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Highlights

• Learning from both stimuli and behavioral choice generalizes to the representation of the choice alone.

• With generalization of learning, the choice signal can be read-out from parallel spike trains in V1.

• Correct attribution to binary coding pools and correct spike timing are necessary for the read-out.

• Bursty neurons convey more information than non-bursty neurons. Discrimination is the strongest in the

superficial layer of the cortex.

Abstract

Representation of stimuli by neural ensembles and the correlation of neural activity with the behavioral choice

are, in principle, two different computational problems, however, it is only the intersection between the two

that is relevant for animal’s behavior. Here, we propose a decoding model that learns its decoding weights in

the presence of the information on both the stimulus class and the future behavioral choice. We then test the

model on trials that only differ in the choice and show that the choice can be read-out from the activity of

populations in V1. The read-out model is a linear weighted sum of spikes, decoding the behavioral choice in

single trials and without temporal averaging. The generalization of learning suggests that the representation of

the stimulus class and of the behavioral choice have a non-zero intersection. In addition, we show how the spike

timing is required for discrimination, that bursty neurons carry more information than non-bursty neurons and

that neurons in the superficial layer are the most important for discrimination.

Keywords: Visual cortex; parallel spike trains; decoding; stimulus; choice; computation; representation;

neural network; population code; information; discrimination
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Introduction

In real-world scenarios, animals frequently take decisions based on the observation of their environment. In the

context of such decision-making, it has been understood that encoding of sensory information and utilizing this

information for guiding the behavior do not necessarily overlap [26]. The information about the stimuli might

be represented in the neuronal activity, without being read-out by downstream neurons. If the information is

not read-out, it does not have any causal relation to behavior and is in fact irrelevant for behavior. It has been

suggested that the intersection between the represented information and the behavior can only be understood

through intervention-the experimenter must understand the representation, perturb it, and observe the effect

of the perturbation on the behavior [26]. If represented information does not have an intersection with the

behavior, perturbing it will leave the behavior intact, and if a particular representation has an intersection,

perturbation will change the behavior. Unfortunately, such a setting is difficult to realize in experiments and is

only starting to be utilized in vivo [16].

Here, we address the intersection between the representation of stimuli and the representation of choice

indirectly, by studying the transfer of learning from the classification problem in the presence of the information

on both the stimulus class and the behavioral choice to the read-out of the behavioral choice. The animal

subject visualizes pairs of stimuli that can either be matching or non-matching and decides whether the two

stimuli were same or different (table 1). The choice of the animal is either compatible with the visualized

stimulus class (correct behavior), or not (incorrect behavior). We consider two classification problems, one

where classification relies on the information on both the stimuli and the choice (stimulus + choice), and

another, where classification relies on the information about the choice alone (choice, table 1). We ask, does

learning in the context of stimulus + choice generalize to representation in the context of choice? To address

this question, we train an optimal linear decoder in the context of stimulus + choice and use the decoder to

construct the representation in the context of choice.

Stimulus Choice Performance Info. content

non-match “different” correct
stimulus+choice

match “same” correct

non-match “different” correct
choice

non-match “same” incorrect

Table 1. Informational content of two classification problems.

If the representation in the context of stimulus + choice mainly relies on the difference of stimuli, and if

signals related to the stimuli and the choice are independent, learning in context of stimulus + choice cannot

be informative for the representation in the context of choice. If, on the contrary, classification in the context of

stimulus+ choice at least partially depends on a purely choice-related information, and/or the signals related

to stimuli and the choice are not independent, learning in the context of stimulus + choice could transfer to

the representation of the choice, showing a non-zero intersection between the two classification problems.

Materials and Methods

Methods availability

Code and dataset will be freely available in a pubic GitHub repository.
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Experimental model and subject details

Ethics statement All experiments were conducted in accordance with protocols approved by The Animal

Welfare Committee (AWC) and the Institutional Animal Care and Use Committee (IACUC) for McGovern

Medical School at The University of Texas Health Science Center at Houston (UTHealth), and met or exceeded

the standards proposed by the National Institutes of Healths Guide for the Care and Use of Laboratory Animals.

Animal subjects Two male rhesus macaques (Macaca mulatta; M1, 7 years old, 15kg; M2, 11 years old,

13kg) were used in this study. Subjects were housed individually (after failed attempts to pair house) in cages

sized 73 x 69 x 31 or 73 x 34.5 x31 inches, in close proximity to monkeys in adjacent cages, allowing for visual,

olfactory and auditory contact. Toys were given in rotation, along with various puzzles, movies and radio

programming as environmental enrichments. Monkeys were fed a standard monkey biscuit diet (LabDiet),

that was supplemented daily with a variety of fruits and vegetables. Subjects had been previously trained

to perform visual discrimination task, and each implanted with a titanium head post device and two 19mm

recording chambers (Crist Instruments) over V1 and V4. All surgeries were performed aseptically, under general

anesthesia maintained and monitored by the veterinary staff from the Center for Laboratory Animal Medicine

and Care (CLAMC), with appropriate analgesics as directed by the specialized non-human primate veterinarian

at CLAMC. During the study the animals had unrestricted access to fluid, except on days when behavioral

tasks were performed. These days, animals had unlimited access to fluid during the behavioral task, receiving

fluid for each correctly completed trial. Following the behavioral task, animals were returned to their home

cage and were given additional access to fluid. The minimal daily fluid allotment was 50ml/kg (monkeys were

weighed weekly), though monkeys could drink more through their participation in the task. During the study,

the animals health and welfare was monitored daily by the veterinarians and the animal facility staff at CLAMC

and the labs scientists, all specialized with working with non-human primates.

Method details

Experimental setup Animals performed a delayed match-to-sample task on visual stimuli. The trial started

after 300 ms of successful fixation within the fixation area and consisted in displaying the target and the test

stimuli, with a delay period in between. The target and the test stimuli were either identical (condition “match”)

or else the test stimulus was rotated with respect to the target stimulus (condition “non-match”). The target

and the test stimuli were shown for 300 ms each while the delay period had a random duration between 800 and

1000 ms. The task of the animal was to decide about the similarity of the target and the test stimuli by holding

a bar for “different” and releasing the bar for “same”. Stimuli were complex naturalistic images in black and

white,showing an outdoor scene. The subject was required to respond within 200 and 1200 ms with respect

to the offset of the test stimulus, otherwise the trial was discarded. The difference in orientation of the test

stimulus ranged between 3 and 10 degrees and was calibrated on-line in order to have on average 70 percent

correct responses on non-matching stimuli.

Recordings Recording were made with laminar electrodes, measuring the multi-unit signal with 16 recording

channels (0.1 mm spacing between adjacent contacts). Electrodes were inserted perpendicularly to the cortical

surface, and calibrated such that neurons from the two areas had overlapping receptive fields. In part of sessions,

recordings were made in V1 and V4 simultaneously, with one laminar electrode in each area, while in other

sessions, only V1 has been recorded. Since recording sessions were performed on different days, it is extremely

unlikely that the electrode captured same neurons in different recording sessions. We therefore treated spike-

sorted units from different recording sessions as distinct cells. The analysis included all cells that responded to

the stimulus with a 4-fold increase of the firing rate with respect to the baseline.

The data was collected in 20 recording sessions in V1, which gave 160 neurons. We analyzed 3 condi-

tions, “correct match” (CM), “correct non-match” (CNM) and “incorrect non-match” (INM), where “cor-

rect/incorrect” refers to the behavioral performance and “match/non-match” refers to the stimulus class. In
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condition “incorrect match”, there were not enough trials to perform the analysis. Below, table 2 reports the

summary statistics on the number of trials in each condition.

Condition Nb. trials min. Nb. trials max. Nb trials average

CM 51 290 118
CNM 42 230 107
INM 21 98 39

Table 2. The minimal, maximal, and average number of trials across recording sessions, for each condition.

Quantification and statistical analysis

The analysis was done with Matlab, Mathworks, version R2017b. The spike train of a single neuron n in trial

j is defined as a binary vector of zeros and ones,

on,j(tk) =

1, if neuron n in trial j spikes during the k-th millisecond

0, otherwise
(1)

where n = 1, ..., N is the neural index, k = 1, ...,K, is the time index with step of 1 millisecond, and

j = 1, .., J1, J1 + 1, ..., J2, J2 + 1, ...J is the trial index. Trials were collected in conditions CM (j = 1, ..., J1),

CNM (j = J1 + 1, ..., J2) and INM (j = J2 + 1, ..., J).

The coefficient of variation for the neuron n in trial j is defined as follows,

CV 2n,j = 2
|ISIi+1 − ISIi|
ISIi+1 + ISIi

where ISI is the inter-spike interval with index i = 1, ..., Nint. We report trial-averaged results, distinguishing

trials from conditions CNM (decision “same”) and INM (decision “different”).

CV 2different
n =

1

J2 − J1

J2∑
j=J1+1

CV 2n,j

CV 2same
n =

1

J − J2

J∑
j=J2+1

CV 2n,j

(2)

Learning of structural features from parallel spike counts

We compute spike counts in the time window of [0,K] ms with respect to the onset of the stimulus (target or

test), sn,j =
∑K
tk=1 on,j(tk). Spike counts are z-scored:

s̃n,j =
sn,j − 〈sn,j〉j√

Varj (sn,j)
, (3)

where 〈sn,j〉j is the empirical mean and Varj (sn,j) is the empirical variance across trials from all conditions.

The decoding weights are learned using conditions CM and CNM, which differ in both stimuli and choice

behavior. We use the linear Support Vector Machine (SVM) on parallel spike counts, and compute the vector of

feature weights of the classifier. These weights extract the structure of parallel spike counts. We then use this

structure to reconstruct the choice signal in conditions CNM and INM, which only differ in the choice behavior.

The choice signal is computed from parallel spike trains (without averaging across time) and in single trials.

The training set comprises all trials from condition CM and half of the trials from condition CNM (trials

with index j = 1, ..., J1, J1 + 1, ..., J2−J12 ). The reconstruction of the choice signal is computed on a hold-out

set, utilizing the remaining half of the trials from condition CNM and all trials from condition INM (trials
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with index j = J2−J1
2 + 1, ..., J2, J2 + 1, ..., J). The split of trials in training and reconstruction set in condition

CNM is cross-validated with Monte-Carlo method, using Ncv random splits. The split of trials in training

and reconstruction set is non-overlapping, such that no trials that have been used for training appear in the

reconstruction set. All reported results are averaged across cross-validations.

Estimation of the population vector In the N -dimensional space of inputs, one sample is the vector of

z-scored spike counts of N simultaneously recorded neurons in trial j, sj = [s̃1,j , s̃2,j , ..., s̃N,j ]
T . Linear SVM

searches for an N − 1-dimensional plane (a hyperplane) that optimally separates points in conditions CNM and

CM. The hyperplane is defined as follows,

H0 : wT sj + b = w1s1,j + w2s2,j + ...+ wNsN,j + b = 0 (4)

where w is the vector of feature weights and b is the offset of the hyperplane from the origin. On each side of

H0, we can define a hyperplane that verifies the following:

H1 : wT sj + b = −1

H2 : wT sj + b = 1
(5)

If the problem is linearly separable, all training samples verify the following the inequality,

wT sj + b ≤ −1 if yj = −1

wT sj + b ≥ 1 if yj = 1
(6)

where yj ∈ {−1, 1} is the class label (yj = −1 in condition CNM and yj = 1 in condition CM). Training the

linear SVM consists in maximizing the number of correctly classified samples and, at the same time, minimizing

the distance between H1 and H2, which can be expressed with the Lagrangian.

Lp =
1

2
wTw −

J2−J1
2∑
j=1

λj [yj(w
T sj + b)− 1] (7)

The first term on the right hand side ensures the maximal distance between hyperplanes H1 and H2, and the

second term on the right ensures correct classification. As the derivative of the Lagrangian with respect to w

is set to zero, we get the expression for the vector of weights.

w =

J2−J1
2∑
j=1

λjyjsj (8)

Since λj 6= 0 only for trials that define the margin (points that lie on H1 or on H2), the weight vector only

depends on support vectors,

w =

Q∑
q=1

λqyqvq (9)

where q = 1, 2, ..., Q are the support vectors, with Q < J2−J1
2 . The weight vector is normalized, w̃ = w/||w||,

with ||w|| = (w2
1 + ...+w2

N )
1
2 . We refer to the vector w̃ = [w̃1, w̃2, ..., w̃n, ..., w̃N ]T as the population vector and

to the n−th entry of w̃, w̃n, as the decoding weight of the neuron n.

Representation of the choice signal as a read-out of parallel spike trains

Traditionally, learned features are applied on a hold-out set, using the same input statistics and the same input

classes (or conditions) as the ones used for learning. Such a decoding model has been studied in our previous

work, where we train and test the decoder on spike counts from conditions CNM and CM [15]. Further on,
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we tested a decoding model that learns structural features on spike counts, and then applies them on spike

trains [14]. In the latter, learning and reconstruction steps utilize the same conditions (CNM and CM), but

different input statistics (spike counts for learning and spike trains for reconstruction). In the present work, we

utilize the same decoding model as [14], but apply learned features on a different classification problem. We

use conditions CM and CNM in the learning step, and conditions CNM and INM in the reconstruction step. In

this sense, we are testing the generalization of learning. In the following, we describe the reconstruction part.

For further information about the method, see [14].

Consider the vector of spike trains of N simultaneously recorded neurons.

oj(tk) = [o1,j(tk), o2,j(tk)..., oN,j(tk)]T (10)

The population signal is a projection of the vector of spike trains on the vector of weights,

xj(tk) = F (w̃Toj(tk))− 〈F (w̃Toj(tk))〉j (11)

where 〈F (w̃Toj(tk))〉j is the trial average, utilizing all trials of the reconstruction set. By subtracting the trial

average, we compute the deviation of the signal from the mean. We argue that the deviation of the signal from

its mean, rather than the absolute value of the signal, might be biologically relevant. As the transfer function,

F (y(tk)), we use a convolution with an exponential kernel,

F (y) =
∑
τ∈T

y(tk − τ)u(τ) (12)

with u(τ) = exp(−λτ), τ ∈ T , with support T = {−100, ..., 100} ms. Convolution with an exponential kernel

models the causal effect of the presynaptic spike on the neural membrane of the read-out neuron. Notice that

xj(tk) is a time-resolved, low-dimensional representation of parallel spike trains in single trials.

To test the discriminability of conditions CNM and INM, we average the population signal across trials,

distinguishing conditions CNM (decision “different”) and INM (decision “same”),

xsame(tk) =
2

J2 − J1

J2∑
j=J′

xj(tk)

xdifferent(tk) =
1

J − J2

J∑
j=J2+1

xj(tk)

(13)

where J ′ = d 1
2 (J1 + J2)e + 1, and dze is the ceiling function . The significance of the difference between the

population signal for the decision “same” and “different” is evaluated with the permutation test. We compute

the difference of the population signal in every recording session,

∆x(tk) = xsame(tk)− xdifferent(tk) (14)

and average across sessions. We then rank ∆x(tk) among ∆xpermp (tk), where the latter has been computed with

random weights, and the class labels in the validation set have been randomly permuted. Random weights were

drawn from the uniform distribution with the same range as the regular weights. The permutation procedure is

repeated Nnperm-times and gives a distribution of results for each time step. When the result of the true model,

∆x(tk), appears outside of the distribution of results of the null model, ∆xpermp (tk) for p = 1, 2, ..., Nperm, we

consider that signals xsame(tk) and xdiff(tk) have been successfully discriminated.

Criteria for division into subpopulations

Sign of the weight We separate the population with respect to the sign of the decoding weight, distinguishing

neurons with positive weight (w̃n > 0, plus neurons) and negative weight (w̃n < 0, minus neurons).
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Informativeness We distinguish informative and uninformative neurons by ranking the absolute value of the

weight, |w̃n|, among the distribution of weights of models with permuted class labels. The strength of the weight

of a single neuron n is a scalar, and the same result for models with permuted class labels is a distribution of

Nperm values, where Nperm is the number of random permutations of class labels. If the strength of the weight

of the neuron n is ranked within the first 25 % of weights from the null model, we assume that the neuron n is

informative, and assume it is uninformative otherwise.

Burstiness We distinguish bursty and non-bursty neurons with a simple method based on the power spectrum

of spike trains. It has been shown that bursty neurons have decreased power spectrum in low and middle

frequency ranges [6]. We compute the power spectrum of spike trains for every single neuron, using multiplication

of the spike train with Slepian tapers to increase the reliability of the estimation [27]. We use 5 Slepian tapers

and the time window of K = 400 ms. Power spectra are normalized with neuron’s firing rate. As a reference,

homogeneous Poisson process has a flat power spectrum of 1, and typically, the power spectrum of a bursty

neuron is lower than 1 for low and middle frequency ranges. We compute the normalized sum of the power

spectrum for frequencies between 10 and 200 Hz. Frequencies below 10 Hz are discarded, since the power

spectrum at those frequencies cannot be accurately estimated due to the short time window K. Significance

of the sum under the power spectrum is estimated with the permutation test. The null model is computed by

randomly permuting, without repetition, the time index of spike trains Nperm− times. We rank the sum under

the power spectrum of the regular model among the same results for models with permuted time index. We

assume that the neuron n is bursty if the normalized sum under its power spectrum is significantly below the

same result of models with permuted spike timing (α = 0.05). If the neuron does not fulfill this criterion, it is

assumed to be non-bursty.

Cortical layers We distinguish three cortical layers, the superficial (supragranular, SG), the middle (granular,

G) and the deep layer (infragranular, IG, [10]). The method for determining cortical layers utilizes the covariance

matrix of the current source density (see methods and fig. 6 in [14], ).

Population signal in subpopulations

Sign-specific population signal is computed by removing the information from the spike train of neurons with

the opposite sign. We remove the information by randomly permuting class labels “same” and “different” in the

reconstruction step. When the class label in the reconstruction step is permuted, we get a random association

between the weight and the class label of the spike train, resulting in a signal that is close to zero at all times.

As an example, the population signal of plus neurons is computed with the spike train operm,+j,p (tk), where the

label of the spike train is correct for plus neurons, and random (i.e., correct or incorrect with equal probability)

for minus neurons.

x+
j,p(tk) = F (w̃Toperm,+j (tk))− 〈F (w̃Toperm,+j (tk))〉j (15)

Similarly, the signal of minus neurons is computed by utilizing the spike train operm,−j,p (tk), where the label of

the spike train is correct for minus neurons, and random for plus neurons.

x−j,p(tk) = F (w̃Toperm,−j (tk))− 〈F (w̃Toperm,−j (tk))〉j (16)

Random permutation is repeated Nperm−times, with p = 1, 2, ..., Nperm random permutations, without repe-

tition, of the order of trials. As before, we average each of the signals across trials, distinguishing conditions
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“same” and “different”.

x+,same
p (tk) =

2

J2 − J1

J2∑
j=J′

x+
j,p(tk)

x+,different
p (tk) =

1

J − J2

J∑
j=J2+1

x+
j,p(tk)

(17)

Same follows for minus neurons. The signal is then averaged across permutations, getting x+,same(tk) and

x+,different(tk) as the signal for plus subnetwork and x−,same(tk) and x−,different(tk) as the signal for the minus

subnetwork. The significance is evaluated with the permutation test. The test statistic is the sign-specific

difference of signals in conditions “same” and “different”.

∆x+(tk) = x+,same(tk)− x+,different(tk)

∆x−(tk) = x−,same(tk)− x−,different(tk)
(18)

The null model is computed with the random permutation of class labels 1) when training the classification

model and 2) in the reconstruction step. In addition, we use a random assignment to the class of plus and

minus neurons by randomly permuting neural indexes.

The same methods is used to compute the population signal for informative and uninformative neurons, for

bursty and non-bursty neurons and in cortical layers.

Correlation function between the population signals

The correlation function between the population signals of plus and minus subnetworks in trial j and for the

permutation instance p is defined as follows:

R+−
j,p (τ) =



K−τ−1∑
k=0

x+
j,p(tk)x−j,p(tk + τ) for τ ≥ 0

R−+
j (−τ) for τ < 0

(19)

with time lag τ = 1, 2, ..., 2K − 1. The correlation function is normalized with autocorrelation functions at zero

time lag,

R̃+−
j,p (τ) =

R+−
j,p (τ)

R−−j,p (0)R++
j,p (0)

(20)

where R++ (R−−) is the autocorrelation function for plus (minus) neurons.

R++
j,p (τ) =



K−τ−1∑
k=0

x+
j,p(tk)x+

j,p(tk + τ), for τ ≥ 0

R++
j,p (−τ) for τ < 0

(21)

The correlation function is computed in single trials and then averaged across trials and across permutations.

Since there was no difference in the correlation across conditions, we used all trials from the reconstruction set

(conditions CNM and INM, trials with index j = J1 + 1, ..., J).

R̃+−(τ) =
1

Nperm(J − J1)

Nperm∑
p=1

J∑
j=J1+1

R̃+−
j,p (τ) (22)
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The significance of the correlation function is estimated with the permutation test. We compute the population

signal with random weights and random class label of spike trains. In addition, we use a random assignment

to the group of plus and minus neurons as we compute the correlation function. The same method is used to

compute the correlation function between informative and uninformative subnetworks, and between bursty and

non-bursty subnetworks.

Correlation function of the population signals in cortical layers

Similarly, we compute the cross-correlation of population signals between pairs of cortical layers. The correlation

function is computed for the population signals from two cortical layers,

Rc1c2j,p (τ) =



K−τ−1∑
k=0

xc1j,p(tk)xc2j,p(tk + τ), for τ ≥ 0

Rc2c1j,p (−τ), for τ < 0

(23)

with (c1, c2) ∈ {(SG,G), (SG, IG), (G, IG)}. The rest of the procedure is the same as for plus and minus

neurons. The significance of results is evaluated with the permutation test, where signals are computed with

random weights and random class of the spike train. During the computation of the correlation function, the

null model uses random assignment to one of the three cortical layers.

Population vector in the context of stimulus+choice and in the context of choice

Similarity of population vectors We compare the population vectors in the context of stimulus+choice

and in the context of choice. We train the linear SVM and compute the population vector in each of the two

contexts, getting two vectors, w̃S+C and w̃C , in each recording session. Decoding model in the context of

stimulus+choice utilizes trials from conditions CM and CNM, while decoding model in the context of choice

utilizes trials from conditions CNM and INM. The number of trials is imbalanced across conditions (namely,

there are less trials in condition INM compared to CM), and such imbalance can affect the population vector.

We balance the number of trials with the bootstrap method. In each recording session, we find the number of

trials of the condition with most trials, and randomly sample, with repetition, the same number of trials from

the two other distributions. All reported results are averaged across bootstraps.

We measure the similarity of the two population vectors by computing the angle between them,

α = arccos (w̃S+C · w̃C) (24)

where (·) is the dot product between the two vectors. Notice that, since vectors are normalized, we have that

||w̃S+C || = ||w̃C || = 1. If the vectors w̃S+C and w̃C are similar, they point in similar direction, and the angle

between them is small. If, conversely, the two vectors are pointing in random directions between 0 and π, the

angle between them is, on average, orthogonal (the average is across bootstrapped samples). The significance

of the angle is evaluated with the permutation test, using the test statistics of the angle, averaged across

recording sessions. To construct the null model, we draw random vectors from the uniform distribution that

have the same range as the true population vectors, and compute the angle between the two random vectors,

αp = arccos (w̃S+C
p · w̃C

p ), p = 1, ..., Nperm. The p-value is computed by ranking the angle of the true model

among the distribution of angles of the model with random weights. The test is significant if p < 0.05/Ntest,

where the division with the number of tests implements the Bonferroni correction for multiple testing.

Distance of decoding weights While the similarity of population vectors is a population-wise measure, we

are also interested in understanding how different are weights of single neurons in the context of stimulus+choice

and in the context of choice. For each single neuron, we compute the distance between its decoding weight in
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the two contexts.

dS+C,C
n = |w̃S+C

n − w̃Cn | (25)

Results are collected across recording sessions. We then split neurons in groups according to a specific criterion

(sign of the weight, informativeness, burstiness, layers) and test the difference between groups with a two-tailed

t-test.

Results

Learning representation on stimulus+choice transfers to the representation of

choice.

Two adult male macaques were trained on a delayed match-to-sample visual task. The subject visualized the

target and the test stimuli, with a delay period in between (fig. 1A). The target and test stimulus were either

identical (condition match) or not (condition non-match), with the only possible difference being the change in

the orientation of the test stimulus. The subject had to report its decision about the stimulus class (“same”

or “different”) and was rewarded for correct behavior (see methods). The stimuli were complex naturalistic

images in black and white, depicting an outdoor scene, and their identity changed from one trial to another.

We recorded the multiunit signal in V1 with a linear array, capturing the activity across the cortical depth.

After spike sorting, we obtained on the order of 10 units in each recording session, and the total of 160 units

in 20 recording sessions. For example spike rasters, see fig. 1B. For further specifications on the task and on

recordings, see methods.

Single neuron statistics and standard decoding methods on parallel spike trains from populations of simul-

taneously recorded neurons do not allow to predict animal’s choice. Firing rates of single neurons vary strongly

across units, but are very similar for the choice “same” and “different” (fig. 1C). Coefficient of variation (CV2,

see methods) of single neurons varies around 1, which is the CV2 of the Poisson process, and is strongly positively

correlated across conditions (fig. 1D). Decoding from parallel spike counts with linear Support Vector Machine

gives chance level performance (balanced accuracy of 0.505, 100 cross-validations). Similarly, a temporally re-

solved method, the population peri-stimulus time histogram, gives highly overlapping signals for choices “same”

and “different” (fig. 2A). In the previous work, we suggested a decoding method where we learn structural

features of the activity of neural populations on parallel spike counts, and then use these features to weight

parallel spike trains and compute temporally resolved population signal in single trials ([14]). While the method

has been successful in predicting the correct choice behavior (i.e., the stimulus + choice signal, see fig. 2 in

[14]), it only gives a poor prediction of the choice in absence of the information on the stimuli (i.e., the choice

signal, fig. S1.1).

The biological interpretation of a decoding weight is to represent the strength of the synaptic connection

between the presynaptic and the post-synaptic neuron. In this sense, structural features of the population

activity (or, decoding weights) can be interpreted as synaptic weights that are stronger (positive weights) or

weaker (negative weights) than the baseline synaptic weight ([14]). This can be achieved through biologically

plausible learning, with reward as the teaching signal. Since the subject is only rewarded in correct trials, we

reason that a simple way of learning decoding weights in V1 could be limited to correct trials. The representation,

however, must also take place in incorrect trials. We therefore learn decoding weights in correct trials, where

there is information about both the stimuli and the choice (the stimulus + choice signal), and then compute

the read-out from parallel spike trains from trials that only differ in the choice, but not in the stimulus class

(the choice signal, see table 1, see methods). We refer to the decoded signal as the population signal, that

represents the synaptic current of a hypothetical read-out neuron. If not stated otherwise, we always use the

time window [0,400] ms after the onset of the test stimulus.

Surprisingly, we find that with such learning, the choice signal for “same” vs. “different” can be discriminated

during the presentation of the test stimulus (fig. 2B), with the probability better than chance (fig. 2B-C). The
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Figure 1. Experimental paradigm and single neuron statistics. (A) Experimental paradigm. The subject visualizes

the target and the test stimulus, with a delay period in between. (B) Spike raster of three representative single neurons for the

behavioral choice “different”. We show a spike raster of three neurons, one in superficial layer (SG, blue), one in the middle layer

(G, black) and one in the deep layer (IG, magenta). (C) Top: Firing rate (mean ± SEM) for single neurons during target (left)

and test (right), corresponding to the choice “same” (green) and “different” (blue). Results are sorted w.r.t. the firing rate for the

choice “different”. The SEM is for the variability across trials and results are computed in the time window [0,400] ms w.r.t. the

stimulus onset. Bottom: Scatter plot of the mean firing rate for the choice “different” (x-axis) and for the choice “same” (y-axis).

“R” is the Pearson correlation coefficient. (D) Same as in C, but showing the coefficient of variation (CV2).
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population signal depends only weakly on the time scale of the convolution, with longer time scales resulting in a

smoother signal (fig. 2D). Such decoding is also robust to the length of the time window that we use for decoding

(fig. S1.2). We therefore conclude that learning in the context of stimulus + choice successfully transfers to

the representation of choice on the hold-out test set. During the target time window, the information that is

necessary for discrimination is not yet available. Accordingly, we find that the population signal stays close to

zero and, as expected, prediction of the choice behavior is not possible (fig. S1.3B-C). Interestingly, the read-out

of the choice during test switches at about 140 ms after the stimulus onset (fig. 2C, red arrow). We notice

that this corresponds to the moment where the activity qualitatively changes from transient response after the

stimulus onset to tonic firing thereafter (fig. 2A, red arrow).
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Figure 2. Behavioral choice can be discriminated with the transfer of learning. (A) Population PSTHs in for the choice

“same” (green) and “different” (blue). We show the mean ± SEM for the variability across recording sessions. The yellow window

indicates the presence of the stimulus and the black bar indicates the time window, used for analysis. The red arrow marks the

time of the zero crossing of the population signal. (B) Population signal for the choice “same” (green) and “different” (blue). We

show the mean ± SEM for the variability across sessions. Parameter: λ−1 = 20. (C) Session-averaged difference of population

signals for the regular model (red) and the model with permuted class labels (gray). Parameters: λ−1 = 20 ms, Nperm = 1000.

(D) Session-averaged difference of the population signals for three values of the time constant of the convolution.

Discrimination relies on the sign on of decoding weight as well as on the timing of

spikes.

The read-out model that we propose here is a linear weighted sum of spikes, going through a convolution

(see methods). In spite of its simplicity, this linear decoder has several components that may or may not be

necessarily required for discrimination. In order to test the necessity of each component for discrimination, we

remove the information of a specific component and test the effect of such a perturbation on discrimination.

First, we randomize the sign of decoding weights (see methods). Randomizing the sign clearly destroys the

discriminatory power of the model (fig. 3A, top left), meaning that the sign of the weight is required for

discrimination. Next, we keep the correct sign but randomize the amplitude of the entries of the weight vector.

This perturbation does not compromise the discrimination (fig. 3A, top right), implying that the information

on the amplitude of weights is not crucial for discrimination. As we permute the neural index across neurons,
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we get a noisier read-out, that is, however, still predictive of the choice (fig. 3A, bottom left). In contrast, the

discriminatory capacity of the model is entirely lost when we randomly permute the class label (“same” and

“different”) of parallel spike trains in the reconstruction step (fig. 3A, bottom right). These results demonstrate

that the sign of the weight (in the learning step) and the correct class label for spike trains (in the reconstruction

step) and necessarily required for discrimination of the choice signal.
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Figure 3. Correct sign of weights and spike timing are necessary for discrimination of the choice. (A) Population

signals with random sign of weights (top left), random amplitude of weights (top right), permuted spikes across neurons (bottom

left) and permuted class labels of spike trains (bottom right). We plot the entire distribution of population signals in conditions

“same” (green) and “different” (blue). (B) Permuted spike timing across the entire time window (top) and in two time windows,

before and after the switch in representation (bottom). Red arrow marks the timing of the switch (140 ms after the stimulus onset).

(C) Population signal with temporal jitter, for different length of the jittering window. Parameters for all plots: λ−1 = 20 ms,

Nperm = 1000.

Next, we test the necessity of correct spike timing for discrimination. As we randomly permute the spike

timing across the entire time window of 400 ms, we get highly overlapping signals for conditions “same” and

“different” (fig. 3B, top). Interestingly, if the spike timing is permuted in the time window only before and
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after the switch in representation (fig. 2A and C, red arrow), the overlap of the population signals is largely

diminished (fig. 3B, bottom). This suggests different sources of (the informative part of) the population signal

before and after the switch, and implies that the information in firing rate is informative for discrimination

if we separate these sources. Finally, we ask how does the temporal jitter in smaller time windows affect the

read-out. Surprisingly, the temporal jitter in shorter time windows makes the choice signal noisier, but still

allows discrimination (fig. 3C).

The choice signal of neurons with positive and negative weights is negatively cor-

related.

The sign of the weight is an important characteristics of decoding weights, since neurons with the opposite

sign of the weight have the opposite effect on the classification model, pulling the separation boundary in

opposite directions. We separate the population with respect to the sign of the weight, getting plus and minus

subnetworks. As we compute the population signal independently with each subnetwork (see methods), we

find that the plus subnetwork discriminates the choice behavior better than the minus subnetwork (fig. 4A).

The population signal of the plus subnetwork also accounts for the switch in representation at around 140 ms

after the stimulus onset (fig. 4A, right). The minus subnetwork shows some discriminatory capacity at the

very end of the trial (fig. 4A, left), where the response is in anti-phase with respect to the signal of the plus

subnetwork. In fact, the signal of minus neurons increases for the choice “different” while the signal of plus

neurons decreases for the same choice. Accordingly, the population signal of plus and minus subnetworks is

negatively correlated (see methods for the definition of the correlation function), consistently for different time

constants of the convolution (fig. 4B, top, table S2.1). This effect is strongly significant (fig. 4B, bottom).
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Figure 4. Subpopulations of plus and minus neurons are negatively correlated. (A) Top: Population signal for minus

neurons (left) and for plus neurons (right). We show the mean ± SEM for the variability across recording sessions. Bottom:

Session-averaged difference of signals for the true model (red) and for models with permutation (gray area). (B) Top: Correlation

function between the population signal of plus and minus subnetworks for different values of the time constant of the convolution

λ. Bottom: Session-averaged correlation function for the regular model (red) and the distribution of results for the model with

permutation (gray area). Parameters for all plots, when applicable: λ−1 = 20 ms, Nperm = 1000.
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Only the activity of a subset of informative neurons is relevant for discrimination.

Besides the sign of the weight, the strength of the weight, |w̃n|, is an important characteristics of the decoding

model, since neurons with strong weight are those that contribute most to discrimination. We separate neurons

in informative and uninformative, by ranking the strength of the weight of each neuron among the distribution

of weights of models with permuted class labels (see methods). As we compute the population signal for

informative and uninformative subnetworks, not surprisingly, informative subnetwork is the one that carries the

choice related signal, while the network of uninformative neurons performs at chance (fig. 5A). The correlation

function between signals of informative and uninformative neurons shows that the two signals are positively

correlated (fig. 5B, table S2.2).
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Figure 5. Discrimination relies on a subset of informative neurons. (A) Top: Population signal of subnetworks of

informative (left) and uninformative neurons (right), showing the mean ± SEM for the variability across recording sessions. Bottom:

Session-averaged difference of signals for the true model (red) and for models with permutation (gray area). (B) Top: Correlation

function between the population signal of informative and uninformative neurons for different values of the time constant of the

convolution. We show the mean ± SEM for the variability across recording sessions. Bottom: Session-averaged correlation function

for the regular model (red) and the distribution of results for the model with permutation (gray area). Parameters for all plots,

when applicable: λ−1 = 20 ms, Nperm = 1000.

Activity of bursty neurons is particularly informative about the choice.

Next, we divide neurons into bursty and non-bursty, based on characteristics of the power spectrum of spike

trains (see methods). The power spectrum of bursty neuron is characterized by a reduced power for middle

range frequencies ([6], see fig. 6A, middle right and right in the top row). We capture this effect by computing

the normalized area under the power spectrum. We define bursty neurons as those that have the area under

the power spectrum smaller than the lower bound of the same result for models with the permuted spike timing

(random permutation of the time index, neurons with red asterisk on fig. 6B). As we compute the population

signal for bursty and non-bursty subnetworks, we find that the bursty subnetwork is better at predicting

the choice signal than the non-bursty subnetwork (fig. 6C). The correlation function between the population

signals of the two subnetworks shows that the spiking activity in bursty and non-bursty subnetwork is positively

correlated (fig. 6D, table S2.3).
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Figure 6. Bursty neurons discriminate better and earlier in the trial. (A) Power spectrum for 8 neurons in an example

recording session. We show the power spectrum for the true model (black) and the distribution of results for models with permuted

spike timing (blue). Bursty neurons are those with reduced power for lower and medium range frequencies (top row, middle left and

left). (B) Area under the power spectrum for all neurons, sorted from lowest to highest value (black), and the lower bound of the

area under the power spectrum for neurons with permuted time index (blue). Red asterisk marks significance (permutation test,

α = 0.05). (C) Top: Population signal for bursty (left) and non-bursty subnetwork (right) in recording sessions. Bottom: Session-

averaged difference of signals for the true model (red) and for models with permutation (gray area). (D) Top: Correlation function

between the population signal of bursty and non-bursty subnetworks for different values of the time constant of the convolution,

λ. We show the mean ± SEM for the variability across recording sessions. Bottom: Session-averaged correlation function for the

regular model (red) and the distribution of results for the model with permutation (gray area). Parameters for all plots, when

applicable: λ−1 = 20 ms, Nperm = 1000.
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The choice signal differs across cortical layers.

Cortical layers in V1 have been shown to importantly differ in their correlation structure [10], which might

have direct implications on the population code. Using a method based on current source density (see methods,

[14]), we distinguish the superficial layer (supragranular, SG), the middle layer (granular, G) and the deep layer

(infragranular, IG). In the previous work, we showed that the quality of discrimination of the stimulus+ choice

variable differs across layers, with superficial layers showing the strongest discriminatory capacity. We ask

whether the same effect is observed with transfer of learning to the choice variable. We compute the population

signal in each layer (see methods) to found out that the superficial layer is the most discriminative of the

choice signal (fig. 7A). The superficial layer also reflects the switch of the representation at around 140 ms

after the stimulus onset, seen in the overall response (compare fig. 7A, top right, with fig. 2C). Interestingly,

at the beginning of the trial, the representation in the superficial layer seems to be in disagreement with the

representation in the middle and deep layers. Nevertheless, the population signals is weakly positively correlated

across all pairs of laminar circuits (fig. 7B), with the positive correlation being consistent for different choice of

the time constant of the convolution (fig. 7B, left). The strongest correlation is observed between the middle

and the superficial layer (for λ = 20 ms−1, peak=[0.014, 0.012, 0.010] for SG/G, SG/IG and G/IG, respectively,

see table S2.4). This is consistent with the hypothesis that the visual signal enters the middle cortical layer and

is then projected to the superficial layer, where top-down and bottom-up signals are compared. In addition,

there is excess of plus neurons and bursty neurons in the superficial layer (fig. 8A), which might explain why

the superficial layer has stronger discriminatory capacity compared to other layers.
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Figure 7. Activity in the superficial layer of the cortex is the most discriminative of the choice behavior. (A)

Left: Population signal in the SG (top), G (middle) and IG layer (bottom). We show the mean ± SEM across recording sessions.

Right: Session-averaged difference of population signals for the true model (red) and the model with permuted class labels (gray).

Parameters: λ−1 = 20 ms, Nperm = 1000. (B) Left: Correlation function of the population signal across pairs of layers. We

show the mean ± SEM across recording sessions and plot results for three values of the time constant of the convolution. Right:

Session-averaged correlation function for the regular model (red) and for models with permutation (gray area). We use the time

constant λ−1 = 20 ms and Nperm = 1000 random permutations.
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Informative neurons are more sensitive to the informational context than uninfor-

mative neurons.

In the last section, we compare population vectors in the context of stimulus+ choice, w̃S+C , with population

vectors in the context of choice, w̃C . While only the former might be relevant for decoding of the population

signal, comparison of population vectors across the two informational contexts allows to better understand

how neuronal responses change from one context to the other (table 1). Population vectors are computed in

each recording session (see methods). First, we estimate the similarity of population responses across the two

classification problems with the angle between the two population vectors (fig. 8B, see methods). If population

vectors are independent, they point in random direction between 0 and π, and their average is an orthogonal

angle, αindependent = π/2. Deviation from orthogonality indicates the similarity of weight vectors w̃S+C and w̃C .

We find that, on average, the angle between the two weight vectors weakly but significantly deviates from the

orthogonal angle (fig. 8B). This means that the two weight vectors are not independent, but weakly similar.

This result is robust to the length of the time window (α = [80.2, 80.8, 80.0] degrees for the length of the time

window K = [300, 400, 500], respectively) and is significant in all cases (p < 0.001, in all cases, permutation

test with 1000 permutations).
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Figure 8. The difference between the representation of stimulus+choice and choice is stronger in informative than

in uninformative neurons. (A) The proportion of plus neurons (left) and of bursty neurons (right) in cortical layers. The

proportion is computed in each layer individually. As an example, the proportion of 0.4 of bursty neurons in the G layer means

that, from neurons in the G layer, 40 % of neurons are bursty and 60 % of neurons are non-bursty. (B) Schema of the angle between

the population vectors in the context of stimulus+ choice and choice. (C) Average angle (red) and the distribution of results for

models with random weights (gray box-plot), for the length of the time window K = 300 (left), K = 400 (middle) and K = 500

(right). Parameter: Nperm = 1000. (D) Distance of weights between the two classification problems for informative (orange) and

uninformative (black) neurons. We show results for the length of the time window K = 300 (left), K = 400 (middle) and K = 500

(right). The asterisk marks significant two-tailed t-test.
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Finally, we compare decoding weights of single neurons between the contexts of stimulus+choice and choice

by measuring the distance of the decoding weight in two classification problems (see methods). The distance of

decoding weight is measured for each neuron, and collected across recording sessions. We then divide neurons

in informative and uninformative (see methods) and test whether the two groups differ in their sensitivity to the

informational context. We find that informative neurons are more sensitive to the informational context than

uninformative neurons (p = 0.0184 for K=300, p = 0.0017 for K=400, p = 0.0007 for K=500, two-tailed t-test;

fig. 8D). As neurons are split according to the sign of the weight and with respect to the burstiness criterion,

there is no significant difference across groups (fig. S3.1A-B). Same is true for the division in cortical layers,

that also do not show any significant difference in their sensitivity to the informational context (fig. S3.1C).

Discussion

In the present work, we decoded binary choice signal from parallel spike trains in the primary visual cortex

of the macaque. We trained the read-out in the context of stimulus + choice and validated the model in the

context of choice, hypothesizing that successful discrimination in this setting will show the intersection between

the two informational contexts. Results showed that the behavioral choice can be decoded from V1 in the

context of choice. This strongly suggests that, in the present experimental setting, the representation of the

stimulus class has a substantial non-zero intersection with the representation of the behavioral choice, in the

sense of [26].

The origin of the choice signal

The origin of the choice signal that we decode from present dataset is a matter of discussion. It has been

proposed that the choice-related signal (that cannot utilize the difference in stimuli) might originate from

feed-forward projections [22], feed-back projections [25], or be due to local network dynamics (see [41, 42] for

modeling studies). In the present analysis, a piece of evidence that allows to discuss about the sources of the

choice signal is the switch in representation at about 140 ms after the stimulus onset, which coincides with the

qualitative change of the population response from the strong transient at the stimulus onset to tonic firing

thereafter. At the stimulus onset, the neural activity is expected to be mainly driven by the feed-forward input,

while feed-back and local projections are expected to have have stronger effect, respectively to the feed-forward

ones, during the second half of the trial [4]. If the representation in the context of choice would be only due

to the feed-forward drive throughout the trial, we would expect that the representation remains consistent

throughout the trial. Also, we would expect it to be consistent between the middle and the superficial layer,

which, at least at the beginning of the trial, is not the case. We propose that the switch in representation is

caused by the feed-back and local projections taking over the feed-forward drive, where the switch would be

due to incongruent signals between the bottom-up and the top-down pathways.

We suggested incongruent top-down and bottom-up signals in the context of choice. It follows that in the

context of stimulus + choice, when the behavior of the animal is correct for both choices, the feed-forward

and the feed-back drive are expected to be congruent in their signaling, giving consistent representation of the

choice throughout the trial and across layers. In the previous work, we have shown that this is indeed the case

([14]). Another result that suggests the existence of both bottom-up and top-down sources is related to the

spike timing. In the present work, we have shown that jittering the spike timing in small windows only makes

the population signal noisier, but does not entirely destroy the discriminability of the choices. Permuting the

spike timing across the entire window has destroyed the discriminability of the choice signal, while limiting

the window of permutation to the time before and after the switch in representation, the discriminability is

partially preserved. This supports the hypothesis of different origins of the signal before and after the switch.

If the representation of the choice in V1 partially relies on feedback projections, the timing of the feedback

might be crucial for perception, as recently demonstrated with the feedback projection from V5 to V1 on visual

perception [37].
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The third piece of evidence in favor of the importance of lateral and feed-back connections is the condition-

specific divergence of population signals for neurons with positive and negative weights towards the end of the

trial. This effect can be explained by a top-down input that selectively drives neurons with positive weight for

the decision “same” and neurons with negative weight for the decision “different”. It has been shown that such

a a context-dependent computation is feasible in a recurrent network [19] and it could be implemented, in the

prefrontal cortex. As a first alternative, a top-down signal could drive bursty neurons in the superficial layer

through dendritic feedback inhibition [21]. As a second alternative, coding pools of plus and minus neurons

could be formed locally, and arise due to the structure of the lateral connectivity of the local network.

Relation to other approaches

Decoding in the context of choice is similar to computing the choice probability ([35, 3, 34, 17, 29, 24, 25]), where

prediction of the behavioral choice is also measured in the absence of the information about the stimuli. In the

MT area of the macaque, previous studies reported the independence of the choice probability on the coherence

of the stimulus [3, 40]. Our results, in contrast, demonstrate that V1 neurons are sensitive to the presence of the

information about the stimuli, in particular neurons that have a strong decoding weight (informative neurons).

We showed that population vectors in the context of stimulus+ choice and in the context of choice are weakly

similar, but are far from being entirely aligned. The discrepancy of our results with results of studies in the

MT cortex might be due to the fact that MT area is higher in the visual hierarchy than V1, and supposedly

“closer” to the representation of the behavioral output. Moreover, studies [3, 40] decode from single neurons

while we decode from neural populations, using a different decoding method.

Representation of the behavioral choice in absence of sensory evidence has been extensively studied since

around three decades. Studies on choice probability have primarily addressed the time-averaged activity of

single neurons and their relation to the behavioral choice of the animal, and single neurons have been shown

to correlate with the choice behavior in multiple brain areas [35, 3, 17, 40, 29]. However, even if it is possible

to find neurons whose activity predicts the behavior with better-than-chance probability, it is not clear how

would the brain isolate the activity of a single neuron from a vast number of cells that activate in parallel.

Recent years have seen the revival and the development of the idea that behaviorally relevant variables are

encoded by collective dynamics of neural ensembles (see, e.g., [9, 30, 2, 22, 13]). As shown recently in [32, 33],

a good description of the spiking activity of a nearly complete network of retinal ganglion cells has to take into

account single neuron firing rates, the strength of pairwise interactions and a global modulation of the network

activity. Population codes seem to be appropriate to study neural responses in the auditory [11, 18], motor [5],

prefrontal [28], and visual cortex [22]. When analyzing the data, the multivariate approaches, that take into

account interactions between neurons, seem to be more appropriate for the analysis of parallel activity than

univariate approaches [30, 32].

An impressive statistical description of the activity of neural ensembles in the retina has been recently

achieved by maximum entropy models [33, 32]. While such models give a statistical description of important

dynamical properties of neural responses, they are not directly informative about the neural function, and

about the relation between neural activity and behavior. Studying the relation between the neural activity and

behavior is precisely the purpose of decoding models, and in this respect, decoding models complement statistical

models. A widespread family of decoding models are Models of Neuronal Stimulus-Response Function, that

relate the activity of single neurons to selected features of the stimulus (see [20, 12] for a review). While such

mapping is informative about the coding function of single neurons, it gives only an incomplete (and potentially

biased) description of coding mechanisms in the brain. A particular difficulty for the interpretation of the

mapping between features of sensory stimuli and neural responses might arise due to correlations between

features. If neurons have mixed selectivity and respond to a mix of sensory features [28], probing neuron’s

response with only one of many correlated features will elicit an incomplete picture about the neuron’s response

function. If we assume that neurons are optimized to process natural stimuli, where sensory features tend to be

correlated [31], mixed selectivity is expected not only in high-level cognitive areas but throughout the cortex.
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With this in mind, it might be more straightforward to relate the activity of neural ensembles to natural stimuli

and to variables that describe animal’s behavior. Nevertheless, the artificial stimuli can be better controlled

and studying neural responses to such stimuli is therefore complementary to studying responses to naturalistic

stimuli.

Neurons behind sensory receptors only receive activation of other neurons and are not in direct contact with

the stimuli [32]. In this sense, the mapping between the neural activity in a sensory area and the behavioral

output does not map a direct chain of events, but two distant elements of that chain, jumping across multiple

elements in between. The difficulty of studying causal relations is a long-standing challenge in neuroscience,

arising from the difficulty of isolating a specific part of the brain without perturbing its natural working regime.

In practice, this difficulty is reflected in technical limitations of experimental neuroscience (but see [16, 1, 37])

and in the widespread use of the correlation measure for the analysis (but see [38, 39]). An even more solid

ground for the interpretation of parallel spike trains with respect to behavioral variables would therefore be

given by probing causal relations between the activity of neural populations across different stages of processing,

still a major challenge for future research.
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Supplementary material

S1 Fig.: Population signal

Population signal with learning and reconstruction on the choice; population signal with different length of the

time window; population signal during the target stimulus.
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Figure S1.1. Learning and reconstruction on choice results in poor discrimination. (A) Population signal during test,

where learning and reconstruction have used the information on choice. We show the mean ± SEM for the variability across sessions

and show results for the choice “same” (green) and “different” (blue). (B) Session-averaged difference of population signals for the

regular model (red) and the set of models with permuted class labels (gray). Parameters: λ−1 = 20 ms, Nperm = 1000.
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Figure S1.2. Population signal for different length of the time window. (A) Population signal during test for the length

of the time window K = 300 ms. The plot shows the mean ± SEM across recording sessions for the behavioral choice “same”

(green) and “different” (blue). The time window [0,K] ms w.r.t. stimulus onset is used for estimating the population vector as well

as for computing the population signal. (B) Same as in A, but for the length of the time window K = 500. Parameter: λ−1 = 20

ms.
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Figure S1.3. Behavioral choice cannot be predicted during visualization of the the target stimulus. (A) Population

PSTHs during target for the choice “same” (green) and the choice “different” (blue). We show the mean ± SEM for the variability

across recording sessions. The yellow window indicates the presence of the stimulus and the black bar indicates the time window,

used for analysis ([0-400] ms with respect to the stimulus onset). (B) Population signal during target for the choice “same” (green)

and “different” (blue). We show the mean ± SEM for the variability across sessions. Parameter: λ−1 = 20 ms. (C) Session-

averaged difference of population signals for the regular model (red) and the model with permuted class labels (gray). Parameters:

λ−1 = 20 ms, Nperm = 1000. (D) Session-averaged difference of the population signals for three values of the time constant of the

convolution.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901504doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901504
http://creativecommons.org/licenses/by-nc-nd/4.0/


26

S2 Table: The synchrony between population signals for specified neuronal subpopulations

We report the correlation function at zero lag between population signals for specific neuronal subpopulations.

The correlation function at zero lag measures the strength of synchrony between the two signals. The correlation

function is implemented for population signals from the same trial (see methods). We measure the correlation

function in single trials, then average across trials and across sessions.

λ [ms−1] λ = 10 λ = 20 λ = 40

plus & minus -0.026 -0.029 -0.031

Table S2.1. Synchrony between population signals of plus and minus neurons

λ [ms−1] λ = 10 λ = 20 λ = 40

informative & uninformative 0.029 0.036 0.043

Table S2.2. Synchrony between population signals of informative and uninformative neurons

λ [ms−1] λ = 10 λ = 20 λ = 40

bursty & non-bursty 0.028 0.035 0.041

Table S2.3. Synchrony between population signals of bursty and non-bursty neurons

λ [ms−1]
layers λ = 10 λ = 20 λ = 40

SG & G 0.011 0.014 0.016
SG & IG 0.008 0.012 0.014
G & IG 0.007 0.010 0.013

Table S2.4. Synchrony between population signals for pairs of cortical layers
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S3 Fig. Distance of decoding weights in the context of stimulus+choice and choice

The distance is computed for each single neuron and results are gathered across recording sessions. We then

divide neurons according to a specific criterion (sign of the weight, burstiness, layers) and compare the groups

with the two-tailed t-test.
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Figure S3.1. Sensitivity to informational context does not significantly differ between plus and minus neurons,

between bursty and non-bursty neurons, nor across layers. (A) Distance of weights between ws+c
n and wc

n, collected across

sessions and plotted as a distribution. We distinguish neurons with positive and negative weight and show results for the length

of the time window K = 300 ms (left), K = 400 ms (middle) and K = 500 ms (right). (B) Same as in A, distinguishing bursty

(magenta) and non-bursty (black) neurons. (C) Same as in A, distinguishing neurons in the SG (red), G (blue) and IG (black)

layers.
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