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Abstract  

Shape is a defining feature of objects.  Yet, no image-computable model accurately 

predicts how similar or different shapes appear to human observers.  To address this, we 

developed a model (‘ShapeComp’), based on over 100 shape features (e.g., area, 

compactness, Fourier descriptors). When trained to capture the variance in a database of 

>25,000 animal silhouettes, ShapeComp predicts human shape similarity judgments 

almost perfectly (r2>0.99) without fitting any parameters to human data. To test the 

model, we created carefully selected arrays of complex novel shapes using a Generative 

Adversarial Network trained on the animal silhouettes, which we presented to observers 

in a wide range of tasks. Our findings show that human shape perception is inherently 

multidimensional and optimized for comparing natural shapes. ShapeComp outperforms 

conventional metrics, and can also be used to generate perceptually uniform stimulus 

sets, making it a powerful tool for investigating shape and object representations in the 

human brain. 
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Introduction 

One of the most important goals for biological and artificial vision is the estimation and 

representation of shape. Shape is the most important cue in object recognition [1-4] and is 

also crucial for many other tasks, including inferring an object’s material properties [5-9], 

causal history [10-13], or where and how to grasp it [14-18].  Shape is also central to 

many other disciplines, including computational morphology  [19], anatomy [20], 

molecular biology [21], geology [22], meteorology [23], computer vision [24], and 

computer graphics [25]. It would be exceedingly useful to be able to characterize and 

quantify the visual similarity between different shapes (Figure 1A).  Here we sought to 

build a model to estimate perceived shape similarity directly from images by integrating 

numerous shape metrics.  Specifically, given a pair of shapes, {f1, f2}, the model should 

compare and combine shape metric i (of a total of N) to predict the perceived similarity 

between shapes, 𝑠, on a continuous scale (Figure 1B), . 
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Figure 1. ShapeComp: a multidimensional perceptual shape similarity model.  We readily perceive 
how similar shape (A) is from others (numbered 1-5). (B) Outline of our model, which compares shapes 
across >100 shape descriptors (6 examples depicted). The distance between shapes on each descriptor was 
scaled from 0 to 1 based on range of values in a database of 25,712 animal shapes.  Scaled differences are 
then linearly combined to yield ‘Full Model’ response. Applying MDS to >330 million shape pairs from the 
Full Model yields a multidimensional shape space for shape comparison (‘ShapeComp’).  We reasoned that 
many descriptors would yield a perceptually meaningful multidimensional shape space due to their 
complementary nature. (C) Some shape descriptors are highly sensitive to rotation (e.g., Shape Context), 
while (D) other descriptors are highly sensitive to bloating (e.g., Solidity).   (E) Over 100 shape descriptors 
were evaluated in terms of how much they change when shapes are transformed (‘sensitivity’). 
 
 

Although real-world objects are 3D, humans can make many inferences from 2D 

contours (e.g., [13, 26, 27]).  Many 2D shape representations have been proposed—both 

for computational purposes and as models of human perception—each summarizing the 

shape boundary or its interior in different ways (Figure 1B; [24]).  These include (but are 

not limited to) basic shape descriptors (e.g., area, perimeter, solidity; [28]), local 

comparisons (e.g., Euclidean distance; Intersection-over-Union, IoU; [29]), 
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correspondence-based metrics (e.g., shape context; [30]), curvature-based metrics [31], 

shape signatures (see [24]), shape skeletons [32], and Fourier descriptors [33]. 

These different shape descriptors have complementary strengths and weaknesses.  

Each one is sensitive to certain aspects of shape, but relatively insensitive to others 

(Figure 1CDE). We reasoned that by combining multiple shape descriptors into a 

multidimensional representation, we could create a composite shape metric that would 

capture the many different ways that human observers compare shapes. 

 

Complementary nature of different shape descriptors.   

To appreciate the complementary nature of different metrics—and the necessity 

of combining them—consider that human visual shape representation is subject to two 

competing constraints.  On the one hand, to achieve stable object recognition across 

changes in viewpoint and object pose, it is useful for shape descriptors to deliver 

consistent descriptions across large changes in the retinal image (‘robustness’).  On the 

other hand, to discriminate finely between different objects with similar shapes, shape 

descriptors must discern subtle changes in shape (‘sensitivity’).  Different descriptors 

trade off these constraints, which is evident when organizing them along a continuum that 

describes their robustness to changes in shape across transformations—such as rotation, 

scaling, shearing, or adding noise.   

We illustrate this for two transformations: rotation and bloating (Figure 1CD). 

Specifically, we transformed one exemplar from each of 20 different animal categories 

(e.g., birds, cows, horses, tortoise) with bloating and rotation transformations of varying 

magnitudes (see Methods: Sensitivity/robustness analysis to transformation). We find 
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that the different descriptors are differentially sensitive to the transformations. Some 

shape descriptors (e.g., solidity which measures the proportion of the convex hull that is 

filled by the shape; [34]; Figure 1CD) are entirely invariant across rotations, while others 

(e.g., shape context which builds a histogram for each point on a shape and summarizes 

the angle and distance with all other points; [30]) are sensitive to object orientation.  Yet 

descriptors invariant to rotation may be highly sensitive to other transformations, like 

bloating (Figure 1CE).  Similarly, adding noise to a shape’s contour strongly affects 

curvature-based metrics, while only weakly affecting area or compactness (Figure S1). In 

Figure 1E, we plot how sensitive 109 different shape descriptors are to the changes 

introduced by rotation and bloating, highlighting the descriptors identified in Figure 1B.  

Interestingly, for these transformations, there is a tradeoff in sensitivity such that 

descriptors that are highly sensitive to bloating (e.g., solidity) tend to be less sensitive to 

rotation, and vice versa (e.g., shape context).  In other words, different shape features 

have complementary strengths and weaknesses.  More generally, the plot shows the wide 

range of sensitivities across different shape metrics, indicating that depending on the 

context or goal, different shape features may be more or less appropriate.   

 
The key idea motivating our model is that human vision may resolve the 

conflicting demands of robustness and sensitivity by representing shape in a 

multidimensional space defined by many shape descriptors (Figure 1B).  We do not 

intend the model to be a simulation of brain processes; i.e., it is unlikely to compute the 

specific model features considered here, (most of which are taken from previous 

literature; see Supplemental Table S1). Indeed, there are infinitely many other shape 

descriptors that could also be considered. Rather, we see the model as a proof of principle 
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that human shape similarity can be predicted by representing shape using many, 

complementary geometrical properties.  

To quantify how such features span the space of natural shapes, we evaluated 

>100 shape descriptors on >25,000 natural animal shapes and performed dimensionality 

reduction to derive a composite model. We then performed a series of experiments with 

naïve observers, to test the extent to which the model predicts human shape similarity 

judgments. 

	
	
Results  

Analysis of natural shapes.  Different shape descriptors are measured in different units, so 

to combine the features into a consistent multidimensional space requires identifying a 

common scale. Given the importance of natural stimuli for human behavior, we reasoned 

that the relative scaling of the many feature dimensions likely reflects the distribution of 

feature values across natural shapes.  We therefore assembled a database of over 25,000 

animal silhouettes and for each of them measured a large set of shape descriptors 

(Methods: Natural shape analysis). For every pair of shapes, we computed the 

distances between each descriptor (scaled by their largest distance across the whole 

animal dataset; Figure 1B) and then	combined the features into a single metric, yielding a 

multidimensional space. This space exhibited a prominent shape-based organization with 

nearby locations sharing similar shape characteristics.  For example, approximately 

elliptical animals like rabbits, fish, and turtles lie near together (bottom left of Figure 

2A), while spindly thin-legged shapes (e.g., spiders; see insets in Figure 2A) are found in 

the opposite corner of the space.	
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As an initial indicator of how well the features account for perceptual similarity 

with familiar objects, we took a subset of animal shapes, and measured human similarity 

judgements (Figure 2B) using a multi-arrangement method [35].  We find that the mean 

perceived similarity relationships between shapes were quite well predicted by distance in 

this feature space (Figure 2CD, r = 0.69, p < 0.01) suggesting that the 109 shape 

descriptors explain a substantial portion of the variance in human shape similarity of 

familiar objects.  We suggest that at least some of the remaining variance is likely to be 

due to using familiar objects, for which high-level semantic interpretations are known to 

influence similarity judgments [36 – 40]—here, the perceived classes to which the 

animals belong, rather than their pure geometrical attributes. 	

We also find that many of the shape descriptors correlate with one another, 

yielding 22 clusters of related features (using affinity propagation clustering; [41]). Using 

Multidimensional Scaling across the 25,712 animal shape samples, we find that 22 

dimensions account for more than 95.05% of the variance (Figure 2E), whereas the first 

dimension accounts for only 18.54% of the variance. Thus, while not all 109 shape 

descriptors are independent, a multidimensional space is indeed required to capture the 

variability inherent in animal shapes.  We refer to this reduced 22-D space as ShapeComp 

(Figure 1B), and it is this model that forms the basis of the majority of our subsequent 

analyses. 

ShapeComp’s dimensions are composites (i.e., weighted linear combination) of 

the original shape descriptors, which makes the model fully interpretable, unlike other 

model classes, (e.g., neural networks, whose inner functioning researchers still struggle to 

interpret [42,43]). Although we do not believe the brain explicitly computes these 
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specific dimensions, they do organize novel shapes systematically (Figure S2), and also 

tend to re-appear in different random subsets of animal shapes or combination of shape 

descriptors (Figure S3).  However, because MDS creates a rotation invariant space, 

individual dimensions should not be thought of as perceptually meaningful ‘cardinal 

axes’ of shape space.  Rather it is the space as a whole that describes systematic 

relationships between shapes. 

 

	

Figure 2. The high-dimensionality of natural shapes.  (A) t-SNE visualization of 2000 animal silhouettes 
arranged by their similarities according to a combination of 109 shape descriptors.  Colour indicates basic 
level category. Insets highlight local structure: bloated shapes with tiny limbs (left); legged rectangular 
shapes (middle); small spiky shapes (right).  To test whether human shape similarity is predicted by in the 
high-dimensional animal space, we gathered human shape similarity judgments on horses (purple) and 
rabbits (yellow). (B) Human similarity arrangements (n = 15) of horse silhouettes (multidimensional 
scaling; dissimilarity: distances, criterion: metric stress).  (C)  Similarity arrangement for horse silhouettes 
in the full model based on 109 shape descriptors (multidimensional scaling; dissimilarity: distances, 
criterion: metric stress). Shapes with same colour across B and C are also the same. (D). Human 
arrangements correlate with the model for horse (purple) and rabbit (yellow) silhouettes (r = 0.69, p < 
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0.01). (E). Across 25,712 animal shapes, 22 dimensions account for >95% of the variance 
(multidimensional scaling; dissimilarity: distances, criterion: metric stress). 
 

Creating a ‘shape space’ for novel naturalistic outlines. 

To reduce the impact of semantics on shape similarity judgments, we next created 

novel (unfamiliar) shapes using a Generative Adversarial Network (GAN) trained on the 

animal silhouette database (see Methods). GANs are unsupervised machine learning 

systems that pit two neural networks against each other (Figure S4A), yielding complex, 

naturalistic, yet largely unfamiliar novel shapes. The GAN also allows parametric shape 

variations and interpolations in a continuous ‘shape space’ (Figure S4BCD).  Overall, 

the GAN shapes appear ‘object-like’ (Figure S5A), but observers agree less about their 

semantic interpretation, compared with animal shapes (Figure S5), making them better 

stimuli for assessing pure shape similarity. We next sought to test more rigorously (a) 

whether distance in ShapeComp space predicts human shape similarity, (b) whether 

ShapeComp provides information above and beyond simpler metrics like pixel similarity, 

(c) whether human shape similarity is indeed multidimensional, and (d) whether 

ShapeComp identifies perceptual nonlinearities in shape sets. 

 
Distances in ShapeComp model predict human shape similarities. 

 

A key criterion for any perceptual shape metric is that pairs of shapes that are 

close in the space (Figure 3A, top) should appear more similar than pairs that are distant 

from each other (Figure 3A, bottom).    To test this, we generated 250 pairs of novel 

GAN shapes, ranging in their ShapeComp distance (i.e., predicted similarity), and asked 

14 participants to rate how perceptually similar each shape pair appeared (Figure 3B). 

We find that distance in ShapeComp correlates almost perfectly with the mean ratings 
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across observers (r2 = 0.99, p<0.01) showing that ShapeComp predicts human shape 

similarity very well for novel unfamiliar 2D shapes. 

 

Distance in ShapeComp goes above and beyond pixel similarity. 

A standard way to measure the physical similarity between shapes is the 

Intersection-over-Union quotient (IoU; [29]; Figure 4C).  For similar shapes, the area of 

intersection is a significant proportion of the union, yielding IoU values approaching 1.  

In contrast, when shapes differ substantially, the union is much larger than the overlap, so 

IoU approaches 0. 

To test whether human shape similarity can be approximated by such a simple 

pixel similarity metric or rather relies on more sophisticated mid-level features like those 

in ShapeComp, we created stimulus triplets, consisting of a sample shape, plus two test 

shapes, which were equally different from the sample shape in terms of IoU but which 

differed in ShapeComp distances (Figure 3D and Methods: pixel similarity triplets).  

This allowed us to isolate the extent to which ShapeComp predicted additional 

components of shape similarity, above and beyond pixel similarity. The magnitude of the 

difference between tests and sample in ShapeComp was varied parametrically across 

triplets, so that sometimes one test was much nearer to the sample than another test 

(Figure 3E).  Nineteen new participants viewed the triplets and were asked which of the 

two test shapes most resembled the sample on each trial. If shape perception is perfectly 

captured by IoU, the two test stimuli should appear equally similar to the standard, 

yielding random responses (Figure 3F orange line). However, we find that the slope of a 

psychometric function fitted to the observers’ judgments is significantly steeper than zero 
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(Figure 3F blue line; t = -32.3, df = 18, p <0.01).  This indicates that ShapeComp 

correctly predicts which of the two shapes was more similar to the standard even when 

pixel similarity is held constant.  This shows that human shape similarity relies on more 

sophisticated features than pixel similarity alone. 

 

Multidimensionality of human shape similarity. 

We suggested that human shape similarity judgments are inherently 

multidimensional, as observers consider multiple aspects of shape when comparing two 

stimuli. To test this, we generated triplets in which the test shapes were equated to a 

given sample shape in terms of one of ShapeComp’s 22 dimensions but varied in terms of 

the remaining dimensions. The same nineteen participants as in the pixel similarity 

experiment were shown these triplets and again reported which test shape appeared most 

similar to the sample. If shape perception is entirely captured by any single dimension, 

the two test stimuli should appear equally similar to the sample, yielding random 

responses.  Yet Figure 3G shows that fitted psychometric function slopes were 

significantly steeper than zero.  This indicates that human shape perception is inherently 

multidimensional—when each dimension was held constant, the variations in the 

remaining dimensions dominated perception.  

We also re-analyzed the ratings from Figure 3B, comparing the human judgments 

to each ShapeComp dimension.  Each dimension on its own accounted for only a small 

portion of the variance (Figure S6), again indicating the inherently multidimensional 

nature of human shape similarity judgments.  Interestingly, the fall-off in variance in 

natural shapes (in Figure 2E) closely tracks the variance explained by each ShapeComp 
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dimensions (r2 = 0.81, p<0.01).  This suggests that the dimensions underlying human 

shape perception are weighted by the extent to which they capture variations between 

natural shapes. Together, these results show that human shape similarity relies on 

multiple ShapeComp dimensions—highlighting the importance of combining many 

complementary shape descriptors into ShapeComp—and suggest that shape similarity is 

tuned to the structure of natural shapes. 
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Figure 3. ShapeComp predicts human shape similarity across pairs of shapes.  (A) Example 
shape pairs that varied as a function of ShapeComp distance.  (B) Shape similarity ratings from 
14 observers correlate almost perfectly with distance in ShapeComp’s 22-dimensional space. (C) 
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Pixel similarity was defined as the standard Intersection-over-Union (IoU; [29])(D) Observers 
viewed shape triads and judged which test appeared more similar to the sample.  (E) ShapeComp 
distance between test and sample were parametrically varied but pixel similarity was held 
constant. (F) Mean probability across participants, that the closer of two test stimuli was 
perceived as more similar to the sample, as a function of the relative proximity of the closer test 
shape. Blue: psychometric function fit; orange: prediction of IoU model. (G) Results of 
experiment in which distances from test to sample were equated for one ShapeComp dimension at 
a time. Mean psychometric functions slopes were much steeper than predicted if observers relied 
only on the respective dimension.  
 

Identifying perceptual nonlinearities in shape spaces of novel objects. 

An important test for any human shape similarity metric is its ability to predict 

similarity relationships within arrays of multiple shapes. To assess this, we tested how 

well ShapeComp identified perceptual non-uniformities in shape spaces generated with 

the animal-trained GAN.  Figure 4A shows an example 2D GAN shape array sampled at 

uniform radial distances that ShapeComp’s prediction (in 2D) is perceptually non-

uniform (Figure 4B). Using a multi-arrangement task (Methods), we find that human 

perceived similarities within these arrays resembled the nonuniformities predicted by 

ShapeComp (mean responses from 16 participants: Figure 4C).   

Are ShapeComp’s perceptual distortions from the original uniform GAN space 

better at predicting shape similarity than a random model?  To measure distortions 

between shape arrays, we computed differences between two similarity matrices — each 

standardized to have unit variance — where larger differences lead to larger distortions.  

To test whether ShapeComp is better than a random model, we developed a GAN+noise 

model that distorts the original GAN space by adding random Gaussian perturbations to 

the original GAN latent vector coordinates.  We set the noise level of the model to 

maximize its chance of accounting for the human distortions by matching the overall 

distance of the noise perturbations from the original GAN space with the overall 
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perturbations of the human observers (from the original GAN space). Across 4 different 

shape sets where GAN and ShapeComp spaces tended to be less correlated with one 

another (0.59<r<0.75), perceptual distortions in GAN space by individual observers were 

better accounted for by ShapeComp than the GAN+noise model (Figure 4D).  Further, 

the overall variance in ShapeComp’s coordinates across a shape set was highly predictive 

of how well ShapeComp distortions matched humans: Greater variance in ShapeComp 

lead to more overlap with humans (r2 = 0.7, p<0.01; Figure 4D inset). Thus, ShapeComp 

correctly predicted the direction of perceptual nonlinearities in the GAN space.  This is 

striking given that the GAN arrays and ShapeComp are highly correlated, and thus 

already share much of the variation across their arrangements of the shape sets.   

 

Deriving perceptually uniform shape spaces of novel objects. 
 

With the ability to measure perceptual non-uniformities in hand, ShapeComp can also be 

used to create perceptually uniform arrays of novel objects.  To do this, we searched for 

uniform arrays the GAN’s latent vector representation that were highly correlated with 

ShapeComp (r>0.9).  Figure 4E shows an array that ShapeComp predicts should be 

arranged almost uniformly. Human similarity arrangements (mean response from 16 

participants; Figure 4F) are consistent with ShapeComp in terms of the relative ordering 

of the shapes. Across 4 different shapes sets, human responses are nearly 

indistinguishable from the predictions of ShapeComp, given the inherent noise across 

observers (Figure 4G). Thus, by combining the high-dimensional outputs of the GAN 

with ShapeComp, we can now automatically create a large number of perceptually 

uniform shape spaces.    
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Figure 4. ShapeComp predicts human shape similarity in shape arrays. (A) Example 2D 
shape array that is uniform in GAN space but (B) distorted by ShapeComp is similarly (C) 
distorted by humans (left; mean across 16 participants).  Across arrangements, shapes with same 
colour are also the same. (D) Non-uniformities for individual participants (dots) in 4 shape sets 
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(colours) selected to vary slightly in their GAN and ShapeComp predictions (Pearson correlation 
coefficient: Set a, r = 0.59; Set b, r = 0.74; Set c, r = 0.75; Set d, r = 0.68). Squares show average 
across subjects for given set, where error bars show ± 2 standard errors.  ShapeComp accounted 
for perceptual distortions away from the original GAN coordinates better than GAN+noise 
model. Inset: Correlation of ShapeComp distortion with human distortion as a function of 
cumulated variance in shape set across ShapeComp dimensions.  Human distortions better line up 
with ShapeComp when there is more variance across shape sets as predicted by ShapeComp.  
Grey reference line shows y=x.  (E) Example 2D shape array that is roughly uniform in 
ShapeComp and highly correlated to the GAN arrangement (r>0.9). (F) Mean arrangement by 16 
human observers. (G) In 4 shape sets that are highly correlated in terms of GAN and ShapeComp 
arrangements, human responses are nearly indistinguishable from the predictions of ShapeComp 
(blue), given the inherent noise across observers measured as the lower noise ceiling (red; 
correlation of each participant’s data with mean of others). 
 
 
 
Discussion 

Many previous studies have sought to measure shape similarity for both familiar 

and unfamiliar objects [38, 40, 44-53].  Despite this, the representation of shape in the 

human visual system remains elusive, and the basis for shape similarity judgments 

remains unclear. In part, this is due to the numerous potential shape descriptors proposed 

in the past, including simple metrics, like solidity [28], and contour curvature [31], and 

more complex metrics like shape context [30],  part-based ones [1], Fourier descriptors 

[33,45,54], radial frequency components [46], and shape skeletons [32,51,52,56], and 

models based on generalized cylinders for describing 3D animal-like objects [57]. 

Which of these features does the brain use to represent and compare shapes?  We 

suggest the brain combines many different features into a multidimensional space, 

allowing the visual system to resolve the conflicting constraints of sensitivity and 

robustness to transformations. Indeed, we suggest that the precise feature set is less 

important than the space spanned by the features.  Given the multiplicity of cells that 

contribute to representations of shapes and objects in ventral processing stream, it may 

not even be possible to describe a complete and unique set of features that the human 
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visual system uses. In fact, the response properties of cell populations may vary 

significantly across observers, yet similarity relationships between shapes could be 

preserved.  Hence it makes more sense to focus on the feature space as a whole, rather 

than the contributions of individual putative dimensions. 

Multidimensional representations allow subsequent visual processes to selectively 

attend to different aspects of shape, optimizing features for environmental statistics and 

task demands [58 – 61].  For example, Morgenstern, Schmidt, and Fleming [51] showed 

that in one-shot categorization observers tend to base their judgments of whether two 

novel objects belong to the same category on different features depending on the specific 

shapes to be compared. Because the features weights in ShapeComp are derived from the 

statistics of animal shapes, it is well suited to distinguishing natural shapes.  It is 

intriguing that no fitting was necessary to predict human shape similarity judgments 

using ShapeComp — the raw weights derived from ca. 25,000 natural silhouettes account 

for most of the variance in Figure 3B.  This suggests that natural shape statistics may 

play a central role in determining the space humans use to represent and compare shapes. 

Indeed, ShapeComp also correctly predicts previous shape similarity data.  For example, 

Li et al. [53] constructed a ‘perceptually circular’ stimulus set, which ShapeComp 

predicts quite well (Figure S7). 

Paired with a GAN trained on animal silhouettes ShapeComp also provides a 

useful tool for automating the analysis and synthesis of complex naturalistic 2D shapes 

for future experiments in cognitive psychology and neuroscience. Novel, perceptually-

uniform stimulus arrays can be generated and probed on the fly (Figure 4, S8), for 

example, adaptively modifying stimuli in response to brain activity during an experiment.  
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ShapeComp can also help create single- or multi-dimensional arrays (Figure S8A-C), or 

stimulus sets that are perceptually equidistant from a given probe stimulus (Figure S8D).  

Once stimulus sets are controlled for image-based properties, the role of higher-level 

aspects of object representations can be probed in perception, visual search, memory, and 

other tasks.			

 

Limitations 

There are a number of respects in which ShapeComp could be improved in further 

work.  First, for many applications it would be desirable to characterize similarity in 3D 

(e.g., computer vision and computer graphics [25]; video analysis [62]; topology mapping 

[63]; molecular biology [21]). Second, shapes in the natural world are often occluded, 

while ShapeComp was trained only on non-occluded shapes.  Third, ShapeComp was 

trained only on animal shapes.  While the training set spans a very wide range of shape 

characteristics, future studies could refine ShapeComp by covering other major 

superordinate categories such as plants, furniture, tools and vehicles.  This would 

probably modify the weighting of individual dimensions of ShapeComp, yet may further 

improve ShapeComp’s predictions of human similarity judgments.  Fourth, while 

ShapeComp pools 109 different descriptors from across the literature, there are many 

others that were not included.  Incorporating additional features would likely change the 

precise estimates of similarity made by ShapeComp (although, Figure S3 suggests that 

using different subsets of features yields similar composite dimensions in MDS).  Yet, we 

believe that there is no one single shape descriptor that perfectly captures all of human 

shape similarity perception, and that the general approach of pooling multiple descriptors 
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provides robust and sensitive representations. Fifth, as a model of human perception, 

ShapeComp is entirely parameter-free in the sense that no fitting was used to adjust the 

features or their weights to improve predictions of human judgments.  We saw this as an 

important component of testing whether weightings derived from natural shapes predict 

human perception.  However, with over 100 features, ShapeComp’s predictions could 

almost certainly be further improved by explicitly fitting to human data. Finally, 

ShapeComp is not a physiologically plausible model of shape representation processes in 

the human brain.  Future research should seek to model in detail the specific features in 

the neural processing hierarchy that represent shapes in a multidimensional space [64]. 

We believe that paired with novel image-generating methods, like GAN’s ShapeComp 

can play a central role in mapping out visual shape representations in cortex. 

	

Shape can be described in many different ways, which have complementary 

strengths and weaknesses.  We have shown that the brain takes advantage of this by 

combining many different shape descriptors into a multidimensional representation that is 

tuned to the statistics of natural objects. The ShapeComp model correctly predicts human 

shape perception across a wide range of conditions.  It captures perceptual subtleties that 

conventional pixel-based metrics cannot, and provides a powerful tool for generating and 

analysing stimuli.  Thus, ShapeComp not only provides a benchmark for future work on 

object perception, but also explains how human shape processing is simultaneously 

sensitive, robust and flexible.  
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Materials	and	Methods	
 

Natural shape analysis. For 25,712 animal shapes—purchased from shutterstock, or 

gathered from previous work (e.g., [65])—we calculated 109 shape descriptors thought to 

be important for recognition, synthesis, and perception [24].  The shapes’ x,y coordinates 

(382×2 resolution) were uniformly scaled to {0-1}.  For shape descriptors requiring an 

initial shape point, this was set to the point with the smallest x-value. 

 

Shape Descriptors: Shape Descriptors consisted of simple descriptors like area and 

perimeter, to more complex descriptors like the shape skeleton.  A full list of the 109 

descriptors is available in Supplemental Table S1.  

 

Multidimensional scaling and ShapeComp model 

 We used classical MDS to find an orthogonal set of shape dimensions that captures 

the variance in the animal dataset.   For each shape descriptor, we computed the 

Euclidean distance, for each pair of shapes in the dataset: 

    

where is the distance between stimulus i and j on shape descriptor k and and 

are the values on shape descriptor k for stimuli i and j. Once the computation for all 

pairwise comparisons was complete, the distances were assembled into a 25,712×25,712  

similarity matrix and normalized by their largest distance. We computed this normalized 

distance,   d̂ , for all shapes and shape descriptors to form 25,712×25,712×109 entry 

 
dij = fk

i − fk
j( )2 = △ fk

ij( )2

dij fk
i

fk
j
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matrix (shapes2 × shape descriptors). We then computed a 109-dimensional Euclidean 

distance D across the shape descriptors for shape pair i and j, as follows 

  
Dij = d̂k

ij( )2

k=1

109

∑ . 

 We then computed classical MDS on the resultant 25,712×25,712 similarity 

matrix.  

Estimating coordinates for new shapes in pre-existing shape spaces. We estimate 

the coordinates for a new shape in the high-dimensional animal MDS space by comparing 

the shape descriptors for the new shape with a subset of animal shapes, computing a new 

MDS solution, and then moving this new MDS solution using Procrustes to the high-

dimensional animal MDS space.  Specifically, we computed the Euclidean distance 

between the new shape and 500 shapes already located in the animal space, to assemble a 

501×501 similarity matrix, and scaled by the largest distance for each feature distance in 

the complete animal dataset. We did this for all shape descriptors to form a 501×501×109 

matrix (shapes2 × shape descriptors).   We then computed the 109-dimensional Euclidean 

distance D across shape descriptors yielding a 501×501 similarity matrix.  Applying 

Classical MDS produced a new coordinate space for the original 500 shapes.  We used 

procrustes to transform the MDS coordinates for the 500 animal shapes from the new 

coordinate space to the original coordinate space.  We then applied this transformation to 

the new shape to move it into the original shape space.  

 

GAN shapes. A Generative Adversarial Network, GAN [66, 67], was trained using 

MatConvNet in MATLAB to synthesize shapes that it could not distinguish from the 
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animals shapes database. The network architecture and hyperparameters were the same as 

in Radford et al. [67], except for the following.  The latent z vector was 25×1 (rather than 

100×1) and one of the dimensions of the remaining filter sizes was reduced (from initially 

matching the other dimension) to 2.  A series of four “fractionally-strided” convolutions 

then converted the latent vector’s high-level representation into the shapes’ spatial 

coordinates.  After 106 training epochs, we generated novel GAN shapes by inputting 

random vectors into the GAN latent variable. We blurred the shapes with a Gaussian 

filter limited to two neighbouring contour points and selected shapes without self-

intersections. 

 

ShapeComp22 Network. We trained a convolutional neural network using MATLAB’s 

neural network toolbox to take as input a 384×2 contour through 3 convolution neural 

layers and output the 22-dimensional MDS coordinate.  To do this, we created a training 

set of 1,000,000 GAN shapes (800,000 training, 200,000 test images) and then computed 

their 22D MDS coordinates (see Estimating coordinates for new shapes in pre-existing 

shape spaces). These coordinates served as the desired network output.  The network 

architecture and training hyperparameters are shown in Figure S9.  Novel input shapes 

yield an estimate of the 22D MDS coordinate as output. (See also Supplemental 

Discussion on ShapeComp22 Network) 

 

Sensitivity/robustness analysis to transformation.  We transformed one sample from each 

of the 20 animal categories (from [65]) with 2D transformations (e.g., rotation, shear, 

bloating, noise) of varying strengths.  For each sample, we examined how sensitive each 
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shape descriptor was to a given transformations by computing differences between shape 

descriptors for the original shape with the transformed version.  We then scaled these 

differences to range from 0 – 1, and took the mean.  We then took the nanmean across the 

20 samples as the sensitivity to a given transformation, where larger values indicate less 

sensitivity.   

 

General experimental methods. 

Participants. Participants, paid at a rate of 8 euros per hour, signed an informed 

consent approved by the ethics board at Justus-Liebig-University Giessen and in 

accordance with the Code of Ethics of the World Medical Association (Declaration of 

Helsinki).  Participants reported normal or corrected-to-normal vision.  

 

Procedure. All experiments were run with an Eizo ColorEdge CG277 LCD 

monitor (68 cm display size; 1920 x 1200 resolution) on a Mac Mini 2012 2.3 GHz Intel 

Core i7 with the psychophysics toolbox [68, 69] in MATLAB version 2015a.   Observers 

sat 57cm from the monitor such that 1 cm on screen subtended 1° visual angle. 

 

Shape Similarity in Stimulus Pairs/Triplets 

Participants.  14 observers participated in the shape similarity rating experiments and 19 

different observers participated in the pixel similarity and ShapeComp22 dimensions 

experiment.  Mean age was 24.3 (range: 20-33). 
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Pairwise similarity ratings. 250 GAN shape pairs were chosen that spanned a large range 

of distances in ShapeComp. On each trial, stimuli were shown side by side and observer 

adjusted a slider to indicate similarity ratings from 0-100 using the mouse.  Shapes 

subtended ~15°. Shape position (right or left side) was randomized on each trial. Shape 

pairs were presented in random order.   

 

Pixel similarity triplets. Using the Genetic Algorithm in MATLAB’s Global 

Optimization toolbox, we used the ShapeComp22 network to find shape triplets in which 

a sample shape varied in its ShapeComp distance from two test shapes, tA and tB, while 

maintaining the same pixel similarity to both. Specifically, we computed the ShapeComp 

distance from the sample to each test, a for tA and b for tB (Figure 3E). We then 

represented the distances from these test shapes to the sample as a ratio between the 

smaller of the distances to the sum of their distances: 

min(a, b) / (a + b) 

Small values of this ratio indicate one test was much closer to the sample shape in terms 

of ShapeComp.  A maximum value of 0.5 indicates both tests are equally far from the 

sample.  70 triplets were created and binned into 7 bins ranging 0.2–0.5, where each bin 

contained ~10 triplets.  On each trial, the sample shape was presented centrally, flanked 

by two test shapes (whose position, left or right of sample was randomized). Shapes 

subtended 12°.  Pixel similarity, held constant between the sample and the test shapes, 

was defined as the Jaccard index (1 - intersection-over-union; [29]).  High values indicate 

high pixel similarity. 
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ShapeComp dimensions experiment. Similar to the pixel similarity experiment, using the 

Genetic Algorithm in MATLAB’s Global Optimization toolbox, we used the 

ShapeComp22 network to find shape triplets in which a sample shape varied in its 

ShapeComp distance from two test shapes, tA and tB, while maintaining the same value on 

one of the ShapeComp dimensions {1–8}. The distance between sample and test shapes 

was represented with the ratio described in the pixel similarity triplets.  

 

Shape Similarity in shape arrays. 

Animal shape similarity.  

Participants. 15 observers participated (mean age: 24.7 years; range 20–35). 

Stimuli.  Two sets of twenty shapes (either rabbits or horses) from [66]. 

 
Perceptual non-uniformities.   

 
Participants.  Two groups of 16 observers (mean age: 24.45 years; range: 18–41), 

including the first author who was the only author and participant in both groups. 

Stimuli. Four GAN shape sets were selected that ranged in their correlation with 

ShapeComp (0.59 < r < 0.75).  One group of participants arranged two sets with 20 

shapes (set a, r = 0.59; set b, r = 0.75).  Another group arranged two sets with 25 shapes 

(set c, r = 0.68; set d; r = 0.74). 

Perceptually uniform shape spaces 
 
Participants.  Two groups of 16 observers (mean age: 25.03 years; range: 18–41), 

including the first author who was the only author and participant in both groups. 

 Stimuli. Four sets of 25 shapes for which GAN and ShapeComp predicted similar 

pairwise distances (r > 0.9).  One group of participants arranged two sets that were 
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uniform in ShapeComp (set 1 and 2).  Another group arranged two sets that were uniform 

in GAN space (set 3 and 4). 

Procedure.  Experiments were run in MATLAB using the multi-arrangement code 

provided by Kriegeskorte & Mur[35]  and adapted for the Psychophysics Toolbox [68, 

69]. On each trial, participants used the mouse to arrange all stimuli by their similarity 

relationships to one another within a circular arena . At the start of each trial, stimuli were 

arranged at regular angular intervals in random order around the arena. To the right of the 

arena, the current and last selected objects were shown larger in size (15°). Once an 

arrangement was complete, participants pressed the Return key to proceed to the next 

trial. The next trials showed a subset of the objects from the first trial based on the ‘lift-

the-weakest’ algorithm [35]. The arrangements ended after 12 minutes had elapsed.  
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Supplemental Methods 

Category judgement experiment 

Participants. Twenty participants classified GAN shapes, and another 20 classified 

animal shapes.  

Stimuli.  Photographs (9×12.5 cm) of 100 GAN shapes with no-self intersections 

(randomly selected from the GAN latent space) and 20 animal shapes from Bai et. al [1].  

Each photograph had a number to indicate shape (1-100 for GAN shapes, 1-20 animal 

shapes). 

Procedure. Experimenter shuffled the cards, and placed them in front of participant. 

Participant picked up the top card and placed it roughly arms length from their view.  

They called out the number on the card, and were then asked to judge the category of the 

shape on the card.  Participants had the option of saying that the shape is does not appear 

like any known category.  Experimenter entered the responses, while the participant 

picked up the next card from the pile.   This process continued until the participant 

finished classifying the whole stack.   
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Supplemental Discussion 

A neural network that approximates ShapeComp 

Although the features underlying ShapeComp are both image computable and 

interpretable, in practice, the codebase is convoluted—as it draws on many different 

sources—and the computation of all 109 features along with pairwise comparisons of the 

with 109 pre-computed features from a large dataset of stored animal shapes is too slow 

for real-time applications.  Moreover, as argued above, individual features are less 

important than the space spanned by them in concert.  Thus, to consolidate ShapeComp 

into a single, high-speed model, we trained a 3-layer convolutional neural network on 

1,000,000 GAN shapes that spanned the high-dimensional space (Methods: 

ShapeComp22 Network).  The network takes as input closed contours (with a resolution 

of 384x2) and outputs a 22-dimensional vector, representing the values of each of the 

dimensions of ShapeComp.  Figure S9 shows that the network is also highly related to 

human similarity judgements.  The average error of the network in estimating 

ShapeComp is within the ShapeComp range that human observers tend to judge as very 

similar (an overall distance in ShapeComp <0.8), indicating that the neural network 

provides sufficiently good approximation to ShapeComp for most practical purposes.  

More important than absolute deviation between ShapeComp coordinates is how 

ShapeComp captures the relationship between shapes; the network’s predicted distances 

across the upper triangular matrix of all pairwise combinations in 1000 untrained shapes 

is highly related to ShapeComp (r2 = 0.87, p <0.01). This allows experimenters to 

identify where arbitrary shapes lie within the 22D ShapeComp space making the network 
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an easy way to measure similarity across arrays or pairs of shape, and paired with a shape 

generation tool (like GANs), allows the creation of perceptually uniform shape spaces.  
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Supplemental Figures 

 
Figure S1.  Over 100 shape descriptors evaluated in terms of their ‘sensitivity’, i.e., how much 
they changed when shapes were transformed by noise and shear. Here, the curvature signatures 
are more sensitive to noise than shear, while compactness is less sensitive to noise than shear.  
That different descriptors are tuned to different transformations highlights their complementary 
nature. 
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Figure S2.  Example GAN shapes that vary along the first 6 MDS dimensions. Two shapes (in 
black) are varied along one dimension (in different colours, dimensions 1-6) while the remaining 
dimensions are held constant.  The individual dimensions recovered by MDS should not be 
considered cardinal directions of the shape space as MDS is rotation invariant.  Nevertheless, at 
least the first few dimensions are systematically organized with distinctive and different types of 
shape at opposite ends of each scale.  However, much like the properties of receptive fields in 
mid- and high-level visual areas, it is not always easy to verbalize the properties underlying each 
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MDS dimension: Dimensions 1 and 3 appear to modulate horizontal and vertical aspect ratio, 
respectively, but other factors like number and extent of limbs also vary. The different GAN 
shapes that varied in their MDS coordinates were optimized with a genetic algorithm from 
MATLAB’s global optimization toolbox to reduce RMS error between a GAN shapes 22-D 
representation and a desired 22-D representation.  
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Figure S3.  A high-dimensional features space for natural shapes. (A) We computed MDS 
across 10 different sets of 500 randomly chosen animal sets. We find correlated MDS dimensions 
across different random sets of 500 animal shapes, so that one dimension in set 1 is correlated to 
another dimension in the other 9 sets. (B) Across 10 different sets of shape descriptors (randomly 
selected 55 out of 109), we also find correlations across MDS dimensions. 
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Figure S4. GANs produce novel naturalistic shapes.  (A) Cartoon depiction of a Generative 
Adversarial Networks (GANs) that synthesizes novel shape silhouettes.  GANs are unsupervised 
machine learning systems with two competing neural networks. The generator network 
synthesizes shapes, while the discrimantor network, distinguishes shapes produced by generator 
from a database of over 25,000 animal silhouettes.  With training, the generator learns to map a 
high-dimensional latent vector ‘z’ to the natural animal shapes, producing novel shapes that the 
discrimantor thinks are real rather than synthesized. Systematically moving along the GANs high-
dimensional latent vector produces novel shape variation and interpolations across a shape space 
(B,C, and D).   
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Figure S5.  GAN category identification shows human uncertainty in object class. The most 
consistent (A,B) and inconsistent (C,D) category responses (N=20) across 100 GAN shapes and 
20 animal shapes.   Histogram of different responses across (E) GAN and (F) animal shapes. 
Human observer responses tended to be different across GAN shapes, and the same across animal 
shapes.  Animal-like category responses to GAN images are much more uncertain than for animal 
shapes. (See Supplemental Methods for experimental procedure) 
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Figure S6. Correlation of human shape similarity ratings with fall-off of variance in MDS 
dimensions for animal shapes. (A) Variance accounted for in ShapeComp by animal shapes (in 
blue) and for human similarity ratings (in grey) across pairs of GAN shapes.  Error bars for 
animal data indicate standard deviation across 10 sets of 500 different animals shapes.  Error bars 
for human data indicate standard deviation across observers (N = 14). (B) Scatterplot of average 
human versus model for 22 MDS dimension.  ShapeComp and human are highly related. 
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Figure S7 Comparing ShapeComp and humans across the validated circular shape space set 
(from Li et al., [2]).  (A) Human Data from Li et al. (B) Predictions of ShapeComp.  Note that 
while ShapeComp’s arrangement in is more elliptical, there are many similarities with humans.  
ShapeComp correctly predicts (i) large gaps between shapes 1 and 15, 1 and 2, and 8 and 9, (ii) 
the circular nature of the data set, (iii) subjective difference between 1 and 11 is smaller than 
between 14 and 8, yielding the elongated arrangement.  (C) Correlation between ShapeComp and 
human similarity judgments for the distances between all possible (105 pairs) (r2 = 0.5249, p 
<0.01). Given the noise uncertainty across observers – which is unknown for the circular shape 
set - ShapeComp appears to be a good model of human behaviour.  Note, given the symmetry in 
the circular shape set, here the first point across shapes that were inputted into ShapeComp22 was 
set to be nearest the same spatial location rather than the smallest x-value. 
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Figure S8.  Shape spaces.  ShapeComp paired with GAN can be used to create perceptual 
uniform shape spaces (A-C) along a hexagonal (A, C) or uniform (B) grid or in selecting test 
shapes that have similar shape similarities (D, near, medium, or far in terms of their distances in 
ShapeComp) to the central sample shape.  

 

Figure S9. Computing ShapeComp coordinates quickly with a neural network.  (A) 
ShapeComp22 neural network (trained on 800,000 shapes) gets as input a 384x2 shape and 
outputs the 22D high-dimensional shape space that is (B) highly predictive of the human shape 
similarity ratings for un-trained shapes (re-plotted from Figure 3B), and captures the distance 
relationship between pairwise combinations of 1000 shapes (r2 = 0.87, p <0.01) 
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Supplemental Tables 
 
Table S1. List of 109 shape descriptors in ShapeComp. 
 

Descriptors Additional Comments 
Simple shape descriptors Motivated by Zhang and Lu (2004), Paulun et al. 

(2015), and Peura and Iivarinen (1997).  Many of 
these descriptors were computed with MATLAB’s 
regionprops command.  Computations for (1)-(22) are 
based on image representation of shape.  (23-109) are 
based on point representation of shape.  (27) and (28) 
are computed with help of geom2d toolbox (by David 
Legland) from the MATLAB file exchange. 

(1) Area regionprops 

(2) Perimeter regionprops 

(3) Eccentricity regionprops 
(4) Major Axis Orientation regionprops 

(5) Ratio of principle axis 
  

Major/minor axis length 

(6) Extent regionprops 

(7) Compactness 

  

area2

2π MajorAxisLength2 + MinorAxisLength2
 

(8) Solidity  
(9) Circularity A  
 

4π(Area/Perimeter2); from Paulun et al. (2015) based 
on regionprops output. 

(10) Circularity B 
 

Perimeter2 /Area ; from Zhang and Lu (2004) 

(11) Convexity 
 

Ratio of perimeters of the convex hull over that of the 
original contour 

(12) Centroid A 
 

X-coordinate of shape centroid in image (from Paulun 
et al. (2015)) 

(13) Centroid B 
 

Y-coordinate of shape centroid in image (from Paulun 
et al. (2015)) 

(14) Circularity Ratio 
 

Area of shape to area of circle, where the circle has 
the same perimeter 

(15) Convex Area Paulun et al. (2015) regionprops 

(16) Area/Perimeter Zhang and Lu (2004) 
(17-19) Statistics for horizontal (x) 
distribution of image intensities 

Standard deviation, skewness, kurtosis; from Paulun 
et al. (2015) 

(20-22) Statistics for vertical (y) 
distribution of image intensities 
 

Standard deviation, skewness, kurtosis; from Paulun 
et al. (2015) 

(23-26) Curviness at different scales 
 

RMS error of shape to blurred version of itself.  
Blurred versions were filtered version of original 
shape with kernel size of 2, 4, 8, or 16 points. Based 
on Paulun et al. (2015). 

(27) Circular Variance Peura and Iivarinen, 1997 
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The proportional mean square error with respect to a 
circle of the same area 

(28) Elliptical Variance Peura and Iivarinen, 1997 
 
The proportional mean square error with respect to an 
ellipse of the same area 

Shape Context 
 

Belongie and Malik (2000) 

(29) Shape Context 
 

A joint histogram of distance (bins = 15) and angle 
(bins = 15) 

(30)Histogram of chord lengths  
 

bins = 100 

(31) Histogram of chord angles 
 

bins = 100 

Shape Signatures Motivated by Zhang and Lu (2004).   

(32) Radius Signature  
(33)Curvature Signature  
(34) Triangular Area Signature  
(35) Tangent Angle Signature 
 

 

(36) Cumulative Tangent Angle Signature  
(37) Horizontal (x) distribution of points   
(38) Vertical (y) distribution of points   
Frequency Decomposition 
 

 

(39 - 48) Coefficients 1 to 10  
 

Separate descriptors for first 10 coefficients; Kuhl and 
Giardini (1982) 

(49) Complete Fourier Description Kuhl and Giardini (1982) 

Surprisal 
 

Information, in Shannon’s sense, along contours 
Feldman and Singh (2005).  

(50) Signed 
 

 

(51) Unsigned  
Boundary Moments 
 

Mean, standard deviation, skew, and kurtosis of (30-
38).  Motivated by Zhang and Lu (2004). 

(52-55) Statistics for histogram of chord 
lengths  

 

(56-59) Statistics for histogram of chord 
angles 

 

(60-63) Statistics for radius signature   
(64-67) Statistics for curvature signature  
(68-71) Statistics for triangular area 
signature  

 

(72-75) Statistics for tangent angle  
(76-79) Statistics for cumulative tangent 
angle 
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(80-83) Statistics for x-values   
(84-87) Statistics for y-values  
Shape Skeleton Feldman and Singh (2006) 

Wilder, Feldman, and Singh (2011) 
Computed with ShapeToolbox 

(88) Total number of skeletal branches  
(89) Maximum depth of skeleton  
(90) Mean skeletal depth  
(91) mean branch angle  
(92) mean distance along each parent axis 
at which each child stems 

 

(93) mean length of each axis relative to 
root 

 

(94) total absolute unsigned turning angle 
integrated along the curve 

 

(95) total (absolute value of) singed 
turning angle of each axis integrated  
along the curve 

 

(96) standard deviation of  (91) To our knowledge, skeletal summaries (96-102) have 
been previously used to describe shape.   

(97) standard deviation of (92)  
(98) standard deviation of (93)  
(99 – 102) Statistics for distribution of 
ribs 

Mean, standard deviation, skewness, kurtosis 

Fourier Component 
 

Fourier descriptions of shape signatures from (32-38) 
in terms of absolute value of one-sided Fourier 
component 

(103) Fourier transform of radius 
signature  

 

(104) Fourier transform of curvature 
signature 

 

(105) Fourier transform of triangular area 
signature 

 

(106) Fourier transform of tangent angle 
signature 

 

(107) Fourier transform of cumulative 
tangent angle  

 

(108) Fourier transform of distribution of 
X values 

 

(109) Fourier transform of distribution of 
Y values 
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