

JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun 690 

Signal. 2017;15: 23. doi:10.1186/s12964-017-0177-y 691 

52.  Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential 692 

therapeutic applications. Amino Acids. 2011;41: 1195–1205. doi:10.1007/s00726-010-693 

0752-7 694 

53.  Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 695 

2014;35: 88–93. doi:10.1016/j.it.2013.10.010 696 

54.  Taylor RG, Levy HL, McInnes RR. Histidase and histidinemia. Clinical and molecular 697 

considerations. Mol Biol Med. 1991;8: 101–16. Available: 698 

http://www.ncbi.nlm.nih.gov/pubmed/1943682 699 

55.  Ziboh VA, Miller CC, Cho Y. Metabolism of polyunsaturated fatty acids by skin epidermal 700 

enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin 701 

Nutr. 2000;71: 361s-366s. doi:10.1093/ajcn/71.1.361s 702 

56.  Fisher GJ, Voorhees JJ. Molecular mechanisms of retinoid actions in skin. FASEB J. 703 

1996;10: 1002–1013. doi:10.1096/fasebj.10.9.8801161 704 

57.  Iversen L, Kragballe K. Arachidonic acid metabolism in skin health and disease. 705 

Prostaglandins Other Lipid Mediat. 2000;63: 25–42. doi:10.1016/S0090-706 

6980(00)00095-2 707 

58.  Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, et al. 708 

Steroidogenesis in the skin: Implications for local immune functions. J Steroid Biochem 709 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


38 

 

Mol Biol. 2013;137: 107–123. doi:10.1016/j.jsbmb.2013.02.006 710 

59.  Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO Summarizes and Visualizes Long Lists of 711 

Gene Ontology Terms. Gibas C, editor. PLoS One. 2011;6: e21800. 712 

doi:10.1371/journal.pone.0021800 713 

60.  Palmer D, Fabris F, Doherty A, Freitas AA, de Magalhães JP. Ageing Transcriptome Meta-714 

Analysis Reveals Similarities Between Key Mammalian Tissues. bioRxiv [Preprint]. 2019; 715 

815381. doi:10.1101/815381 716 

61.  Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-wide 717 

midrange transcription profiles reveal expression level relationships in human tissue 718 

specification. Bioinformatics. 2005;21: 650–659. doi:10.1093/bioinformatics/bti042 719 

62.  Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al. Human Ageing 720 

Genomic Resources: new and updated databases. Nucleic Acids Res. 2018;46: D1083–721 

D1090. doi:10.1093/nar/gkx1042 722 

63.  van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression 723 

analysis for functional classification and gene-disease predictions. Brief Bioinform. 724 

2018;19: 575–592. doi:10.1093/bib/bbw139 725 

64.  van Dam S, Craig T, de Magalhães JP. GeneFriends: a human RNA-seq-based gene and 726 

transcript co-expression database. Nucleic Acids Res. 2015;43: D1124–D1132. 727 

doi:10.1093/nar/gku1042 728 

65.  Stark C. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 729 

2006;34: D535–D539. doi:10.1093/nar/gkj109 730 

66.  Chauveau C, Rowell J, Ferreiro A. A Rising Titan: TTN Review and Mutation Update. Hum 731 

Mutat. 2014;35: 1046–1059. doi:10.1002/humu.22611 732 

67.  Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations 733 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


39 

 

in Neuromuscular Disorders. J Neuromuscul Dis. 2016;3: 293–308. doi:10.3233/JND-734 

160158 735 

68.  Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, Batra SK. MUC16: 736 

molecular analysis and its functional implications in benign and malignant conditions. 737 

FASEB J. 2014;28: 4183–4199. doi:10.1096/fj.14-257352 738 

69.  Das S, Batra SK. Understanding the Unique Attributes of MUC16 (CA125): Potential 739 

Implications in Targeted Therapy. Cancer Res. 2015;75: 4669–4674. doi:10.1158/0008-740 

5472.CAN-15-1050 741 

70.  Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD Pathway and Its Regulation in Hepatic 742 

Fibrosis. J Histochem Cytochem. 2016;64: 157–167. doi:10.1369/0022155415627681 743 

71.  Bae H, Kim B, Lee H, Lee S, Kang H-S, Kim SJ. Epigenetically regulated Fibronectin leucine 744 

rich transmembrane protein 2 (FLRT2) shows tumor suppressor activity in breast cancer 745 

cells. Sci Rep. 2017;7: 272. doi:10.1038/s41598-017-00424-0 746 

72.  Wu Y, Davison J, Qu X, Morrissey C, Storer B, Brown L, et al. Methylation profiling 747 

identified novel differentially methylated markers including OPCML and FLRT2 in 748 

prostate cancer. Epigenetics. 2016;11: 247–258. doi:10.1080/15592294.2016.1148867 749 

73.  Seiradake E, del Toro D, Nagel D, Cop F, Härtl R, Ruff T, et al. FLRT Structure: Balancing 750 

Repulsion and Cell Adhesion in Cortical and Vascular Development. Neuron. 2014;84: 751 

370–385. doi:10.1016/j.neuron.2014.10.008 752 

74.  Bell S, Maussion G, Jefri M, Peng H, Theroux J-F, Silveira H, et al. Disruption of GRIN2B 753 

Impairs Differentiation in Human Neurons. Stem Cell Reports. 2018;11: 183–196. 754 

doi:10.1016/j.stemcr.2018.05.018 755 

75.  Polleux F, Snider W. Initiating and Growing an Axon. Cold Spring Harb Perspect Biol. 756 

2010;2: a001925–a001925. doi:10.1101/cshperspect.a001925 757 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


40 

 

76.  Zylka MJ, Simon JM, Philpot BD. Gene Length Matters in Neurons. Neuron. 2015;86: 353–758 

355. doi:10.1016/j.neuron.2015.03.059 759 

77.  Takeuchi A, Iida K, Tsubota T, Hosokawa M, Denawa M, Brown JB, et al. Loss of Sfpq 760 

Causes Long-Gene Transcriptopathy in the Brain. Cell Rep. 2018;23: 1326–1341. 761 

doi:10.1016/j.celrep.2018.03.141 762 

78.  Hosokawa M, Takeuchi A, Tanihata J, Iida K, Takeda S, Hagiwara M. Loss of RNA-Binding 763 

Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle 764 

Mass Reduction with Metabolic Myopathy. iScience. 2019;13: 229–242. 765 

doi:10.1016/j.isci.2019.02.023 766 

79.  Helmrich A, Ballarino M, Tora L. Collisions between Replication and Transcription 767 

Complexes Cause Common Fragile Site Instability at the Longest Human Genes. Mol Cell. 768 

2011;44: 966–977. doi:10.1016/j.molcel.2011.10.013 769 

80.  Corrado D, Link MS, Calkins H. Arrhythmogenic Right Ventricular Cardiomyopathy. 770 

Jarcho JA, editor. N Engl J Med. 2017;376: 61–72. doi:10.1056/NEJMra1509267 771 

81.  Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381: 242–255. 772 

doi:10.1016/S0140-6736(12)60397-3 773 

82.  Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375: 752–762. 774 

doi:10.1016/S0140-6736(09)62023-7 775 

83.  Pipkin ME, Monticelli S. Genomics and the immune system. Immunology. 2008;124: 23–776 

32. doi:10.1111/j.1365-2567.2008.02818.x 777 

84.  Kuo IY, Ehrlich BE. Signaling in Muscle Contraction. Cold Spring Harb Perspect Biol. 778 

2015;7: a006023. doi:10.1101/cshperspect.a006023 779 

85.  Vig M, Kinet J-P. Calcium signaling in immune cells. Nat Immunol. 2009;10: 21–27. 780 

doi:10.1038/ni.f.220 781 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


41 

 

86.  Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36: 1461–1473. 782 

doi:10.1038/onc.2016.304 783 

87.  Worthington JJ, Fenton TM, Czajkowska BI, Klementowicz JE, Travis MA. Regulation of 784 

TGFβ in the immune system: An emerging role for integrins and dendritic cells. 785 

Immunobiology. 2012;217: 1259–1265. doi:10.1016/j.imbio.2012.06.009 786 

88.  Stoeger T, Grant RA, McQuattie-Pimentel AC, Anekalla K, Liu SS, Tejedor-Navarro H, et al. 787 

Aging is associated with a systemic length-driven transcriptome imbalance. bioRxiv 788 

[Preprint]. 2019; 691154. doi:10.1101/691154 789 

89.  Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for healthspan 790 

extension. Immunol Rev. 2015;265: 63–74. doi:10.1111/imr.12295 791 

90.  Wang L, Yi R. 3_UTRs take a long shot in the brain. BioEssays. 2014;36: 39–45. 792 

doi:10.1002/bies.201300100 793 

91.  Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC. Widespread and extensive 794 

lengthening of 3’ UTRs in the mammalian brain. Genome Res. 2013;23: 812–825. 795 

doi:10.1101/gr.146886.112 796 

92.  Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA. Large-scale investigation of the 797 

reasons why potentially important genes are ignored. Freeman T, editor. PLOS Biol. 798 

2018;16: e2006643. doi:10.1371/journal.pbio.2006643 799 

93.  de Magalhães JP, Wang J. The fog of genetics: what is known, unknown and unknowable 800 

in the genetics of complex traits and diseases. EMBO Rep. 2019; e48054. 801 

doi:10.15252/embr.201948054 802 

94.  Mirina A, Atzmon G, Ye K, Bergman A. Gene Size Matters. PLoS One. 2012;7: e49093. 803 

doi:10.1371/journal.pone.0049093 804 

95.  Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC 805 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


42 

 

Table Browser data retrieval tool. Nucleic Acids Res. 2004;32: D493-6. 806 

doi:10.1093/nar/gkh103 807 

96.  Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. 808 

Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27: 1739–1740. 809 

doi:10.1093/bioinformatics/btr260 810 

97.  Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 811 

2000;28: 27–30. doi:10.1093/nar/28.1.27 812 

98.  Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on 813 

genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45: D353–D361. 814 

doi:10.1093/nar/gkw1092 815 

99.  Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for 816 

understanding genome variations in KEGG. Nucleic Acids Res. 2019;47: D590–D595. 817 

doi:10.1093/nar/gky962 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


43 

 

 829 

 830 

 831 

Supporting information 832 

S1 Table. Dataset with the highest protein-coding transcript length per Gene, in human. 833 

S2 Table. Functional analysis results for WebGestalt and DAVID. 834 

S3 Table. KEGG Pathway IDs used in Supplementary Figure 2. 835 

S4 Table. Co-Expression results. 836 

S5 Table. Number of Protein-Protein interactions and Publications in Pubmed for each 837 

gene in the dataset. 838 

S1 Fig. Functional analysis results for Cellular Component and Molecular Function. 839 

S2 Fig. Transcript length distribution per KEGG Pathway. 840 

S3 Fig. Correlation results for Number of SNPs, protein size, transcript count, GC content 841 

and synonymous, missense and nonsense mutations against transcript length. 842 

S4 Fig. Gene length and intron distribution in the human genome. 843 

S5 Fig. Transcript length distribution for genes specifically expressed in the given tissues. 844 

S6 Fig. Transcript length distribution for ageing related genes and for the rest of the 845 

dataset. 846 

S7 Fig. Evolution results for mouse, gorilla and chimpanzee. 847 

S8 Fig. Co-expression results. 848 

S9 Fig. Protein-protein interactions results. 849 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/


44 

 

 850 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901272
http://creativecommons.org/licenses/by/4.0/

