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Abstract 
How is information distributed across large neuronal populations within a given brain area? One 
possibility is that information is distributed roughly evenly across neurons, so that total 
information scales linearly with the number of recorded neurons. Alternatively, the neural code 
might be highly redundant, meaning that total information saturates. Here we investigated how 
information about the direction of a moving visual stimulus is distributed across hundreds of 
simultaneously recorded neurons in mouse primary visual cortex (V1). We found that 
information scales sublinearly, due to the presence of correlated noise in these populations. 
Using recent theoretical advances, we compartmentalized noise correlations into information-
limiting and nonlimiting components, and then extrapolated to predict how information grows 
when neural populations are even larger. We predict that tens of thousands of neurons are 
required to encode 95% of the information about visual stimulus direction, a number much 
smaller than the number of neurons in V1. Overall, these findings suggest that the brain uses a 
widely distributed, but nonetheless redundant code that supports recovering most information 
from smaller subpopulations. 
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Figure 1. Information scaling in large neural populations, and the impact of noise correlations on 
information. 
a. The information that a population of neurons can encode about some stimulus value is always a non-decreasing 
function of the population size. Information might on average increase with every added neuron (unbounded scaling; 
red) if the information is evenly distributed across all neurons. In contrast, information can rapidly saturate if 
information is redundant, and thus it is not strictly limited by population size, but by other factors. In general, it has 
only been possible to record from a very small subset of neurons of a particular area (grey shaded), from which it is 
hard to tell the difference between the two scenarios if the sampled population size is too small. 
b. The encoded information is modulated by noise correlations. This is illustrated using two neurons with different 
tunings to the stimulus value (top). The amount of information to discriminate between two stimulus values (𝜃"/red 
and 𝜃#/blue) depends on the difference in mean population activity (crosses) between stimuli, and the noise 
correlations (shaded ellipsoids) for either stimulus (bottom, showing joint neural activity of both neurons). The 
information is largest when the noise is smallest in the direction of the mean population activity difference (black 
arrow), which leads to the largest separation across the optimal discrimination boundary (grey line). In this example, 
positive correlations boost information (middle), whereas negative correlations lower it (right), when compared to 
uncorrelated neurons (left). In general, the impact of noise correlations depends on how they interact with the 
population’s tuning curves. 

Introduction 
Our brains encode information about sensory features and other variables of interest in the 
activity of large neural populations. The amount of encoded information provides an upper 
bound on behavioral performance, and so exposes the efficiency and structure of the 
computations implemented by the brain. The format of this encoding reveals how downstream 
brain areas ought to access the encoded information for further processing. For example, the 
amount of information in visual cortex about the drift direction of a moving visual stimulus 
determines how well one could in principle discriminate different drift directions if the brain 
operates at maximum efficiency, and its format tells us how downstream motion-processing 
areas ought to “read out” this information. Therefore, knowing how the brain encodes 
information about the world is necessary if we are to understand the computations it performs. 
Unfortunately, we still know little about how information is distributed across neuronal 
populations even within a single brain area. Is information spread evenly and largely 
independently across neurons, or in a way that introduces significant redundancy? In the first 
scenario, one would need to record from the whole neuronal population to get access to all 
available information, whereas in the second scenario only a fraction of neurons would be 
needed. 

The amount of information about a stimulus feature that can be extracted from neural 
population activity depends on how this activity changes with a change in the stimulus feature. 
For information that can be extracted by a linear decoder, which is the information we focus on 
in this work, it depends on the neurons’ tuning curves, as well as how their activity varies across 
repetitions of the same stimulus (i.e., “noise”) (Averbeck, Latham, & Pouget, 2006; Kohn, Coen-
cagli, Kanitscheider, & Pouget, 2016; Nogueira et al., 2019; Shamir, 2014). Due to the  
variability in neural responses to repetitions of the same stimulus, each neuron’s response 
provides limited information about the stimulus feature (Carandini, 2004; Faisal, Selen, & 
Wolpert, 2008; Shadlen & Newsome, 1998; Softky & Koch, 1993; Tolhurst, Movshon, & Dean, 
1983). If the noise is independent across neurons, it can be averaged out by pooling across 
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neurons (Zohary, Shadlen, & Newsome, 1994), and total information would on average increase 
by the same amount with every neuron added to this pool (Fig. 1a, red). This corresponds to the 
first scenario in which information is spread evenly across neurons. If, however, the trial-to-trial 
variations in spiking are shared across neurons – what are referred to as “noise correlations” – 
the situation is different. In general, depending on their structure, noise correlations can either 
improve or limit the amount of information (Fig. 1b), such that the presence of correlated noise 
alone does not predict its impact. In a theoretical population with translation-invariant tuning 
curves (i.e., the individual neurons’ tuning curves are shifted copies of each other) and noise 
correlations that are larger for neurons with similar tuning, information might quickly saturate 
with population size (Abbott & Dayan, 1999; Zohary et al., 1994), corresponding to the second 
scenario (Fig. 1a, black). Even though such a correlation structure has been observed across 
multiple brain areas (Adibi, McDonald, Clifford, & Arabzadeh, 2013; Averbeck & Lee, 2003; Gu 
et al., 2011; Maynard et al., 1999; Zohary et al., 1994), neural tuning is commonly more 
heterogeneous than assumed by Zohary et al. (1994). A consequence of this heterogeneity is 
that information might grow without bound even with noise correlations of the aforementioned 
structure (Ecker, Berens, Tolias, & Bethge, 2011). Overall, it remains an open question if 
information saturates in large neural populations of human and animal brains (Kohn et al., 
2016). 
 If information saturates in such populations, then, by the theory of information-limiting 
correlations (TILC) (Moreno-Bote et al., 2014), information in large populations is limited 
exclusively by one specific component of the noise correlations. This component introduces 
noise in the direction of the change of the mean population activity with stimulus value (e.g., drift 
direction; black arrow in Fig. 1b bottom), thus limiting information about this value. Measuring 
this noise correlation component directly in neural population recordings is difficult, as noise 
correlations are, in general, difficult to estimate well (Cohen & Kohn, 2011), and the information-
limiting component is usually swamped by other types of correlation that do not limit information 
(Kanitscheider, Coen-Cagli, & Pouget, 2015; Moreno-Bote et al., 2014). Fortunately, however, 
TILC also predicts how information scales with population size if information-limiting correlations 
are present. We thus exploited this theory to detect the presence of information-limited 
correlations indirectly by examining how information scales with population size. 
 To search for the presence of information-limiting correlations, we simultaneously 
recorded the activity of hundreds of neurons in V1 of awake mice in response to drifting 
gratings, with hundreds of repeats of each stimulus. We asked how these neurons encoded 
information about the direction of the moving visual stimulus. We found that noise correlations 
reduce information even within the limited neural populations we could record. Applying TILC to 
compartmentalize information-limiting correlations from nonlimiting correlations, and to 
extrapolate the growth of information to larger neural populations, we found that on the order of 
tens of thousands of neurons would be required to encode 95% of the information about the 
direction of the moving stimulus. Given that there are hundreds of thousands of neurons in this 
brain region, this means that only a small fraction of the total population is needed to encode 
this information. This is not because only a small fraction of neurons contains information about 
the stimulus; rather, we found that most neurons contain information about the stimulus, but 
because information is represented redundantly, only a small fraction of these neurons is 
actually needed. Notably, the size of the required neural population depends only weakly on 
stimulus contrast; thus, increasing the amount of information in this brain area does not 
substantially increase the number of neurons required to encode 95% of the information about 
the stimulus. Finally, we found that the low-dimensional neural subspace that captures a large 
fraction of the noise correlations does not encode a comparably large fraction of information. 
Overall, our results suggest that information in mouse V1 is both highly distributed and highly 
redundant, which is true regardless of the total amount of information encoded. 
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Figure 2. Experimental design, population recordings, and neural tuning. 
a. Mice passively observed sequences of drifting gratings (white arrows overlaid for illustration only), interleaved with 
blank screens. 
b. Example field-of-view with significantly tuned neurons color coded by their preferred orientation tuning. 
c. Left: example fitted tuning curves of 20 significantly tuned neurons. Right: example tuning curves (line) fitted to per-
trial neural responses (dots, horizontally jittered) for an untuned (top), orientation-tuned (middle) and direction-tuned 
(bottom) neuron. 

Results 
To measure how information scales with population size, we used two-photon calcium imaging 
to record neural population activity from layer 2/3 of V1 in awake mice observing a low-contrast 
drifting grating (10% contrast). The drift direction varied across trials, with each trial drawn 
pseudorandomly from eight possible directions, spaced evenly around the circle (Fig. 2a). We 
simultaneously recorded 273-386 neurons (329 on average) across 4 mice and a total of 16 
sessions (Fig. 2b), and analyzed temporally deconvolved calcium activity, summed up over the 
stimulus presentation period as a proxy for their spike counts within that period. The tuning 
curves of individual neurons (Fig. 2c) revealed that, on average, only a small fraction of neurons 
(5%-45% across mice/sessions, 18% average) were tuned to the grating’s drift direction, while a 
larger fraction of neurons (38%-60% across mice/sessions, 48% average) were sensitive to the 
grating’s orientation, but not its direction of drift. The remaining neurons had no appreciable 
tuning (14%-52% across mice/sessions, 34% average), but were nonetheless included in the 
analysis, as they can contribute to the information that the population encodes through noise 
correlations (Leavitt, Pieper, Sachs, & Martinez-Trujillo, 2017; Pruszynski & Zylberberg, 2019). 

Noise correlations limit information 
To quantify stimulus information encoded in the response of neural populations, we asked how 
well a linear decoder of the recorded population activity (i.e., information decodable by a single 
neural network layer) would allow us to discriminate between a pair of drift directions (Fig. 3a). 
We measured the decoder’s performance by generalizing linear Fisher information, usually 
restricted to fine discriminations, to coarse discrimination (Fig. 3b). This generalization is closely 
related to the sensitivity index 𝑑′ from signal detection theory (Green & Swets, 1966; Nogueira 
et al., 2019), and has a set of appealing properties (see Methods). In particular, combining the 
activity of two uncorrelated neural populations causes their associated Fisher information to 
add, so that it does not trivially saturate like other measures of discrimination performance (Fig. 
3c, inset). 
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Figure 3. Noise correlations limit information across all drift directions. 
a. A drift direction discrimination task, in which a hypothetical observer needs to judge which of two template drift 
directions (𝜃" or 𝜃#; indicated by white arrows) an observed low-contrast drifting grating corresponds to. 
b. Mean activity 𝒇 (crosses) and noise covariance 𝚺 (shaded area ≈ 2SDs) of a pair of neurons across repeated 
presentation of the same two drift directions, 𝜃" (red) and 𝜃# (blue). Linear information about drift direction is limited 
by the projection of the noise onto the optimal linear decoder 𝒘. This decoder depends on how mean activity changes 
with drift direction (𝛿𝒇 = 𝒇(𝜃#) − 𝒇(𝜃")) and the noise covariances 𝚺. 
c. The information associated with discriminating between drift directions 135° and 180° scales sublinearly with 
population size (black; mean +/- 1SD across random orderings of neurons within the population). If we remove noise 
correlations by shuffling trials across neurons, the information scales linearly (red). This linear growth would not be 
apparent from the probability of correctly identifying the stimulus’ drift direction (inset), which is monotonically, but 
non-linearly related to Fisher information, and saturates in both cases. 
d. Information in the recorded population was consistently larger for trial-shuffled data across different 
discriminations, sessions, and mice. Each dot (mean +/- 1SD of information estimate; filled = significant increase, 
bootstrap, 𝑝 < 0.05) shows the information estimated for one discrimination with 𝛿𝜃 = 45∘. 
e. The drift direction discrimination threshold (corresponding to 80% correct discriminations) we would expect to see 
in a virtual discrimination experiment drops with the amount of information that V1 encodes about drift directions. 
f. The inferred drift direction discrimination threshold for the same session as in panel c is comparable across the 
different drift direction pairs with 𝛿𝜃 = 45∘ used to estimate Fisher information with the recorded population. 
 

We used generalized Fisher information to measure how information about drift direction 
scales with the number of neurons in the recorded population. Because this scaling depends on 
the order in which we add particular neurons to the population (individual neurons might 
contribute different amounts of additional information to a population), we measured average 
scaling by averaging across a large number of different random orderings (see Methods). 
Figure 3c shows this average scaling for one example session for discriminating between drift 
directions of 135° and 180° (arbitrary choice; as shown below, other drift direction combinations 
resulted in comparable information scaling). Information increases with population size, but, on 
average, additional neurons contribute less additional information to larger populations than to 
smaller ones. The resulting sublinear scaling is expected if noise correlations limit information. 
Indeed, trial-shuffling the data to remove pairwise correlations resulted in information that scaled 
linearly, with average information exceeding that of the non-shuffled data for all population sizes 
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(except, trivially, for single neurons), and a significantly higher total information within the 
recorded population (bootstrap, 𝑝 ≈ 0.0062). Such linear scaling was not apparent if we 
measured discrimination performance by the fraction of correct discriminations (Fig. 3c, inset), 
illustrating the point that Fisher information is indeed a better measure to analyze information 
scaling. Removing noise correlations resulted in a significant information increase in all our 
datasets (Fig. 3d; paired 𝑡9: = −17.93, two-sided 𝑝 ≈ 1.96 × 10@#9; statistics computed across 
all sessions and mice, but only across non-overlapping 𝛿𝜃 = 45∘discriminations to avoid 
duplicate use of individual drift direction trials; see Table S1 for avg. per-neuron information for 
all sessions/mice), confirming that noise correlations indeed limit information in our recorded 
populations. 

To aid interpretation of the estimated amounts of Fisher information, we translated them 
into quantities that are more frequently measured in experiments. Specifically, we assumed that 
the recorded neural population was used to discriminate between two close-by drift directions in 
a virtual fine discrimination task (similar to Fig. 3a). For a given estimate of Fisher information, 
we could then determine the expected discrimination threshold at which the ideal observer could 
correctly discriminate between two drift directions in 80% of the trials based solely on neuronal 
responses (Fig. 3e). This resulted in a discrimination threshold of ~15.2° for the Fisher 
information estimated from a 135° vs. 180° discrimination (Fig. 3f). Previous work has shown 
that attending to a stimulus boosts the information encoded about this stimulus (Ni, Ruff, 
Alberts, Symmonds, & Cohen, 2018; Otazu, Tai, Yang, & Zador, 2009). As our animals were 
passive observers that were not actively engaged in any task, the estimated threshold is most 
likely a significant overestimate (i.e., an underestimate of Fisher information). Nonetheless, it 
provides a reasonable interpretation of the information encoded in the recorded population. 
Computing the discrimination threshold for all drift direction pairs with 𝛿𝜃 = 45∘ resulted in 
comparable thresholds that did not differ significantly (bootstrap, two-sided 𝑝 ≈ 0.50 for session 
shown in Fig. 3f, two-sided 𝑝 > 0.49 for all sessions/mice). We found comparable information 
across all drift directions, confirming that we recorded from populations that were 
homogeneously tuned across all drift directions. 

Neural signatures of limited asymptotic information 
To identify neural signatures of limited encoded information, we relied on the theory of 
information-limiting correlations (TILC) that showed that noise correlations in large populations 
can be compartmentalized into information-limiting and non-limiting components (Moreno-Bote 
et al., 2014). The limiting component is scaled by the inverse of the asymptotic information 𝐼C, 
which is where information asymptotes in the limit of a large number of neurons (Kanitscheider, 
Coen-Cagli, & Pouget, 2015; Moreno-Bote et al., 2014). This compartmentalization allowed us 
to split the information 𝐼D in a population of 𝑁 neurons into the contribution of limiting and non-
limiting components (see Methods), resulting in 
 

𝐼D =
"

F
GHI

F
JK

.  (1) 

 
This expression assumes that the non-limiting component contributes 𝑐 information per neuron 
on average, irrespective of the current population size. Model comparison to alternative non-
limiting component scaling models confirmed that this assumption best fits our data (Fig. S1b). 
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Figure 4. Information about drift direction is estimated to asymptote in large neural populations. 
a. Example information scaling fit, showing data (black; mean estimate ± 1SD; computed from 135° vs. 180° drift 
direction trials, as in Fig. 3c) and posterior predictive density for Bayesian fit (green; solid = percentiles, dashed = 
mode) for the Fisher information increase (top) and Fisher information (bottom) across different population sizes 𝑁. 
The model is fitted to the Fisher information increase estimates (top), as these are statistically independent across 
different population sizes. 
b. Plotting the inverse Fisher information 1/𝐼D over the inverse population size 1/𝑁 (mean estimate ± 1SD; same 
data as in a) shows an almost perfect linear scaling, as predicted by our theory. Fitting a linear model (grey dashed 
line) reveals a non-zero asymptotic information 𝐼C (grey dot) with 𝑁 → ∞. The horizontal axis is reversed, such that 
population size grows towards the right, where 1/𝑁 becomes zero. 
c. The fitted model supports extrapolating the posterior predictive density beyond recorded population sizes (blue 
shaded area in a, b, and c) up to 𝑁 → ∞. This results in a Bayesian posterior estimate over the asymptotic 
information 𝐼C (right), that we summarize by its median (dot), and its 50% (thick line) and 90% (thin line; truncated at 
top) credible intervals. 
d. Estimates of asymptotic information resulting from different drift direction pairs (colors; 𝛿𝜃 = 45∘ for all pairs) 
results in comparable posterior densities (colored lines; associated density summaries above densities as in c) 
across different pairs. Therefore, we pooled the data across all non-overlapping pairs with the same 𝛿𝜃 to achieve a 
more precise estimate. The pooled estimates were comparable across two different sets of non-overlapping pairs 
(grey). The vertical grey lines and numbers indicate the drift direction discrimination thresholds corresponding to 
different Fisher information estimates. 
e. The asymptotic Fisher information estimate (density summaries as in c; lines connect posterior medians) is 
comparable across sessions (different colors; horizontally shifted to ease comparison) and mice. 
 

Increasing the population size 𝑁 in Eq. (1) reveals how information ought to scale in 
small populations if it is limited in large populations (Fig. 1). Information would initially grow 
linearly, closely following 𝑐𝑁. However, for sufficiently large 𝑁, it would start to level off and 
slowly approach the asymptotic information 𝐼C. If we were to record from a small number of 
neurons, we might only observe the initial linear growth and would wrongly conclude that no 
information limit exists (Fig. 1). Therefore, simultaneously recording from sufficiently large 
populations is important to identify limited asymptotic information. 
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To distinguish between a population in which information does not saturate from one in 
which it does, we fitted two models to the measured information scaling. The first assumed that, 
within the recorded population, information scales linearly and without bound. We might observe 
this information scaling if, on average, each neuron contributes the same amount of information. 
The second model corresponds to Eq. (1), and assumes that information asymptotes at 𝐼C. Our 
fits relied on a large number of repetitions (at least as many as the number of recorded neurons) 
of the same drift direction within each experimental session to ensure reliable, bias-corrected 
information estimates (Kanitscheider, Coen-Cagli, Kohn, & Pouget, 2015). These estimates are 
correlated across different population sizes, as estimates for larger populations share data with 
estimates for smaller populations. Unlike previous work that estimated how information scales 
with population size (Cotton et al., 2018; Mendels & Shamir, 2018), we accounted for these 
correlations by fitting how information increases with each additional neuron, rather than fitting 
the total information for each population size. This information increase turns out to be 
statistically independent across population sizes (see Methods), making the fits statistically 
sound. 
 Figure 4a illustrates the fit of the limited-information model to the data of a single 
session. We fitted the average information increase with each added neuron (Fig. 4a, top), and 
from this predicted the total information for each population size (Fig. 4a, bottom). Bayesian 
model comparison to a model that assumed unbounded information scaling confirmed that a 
model with limited asymptotic information was better able to explain the measured information 
scaling (Watanabe-Akaike Information Criterion WAICunlim=-529.25 vs. WAIClim=-531.59; smaller 
is better). This was the case for almost all discriminations with 𝛿𝜃 = 45∘ across sessions and 
mice (Fig. S1a). Furthermore, the same procedure applied to the shuffled data resulted in better 
model fits for the unbounded information model, confirming that our model comparison was not 
a priori biased towards the limited-information model (Fig. S1a). Two sets of simulations with 
idealized and realistic neural models further confirmed that this model comparison was able to 
recover the correct underlying information scaling (Fig. S2). Therefore, information about drift 
direction is limited in the neural population responses within our dataset. 
 This result of limited drift direction information was corroborated by a second analysis. 
We start by observing that Eq. (1) can be rewritten as 1/𝐼D = 𝑎(1/𝑁) + 1/𝐼C, which is linear in 
the inverse population size 1/𝑁 with slope 𝑎 = 1/𝑐. Increasing the population size, 𝑁 → ∞, 
causes the inverse information to approach the asymptotic information, 1/𝐼D → 1/𝐼C. Therefore, 
we can distinguish between limited asymptotic information and unbounded information scaling 
(i.e., 𝐼C → ∞) by plotting 1/𝐼D against 1/𝑁, and estimating its intercept at 1/𝑁 → 0. A non-zero 
intercept confirms limited asymptotic information, whereas a zero intercept would suggest 
information to scale without apparent bounds. When we analyzed the previous single-session 
data, we found that the inverse information indeed tightly scales linearly with the information 
population size (linear regression, adjusted 𝑅# ≈ 1), as predicted by the model (Fig. 4b). 
Furthermore, the intercept at 1/𝑁 → 0 was significantly above zero (linear regression, 𝛽T ≈
0.023, two-sided 𝑝 < 10@9), suggesting that information saturates with 𝑁. We found comparably 
good linear fits for all sessions/mice across all 𝛿𝜃 = 45∘discriminations (average adjusted 𝑅# ≈
0.999; Fig. S3a), and intercepts that were all significantly above zero (〈𝛽T〉 ≈ 0.023, 𝑡9: = 17.95, 
two-sided 𝑝 < 10@"T across non-overlapping discriminations; Fig. S3b), confirming the results of 
our model comparison. 
 In addition to supporting the distinction between information-limited and unbounded 
information scaling, TILC also allowed us to estimate the magnitude at which information would 
asymptote if we increased the population size beyond that of our recorded population. This is a 
theoretical measure that would be reached only for infinitely large virtual populations that have 
the same statistical structure as the recorded neurons. Despite this limitation, it gives insight into 
the order of magnitude of the information that we could expect to be encoded in the large 
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populations of neurons present in mammalian cortices. To quantify the uncertainty associated 
with extrapolations beyond observed population sizes, we relied on Bayesian model fits that 
provide posterior distributions over our estimates of 𝐼C, as illustrated in Fig. 4c. These 
posteriors were comparable across the discrimination of different drift direction pairs (Fig. 4d). 
Comparable information estimates across different drift direction pairs were essential to make 
these estimates meaningful, as different estimates would have implied that these estimates are 
driven by neural subsets within a heterogeneous population rather than being a statistical 
property of the whole population, as desired. Furthermore, it allowed us to reduce our 
uncertainty in the 𝐼C estimates by pooling the fits across different, non-overlapping drift direction 
pairs (Fig. 4d; grey). Indeed, Bayesian model comparison that accounts for the larger number of 
parameters of multiple individual per-discrimination fits confirmed that those were outperformed 
by pooled fits for all but two experimental sessions across all tested drift direction differences 
(Fig. S4). This provided further evidence that, for a fixed drift direction difference, the measured 
information scaling was statistically indistinguishable across different discriminations within each 
session. 
 Comparing these pooled estimates across sessions and mice revealed these estimates 
to be similar (Fig. 4e). These estimates dropped with an increase in the angular difference 𝛿𝜃 in 
the compared drift directions, as is to be expected from a linear decoder used to discriminate 
between circular quantities (Fig. S5). Together, these observations strongly suggest that the 
recorded populations were part of a larger population that encoded limited information about the 
drift direction of the presented stimuli. 
 

 
Figure 5. No single neural subpopulation appears to encode a disproportionate amount of information across 
all stimulus drift directions. 
a. Both panels show that the information increase in the recorded population depends on the order with which 
neurons are added to the population (colors). The panels differ in the considered drift direction discrimination (left: 0° 
vs. 45°; right: 45° vs 90°). The neuron order was optimized by incrementally adding the neuron that resulted in the 
largest information increase for a 0° vs. 45° (blue) or 45° vs 90° (orange) drift direction discrimination, or largest 
average increase across all discriminations with 𝛿𝜃 = 45∘ (green). The optimal ordering for the 0° vs. 45° was also 
applied to the 45° vs 90° discrimination (blue line in right panel) and vice versa (orange line in left panel). The 
average information increase across random orders (black) is shown as baseline reference. Shaded error regions 
illustrate the uncertainty (mean +/- 1SD) due to limited numbers of trials (all curves), and variability across random 
orderings (black only). The black and green open circle (bootstrapped median +/- 95% CI) show the population sizes 
required to capture 90% of the information in the recorded population for the associated orderings. 
b. Plotting population sizes required to capture 90% of the information in the recorded population (bootstrapped 
median +/- 95% CI) for random ordering vs. orderings optimized to maximize average information across all 
discriminations revealed no significant difference between the two orderings. Each dot reflects one discrimination for 
one session. 

No neural subpopulation encodes a disproportionate amount of information across all 
stimulus drift directions 
The recorded population might contain neurons that are not only untuned to drift direction, but 
also do not contribute information through being correlated with other neurons in the population 
(Leavitt et al., 2017; Pruszynski & Zylberberg, 2019). As our information scaling measures are 
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averaged across different orderings of how neurons are added to the population, uninformative 
neurons would contribute at different population sizes across different orderings. As a result, 
they make information scaling curves appear shallower than for populations that exclude 
uninformative neurons. These shallower scaling curves could in turn impact our estimates of 
asymptotic information (Fig. 4). 
 To ensure that uninformative neurons did not significantly affect our estimates, we asked 
if we could identify neural subpopulations within the set of recorded neurons that encode most 
of the information. Previous work identified such subpopulations in auditory cortex (Ince, 
Panzeri, & Kayser, 2013) and lateral prefrontal cortex (Leavitt et al., 2017) of monkeys, but we 
are not aware of any work that has shown this for V1. To identify highly informative 
subpopulations, we ordered the neurons within the recorded population by incrementally adding 
the neuron that resulted in the largest overall information increase (Ince et al., 2013; Leavitt et 
al., 2017). With this ordering, 90% of the information in the recorded population for a particular 
discrimination could be recovered from only about 30% of the recorded neurons (Fig. 5a). 
However, the same subpopulation did not perform well once we changed the pair of drift 
directions that were to be discriminated (Fig. 5a; left vs. right), for which the same subset of 
neurons only recovered about 55% of the information. Even a population ordering that boosted 
the average information across all drift direction pairs did not reveal a highly informative 
subpopulation within the recorded set of neurons (Fig. 5a; green). To determine whether there 
is any advantage to a particular ordering, we estimated the population size required to capture 
90% of information of the recorded population if we ordered the neurons according to this 
objective. Across sessions/mice and discriminations, the required population size turns out to 
not differ significantly compared with a random ordering of the population (Fig. 5b; 𝑡9: =
−0.215, two-sided 𝑝 ≈ 0.83; across non-overlapping 𝛿𝜃 = 45∘ discriminations). If a significant 
fraction of neurons is uninformative across all drift direction pairs, we would expect these sizes 
to differ. Therefore, it is unlikely that our asymptotic information estimates were significantly 
influenced by the presence of uninformative neurons in the recorded populations. 
 

 
Figure 6. Increasing stimulus contrast boosts asymptotic information in V1 
a. The information increases more rapidly with population size for high-contrast stimuli (green; mean +/- 1SD) than for 
low-contrast stimuli (orange; mean +/- 1SD), here shown for the discrimination between 45° vs. 90° drift direction 
trials of one session of mouse 5. An increase in stimulus contrast significantly increases the total information in the 
recorded population (bootstrap, two-sided 𝑝 < 10@X). 
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b. The information in the recorded population was larger for high than low stimulus contrast for most 𝛿𝜃 = 45∘ 
discriminations across mice and sessions (colors, XY = mouse X, session Y). Each dot shows the information for one 
discrimination between different drift directions (8 dots per session; error bars = +/- 1SD of the information estimation 
uncertainty). Filled dots indicate a significant information increase (bootstrap, two-sided 𝑝 ≥ 0.05). 
c. Observing an information increase in the recorded population (blue shaded area) does not necessarily imply an 
increase in asymptotic information (left vs. right). 
d. The estimated asymptotic information was generally higher for high-contrast stimuli (green/magenta; shades = 
sessions) than low-contrast stimuli (orange/red; shades = session; colors as in panel b), across different drift direction 
differences 𝛿𝜃 (pooled estimates across different drift direction pairs; posterior density summaries as in Fig. 4c). 
e. To compare the pooled asymptotic information estimates for 𝛿𝜃 = 45∘ for low-contrast trials to those for high-
contrast trials, we plot them against each other (one dot per session, colors as in panel b, error bars = 50% posterior 
credible intervals). The four filled dots indicate sessions for which the information in the recorded population (panel b) 
is significantly larger for higher contrast stimuli for the majority of discriminations. 

A finite-population information change impacts asymptotic information 
If estimated asymptotic information mirrors the total information encoded by the animals’ brains, 
it should increase if we increase the amount of information provided by the stimulus in retinal 
photoreceptor activity. As has been shown previously, higher contrast stimuli result in higher 
decoding performance from recorded population responses (e.g., Busse et al., 2011). However, 
we might observe an information increase in recorded populations even when the asymptotic 
information remains unchanged (Fig. 6c, right). To determine if increasing the stimulus contrast 
results in an increase of asymptotic information, we performed a separate set of experiments in 
which two mice observed the same drift directions as before, but with a grating contrast that 
pseudo-randomly varied between 10% and 25% across trials. We hypothesized that the 25% 
contrast stimuli provide more information about the drift direction, and expected a corresponding 
increase in asymptotic information. 

Information encoded in the recorded populations significantly increased for higher 
stimulus contrasts (Fig. 6a for single discrimination and session; Fig. 6b for all sessions/mice, 
non-overlapping discriminations with 𝛿𝜃 = 45∘: paired 𝑡#Z = 2.78, two-sided 𝑝 ≈ 0.0098). We in 
turn applied the same procedure as before (see Fig. 4e) to estimate asymptotic information, but 
did so separately for the two contrasts (Fig. 6d). We then compared these estimates for 𝛿𝜃 =
45∘ within each session between low- and high-contrast trials (Fig. 6d). In principle, increasing 
contrast could increase asymptotic information, or it could leave asymptotic information 
unchanged (Fig. 5c). For three out of the four sessions in which information in the recorded 
population increased with contrasts for a majority of discriminations (as shown in Fig. 6b), we 
also observed an increase in asymptotic information with contrast (Fig. 6e, filled dots). This 
suggests that a more informative stimulus not only increased information in the recorded neural 
populations, but also in the larger (unrecorded) neural population. 

Tens of thousands of neurons are required to decode most of the information about 
stimulus drift direction 
Information in the brain must saturate, as noisy sensors fundamentally limit the sensory 
information it receives. However, it remains unclear whether information saturates within the 
population size of V1 (Fig. 1). In our information scaling model, Eq. (1), saturation by definition 
only occurs in the limit of infinite neurons. We can nonetheless use the model to estimate 
saturating population sizes by asking how large these populations need to be to encode a large 
fraction of the asymptotic information (Fig. 7a). We will here focus on population sizes 𝑁[X that 
achieve 95% of asymptotic information, which can be found by setting 𝐼D = 0.95	𝐼C in Eq. (1) 
and solving for 𝑁. The required population sizes for other fractions of asymptotic information are 
easily found by a rescaling of 𝑁[X (Fig. S6). 
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Figure 7. Tens of thousands of neurons are required to capture most of the information about stimulus drift 
direction. 
a. The TILC predicts how information grows with population size and allows us to estimate the population size 𝑁[X 
required to capture 95% of the asymptotic information 𝐼C. 
b. Applied to our data, we find 𝑁[X	 in the order of tens of thousands of neurons, consistently across mice (panels) 
and sessions (colors; blue = uniform contrasts; orange/red = low contrast; green/magenta = high contrast; lines 
connect individual sessions; horizontally shifted to ease comparison; posterior densities as is Fig. 4c). 
c. An increase in information (orange to green) could be achieved by increasing the average information per neuron 
(top) or by leaving the average information per neuron roughly unchanged while recruiting more neurons (bottom). 
We would expect 𝑁[X to grow in the second, but not the first case. These two cases are hard to distinguish from the 
observed information scaling in smaller populations (shaded blue). 
d. Plotting estimated non-limiting scaling 𝑐 over asymptotic information 𝐼C (dot = median, lines = 50% credible 
interval; colors as in panel b) for all animals, sessions, drift direction differences, and contrasts from b reveals that 𝑐 
grows sub-linearly with 𝐼C (grey line = linear regression of median estimates in log-log plot), which indicates that the 
estimated population size 𝑁[X increases weakly with the asymptotic information. 
 
 To estimate 𝑁[X, we again relied on the information scaling fits pooled across non-
overlapping pairs of drift directions. The recovered population sizes were all on the order of tens 
of thousands of neurons (Fig. 7b). Our previous analysis (Fig. 5) makes it unlikely that 
uninformative neurons within the recorded population strongly impact our estimated population 
sizes. Interestingly, increasing the drift direction difference 𝛿𝜃 did not strongly affect these 
estimates (mice 1-4 in Fig. 7b), even though it modulated asymptotic information (Fig. 4d). 
Increasing stimulus contrast appeared to increase the estimated population sizes (mice 5-6 in 
Fig. 7b, orange vs. green), but not consistently so. Thus, it was unclear if a change in 
information resulted in a global re-scaling of the information scaling curve without changing its 
shape (Fig. 7c, top), or in the need for more neurons to encode this information (Fig. 7c, 
bottom). 

To clarify the relationship between the asymptotic information 𝐼C and required population 
size 𝑁[X, we did not directly relate these two quantities, as 𝑁[X is derived from the estimate of 
𝐼C. Instead, we relied on the property that 𝑁[X is proportional to 𝐼C/𝑐, where 𝑐 is the scaling 
factor associated with the non-limiting covariance component (see Eq. (1); Methods). Therefore, 
if 𝑁[X remains constant across different estimates of 𝐼C and 𝑐, these two quantities need to vary 
in proportion to each other. In a log-log plot, this implies that the slope describing their 
relationship would be one. However, we found a slope of 𝛽" ≈ 0.72, which is slightly, but 
significantly below one (Fig. 7d; F-test, 𝐹" = 21.49, 𝑝 ≈ 1.2 × 10@X). Substituting the measured 
relationship between 𝑐 and 𝐼C into the expression for 𝑁[X results in 𝑁[X ≈ 4523.8	𝐼CT.#^. This 
implies that the population size required to encode 95% of the asymptotic information increases 
with 𝐼C, but does so only weakly. To illustrate this weak increase, let us consider sessions in 
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which the estimated asymptotic information increased three-fold with an increase in stimulus 
contrast (Fig. 6e). In this case, a population of the size required to capture 95% of the 
asymptotic information for low-contrast trials could capture 93% of the asymptotic information 
for high-contrast trials (see Methods). 

 
 

 
Figure 8. Information is not well-aligned with principal noise dimensions. 
a. The total information in a recorded population, 𝐼D, can be decomposed into how well the change in population 
tuning, 𝒇′, is aligned to the different principal dimensions of the noise covariance (given by cos#(𝛼c)), as well as the 
noise variances, 𝜎c#, in these dimensions. Low-variance dimensions that are strongly aligned to 𝒇′ contribute more 
information. 
b. The variance along principal dimensions drops rapidly with dimension (red dots: >90% of total variance). 
c. The cumulative alignment of 𝒇′ to the principal dimensions of the noise covariance rises rapidly with principal 
dimension (red dots: >90% of total alignment), indicating that 𝒇′ is most strongly aligned to the first few principal 
dimensions. 
d. The fraction of total information (black; red dots: >90% information) rises more slowly with additional principal 
dimensions than the fraction of total noise variance (blue). The principal dimensions in panels b-d are ordered in 
decreasing order of variance, and show data for the same session as in Fig. 3c (dark = same discrimination as in 
Fig. 3c; light = other 𝛿𝜃 = 45∘ discriminations for that session). 
e. The histograms (bar plots) and cumulative probabilities (lines) of the fractions of the total number of principal 
dimensions at which the cumulative 𝒇′ alignment (green), cumulative variance (blue), and cumulative information 
(black) exceed 90% of their respective totals. These fractions are shown for all 𝛿𝜃 = 45∘ discriminations, sessions 
and mice. 
All estimates are cross-validated, and averaged across ten train/test splits (see Methods). 

Information is not well-aligned with principal noise dimensions 
Previous work has observed that most neural population activity fluctuations are constrained to 
a low-dimensional linear subspace that is embedded in the high-dimensional space of neural 
activity (Engel & Steinmetz, 2019; Semedo, Zandvakili, Machens, Yu, & Kohn, 2019; Williamson 
et al., 2016). This might suggest that focusing on such a low-dimensional subspace is sufficient 
to understand brain function (Williamson et al., 2016). Thus, we asked if we can recover most of 
the information about visual drift direction from such subspaces, defined by the dimensions 
where population activity is most variable. The information encoded in each dimension grows 
with how well the signal, 𝒇′, is aligned with this dimension, but shrinks with the magnitude of 
noise in this dimension (Fig. 8a; (Mendels & Shamir, 2018; Moreno-Bote et al., 2014)). This 
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tradeoff makes it unclear whether the subspace where population activity is the most variable is 
indeed the subspace that encodes the most information. 

We found the principal dimensions of the noise covariance matrix and asked how much 
information a subset of the most variable dimensions is able to encode. In our data, 90% of the 
total variance was captured by approximately 37.6% ± 12.4pp (mean % ± 1SD percentage 
points across all sessions/mice, 𝛿𝜃 = 45∘discriminations) of all available dimensions (Fig. 8b/e), 
confirming previous reports that relatively few dimensions are required to capture most noise 
variance. Furthermore, 𝒇′ was most strongly aligned to the first few of these principal 
dimensions (Mendels & Shamir, 2018) (Fig. 8c). Using cosine similarity to measure this 
alignment, we found that 90% of the cumulative alignment was reached by approximately 7.4% 
± 9.1pp of all available dimensions (Fig. 8c/e). Finally, we asked how many dimensions were 
required to capture 90% of the information encoded in the recorded population. Even though 
later dimensions were not well-aligned with 𝒇′ (see the shallow cumulative alignment increase in 
Fig. 8c), they were also less noisy (Fig. 8b) and so could contribute significantly to the encoded 
information. As evident by the continual information growth in Fig. 8d, this resulted in 
information which was fairly evenly spread across all dimensions, such that, on average, 
approximately 86.7% ± 2.2pp of all principal noise dimensions were required to encode 90% of 
all of the recorded information. This is significantly higher than the fraction required to capture 
90% of all variance (difference = 48.7 ± 1.5pp, mean ± 1SEM, paired 𝑡9: = 32.53, two-sided 𝑝 <
10@9 across non-overlapping discriminations). In fact, if we restricted ourselves to the subspace 
that captures 90% of all noise variance, we could only decode 58.9% ± 5.6pp of information. 
Therefore, in our data, relying only on information encoded in the subspace of most variable 
principal dimensions would result in significant information loss. 

Discussion 
We asked how information about the drift direction of a visual stimulus is distributed in large 
neural populations, and addressed this question by analyzing how information scales with 
population size. We observed that, in recorded populations, information scaled sublinearly with 
population size, indicating that noise correlations limited this information. The information scaled 
in line with TILC if information is indeed limited in larger populations. Based on this theory, we 
found that we require on the order of tens of thousands of neurons to encode 95% of the 
asymptotic information. When varying input information by changing stimulus contrast, the 
required population size appeared to change. Indeed, we found that more information required 
larger populations, but this relationship was extremely weak. Overall, these findings suggest the 
presence of information-limiting correlations that cause information in mouse V1 to saturate with 
population size, indicating the use of a highly redundant, distributed neural code within mouse 
V1. 

Previous attempts at measuring how information scales with population size have 
frequently found noise correlations to either be beneficial (Denman & Reid, 2019) or to not affect 
information scaling (Cotton et al., 2018; Mendels & Shamir, 2018). These studies focused on 
smaller populations (<200 neurons in Denman & Reid, 2019; <100 neurons in Mendels & 
Shamir, 2018) in which sublinear scaling might be hard to identify (Fig. 1), and in part included 
spike timing information (Denman & Reid, 2019) in addition to the spike counts used here. 
Recent recordings from ~20,000 neurons in mouse V1 suggest information about visual stimuli 
does saturate (Stringer, Michaelos, & Pachitariu, 2019; Fig. S6), but it appears to do so above 
the population sizes we estimated. These recordings used a slower image scan rate (3 Hz vs. 
the 30 Hz used for this study), which introduces additional recording noise. This additional noise 
makes information saturate more slowly with population size (see SI), potentially explaining the 
larger required population sizes. 
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Even though information is highly distributed across neurons in a population, most 
variability is captured by a low-dimensional subspace, leading to suggestions that we might only 
need to consider the information encoded in this subspace (Williamson et al., 2016). As we 
have shown, this argument does not consider that information does not only depend on 
variability, but also on how the signal aligns with this variability (Fig. 8a). Once both are taken 
into account, the dimensions of largest variability become a poor proxy for the most informative 
dimensions (Fig. 8d). This is in line with recent work showing that the most variable subspace in 
macaque V1 is different from the one that most co-varies between V1 and V2 (Semedo et al., 
2019), which presumably transmits information between these areas. Our work explicitly shows 
such misalignment, and does so in larger populations.  

To compare our required population size estimates to the total number of neurons in 
mouse V1, we conservatively estimated the need for about 48,000 neurons (see Methods) to 
achieve drift direction discrimination performance that most likely exceeds that of the animals 
(Abdolrahmani, Lyamzin, Aoki, & Benucci, 2019; Glickfeld, Histed, & Maunsell, 2013). Our use 
of time-deconvolved calcium activity as a noisy proxy for spike counts (T.-W. Chen et al., 2013; 
Ledochowitsch et al., 2019) makes these estimates upper bounds on required population sizes 
(see SI). Nonetheless, they compare favorably to the number of neurons in mouse V1, whose 
estimates range from 283,000 to 655,500 (Herculano-Houzel, Watson, & Paxinos, 2013; Keller, 
Erö, & Markram, 2018). This confirms that mouse V1 has more neurons than required to encode 
most of the estimated asymptotic information about the direction of a moving visual stimulus. 

If animals are required to perform tasks that rely on the encoded information we 
measured (e.g., to discriminate between different drift directions), each neuron in the population 
would ideally contribute to the animal’s choices. Quantified by choice correlations (Britten, 
Newsome, Shadlen, Celebrini, & Movshon, 1996; Haefner, Gerwinn, Macke, & Bethge, 2013), 
an optimal read-out requires the choice correlations of individual neurons to be the fraction of 
the population’s discrimination threshold over that of the neuron (Pitkow, Liu, Angelaki, 
DeAngelis, & Pouget, 2015). In contrast to previous work (e.g., Britten, Shadlen, Newsome, & 
Movshon, 1992) that found that individual neurons’ thresholds match that of the animal, the 
neurons’ average threshold in our data (see information for 𝑁 = 1 in Fig. 3c) is exceedingly 
small when compared to that of the recorded population (Fig. 3c for full population), and even 
smaller when compared to estimated asymptotic information (Fig. 4e). This mismatch might 
arise from shorter stimulus presentation, not tailoring the stimuli to match the neuron’s tuning 
(as done in Britten et al. (1992)), recording from lower-level visual areas (V1 vs. V4 or MT) with 
smaller receptive fields, as well as increased recording noise with calcium imaging as compared 
to electrophysiological recordings. These lower discrimination thresholds predict increasingly 
small choice correlations, in line with recent reports from area V1 of monkeys, where fewer than 
7% of V1 neurons were found to feature significant choice correlations (Jasper, Tanabe, & 
Kohn, 2019). In general, the estimated asymptotic information predicted direction discrimination 
thresholds compatible with previous behavioral reports in mice (Abdolrahmani et al., 2019; 
Glickfeld et al., 2013), but the use of different stimuli in these experiments precludes a direct 
quantitative comparison. A more detailed analysis of the relation between neural activity and 
choice would require training animals to report their percepts, and then relating these reports to 
population activity fluctuations. 
 A prediction of our findings is that neural information should continue to scale according 
to Eq. (1) in larger populations than those recorded in our experiments. Testing these 
predictions involves precise estimates of noise correlations, which require about the same 
number of trials in which the same stimulus (e.g., drift direction) is presented as there are 
neurons in the population (Kanitscheider, Coen-Cagli, & Pouget, 2015; Moreno-Bote et al., 
2014). Therefore, even with more powerful recording techniques, information estimates might 
be limited by the number of trials that can be collected within individual sessions. The use of 
decoders to estimate information might sidestep these estimates (Kanitscheider, Coen-Cagli, 
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Kohn, et al., 2015; Whiteway, Bartolo, Averbeck, & Butts, 2017), with the downside of potentially 
confounding decoder biases. A further challenge is to record from a population that 
homogeneously encodes the same amount of information about each stimulus. Such 
homogeneity ensures that the estimated asymptotic information and population sizes are not 
specific to particular stimulus values. The weak spatial organization of drift direction selectivity in 
mouse V1 (Ringach et al., 2016) supports this, but the same would be harder to achieve in 
monkeys due to the much stronger spatial correlations of orientation and direction selectivity in 
their visual cortices (Dow, 2002). Finally, even if Eq. (1) is confirmed to match the information in 
larger populations than used here, it does not allow us to guarantee that the cortex’s information 
is limited by sensory noise and suboptimal computations. Though unlikely, information might 
continue to grow linearly after an initial sublinear growth (Ecker et al., 2011). The only way to 
conclusively rule out this scenario is to record from all neurons in the information-encoding 
population, which, at least in mammals, will likely not be possible in the foreseeable future (Mott, 
Gordon, & Koroshetz, 2018). 
 Although all information entering the brain is limited by sensory noise (Faisal et al., 
2008), such that it can never grow without bound, the information could be so plentiful as to not 
saturate within the population sizes of mammalian sensory areas. Our findings suggest this not 
to be the case. However, we suspect the main limiting factor not to be noisy sensors. Instead, 
most problems that the brain has to deal with require fundamentally intractable computations 
that need to be approximated, resulting in substantial information loss (Beck, Ma, Pitkow, 
Latham, & Pouget, 2012). Indeed, suboptimal computations can dominate overall information 
loss, and resulting behavioral variability (Acerbi, Vijayakumar, & Wolpert, 2014; Drugowitsch, 
Wyart, Devauchelle, & Koechlin, 2016), such that they might be the main contributor to the 
information limitations we observe in our experiments. 

If the brain operates in a regime in which information in sensory areas is limited, all 
information the brain deals with is uncertain. This idea finds support in the large body of work 
showing that behavior is well-described by Bayesian decision theory (Doya, Ishii, Pouget, & 
Rao, 2006; Moreno-Bote, Knill, & Pouget, 2011; Pouget, Beck, Ma, & Latham, 2013), which 
makes effective use of uncertainty. This, in turn, implies that the brain encodes this uncertainty, 
but its exact neural representations remain unclear (Fiser, Berkes, Orbán, & Lengyel, 2010; 
Pouget et al., 2013). A further consequence of limited information is that theories that operate 
on trial averages (e.g., Gao & Ganguli, 2015; Gao et al., 2017; Kobak et al., 2016) or assume 
essentially unlimited information (e.g., Ecker et al., 2011) only provide an incomplete picture of 
the brain’s operation. Therefore, an important next step is to refine these theories to account for 
trial-by-trial variation in the encoded information to achieve a more complete picture of how the 
brain processes information in individual trials, rather than on average. 

Online Methods 
All experimental procedures were conducted according to the IACUC. 

Animals and surgery 
Male C57BL/6J mice were obtained from The Jackson Laboratory and used for imaging 
experiments between 4-7 months of age. Prior to imaging, mice underwent surgery to implant a 
chronic cranial window and headplate. Mice were injected intraperitoneally with dexamethasone 
(3 μg per g body weight) 3-6 hrs before surgery to reduce brain swelling. During surgery, mice 
were stably anesthetized with isoflurane (1-2% in air). A titanium headplate was attached to the 
skull using dental cement (C&B Metabond, Parkell). A ~3.5-mm diameter craniotomy was made 
over left V1 (stereotaxic coordinates: 2.5 mm lateral, 3.4 mm posterior to bregma). AAV2/1-syn-
GCaMP6s (Penn Vector Core) was diluted into phosphate-buffered saline at a final titer of 
~2.5E12 gc/ml and mixed 10:1 with 0.5% Fast Green FCF dye (Sigma-Aldrich) for visualization. 
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Virus was injected in a 3x3 grid with 350 μm spacing near the center of the craniotomy at 250 
μm below the dura, with ~75 nl at each site. Injections were made slowly (over 2-5 min) and 
continuously using beveled glass pipettes and a custom air pressure injection system. The 
pipette was left in place for an additional 2-5 min after each injection. Following injections, the 
dura was removed. A glass plug consisting of two 3.5-mm coverslips and one 4.5-mm coverslip 
(#1 thickness, Warner Instruments) glued together with UV-curable transparent optical adhesive 
(Norland Optics, NOA 65) was inserted into the craniotomy and cemented in place with 
cyanoacrylate (Insta-Cure, Bob Smith Industries) and metabond mixed with carbon powder 
(Sigma-Aldrich) to prevent light contamination from the visual stimulus. An aluminum ring was 
then cemented on top of the headplate, which interfaced with the objective lens of the 
microscope through black rubber light shielding to provide additional light-proofing. Data from 
mouse 1 and 2 were collected as part of a previously published study (Chettih & Harvey, 2019), 
following a similar surgical protocol. Imaging datasets were collected at least 2 weeks post-
surgery, and data collection was discontinued once baseline GCaMP levels and expression in 
nuclei appeared to be high. 

Visual stimuli 
Visual stimuli were displayed on a gamma-corrected 27-inch IPS LCD gaming monitor (ASUS 
MG279Q). The monitor was positioned at an angle of 30° relative to the animal and such that 
the closest point to the mouse's right eye was ~24 cm away, with visual field coverage ~103° in 
width and ~71° in height. Visual stimuli were generated using PsychoPy (Peirce, 2007) or 
Psychtoolbox (for mice 1 and 2 only) and consisted of square-wave gratings presented on a 
grey background to match average luminance across stimuli. Gratings were gradually windowed 
with a Gaussian central aperture mask to prevent monitor edge artifacts. Grating drift directions 
were pseudo-randomly sampled from 45-360° in 45° increments at 10% or 25% contrast, spatial 
frequency of 0.035 cycles per degree, and temporal frequency of 2 Hz. Stimuli were presented 
for 500 ms, followed by a 500 ms grey stimulus during the inter-stimulus interval (1 Hz 
presentation). Digital triggers from the computer controlling visual stimuli were recorded 
simultaneously with the output of the ScanImage frame clock for offline alignment. 

Microscope design 
Data were collected using a custom-built two-photon microscope. A Ti:Sapphire laser (Coherent 
Chameleon Vision II) was used to deliver 950 nm excitation light for calcium imaging through a 
Nikon 16 x 0.8 NA water immersion objective, with an average power of ~60-70 mW at the 
sample. The scan head consisted of a resonant-galvonometric scanning mirror pair separated 
by a scan lens-based relay. Collection optics were housed in a light-tight aluminum box to 
prevent contamination from visual stimuli. Emitted light was filtered (525/50, Semrock) and 
collected by a GaAsP photomultiplier tube (Hamamatsu). Microscope hardware was controlled 
by ScanImage 2018 (Vidrio Technologies). Rotation of the spherical treadmill along three axes 
was monitored by a pair of optical sensors (ADNS-9800) embedded into the treadmill support 
communicating with a microcontroller (Teensy, 3.1). The treadmill was mounted on an XYZ 
translation stage (Dover Motion) to position the mouse under the objective. 

Experimental protocol 
Before data acquisition, mice were habituated to handling, head-fixation on a spherical treadmill 
(Harvey, Coen, & Tank, 2012), and visual stimuli for 2-4 days. For each experiment, a field of 
view (FOV) was selected. Multiple experiments conducted in each animal were performed at 
different locations within V1 or different depths within layer 2/3 (120-180 μm below the brain 
surface). Before each experiment, the monitor position was adjusted such that a movable 
flashing stimulus or drifting grating in the center of the screen drove the strongest responses in 
the imaged FOV, as determined by online observation of neural activity. A single experiment 
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consisted of three blocks of ~45 min each. Once a FOV was chosen, a baseline image (~680 x 
680 μm) was stored and used throughout the entire experiment to compare with a live image of 
the current FOV and manually correct for axial and lateral drift (typically <3 μm between blocks 
and <10 μm over the full experiment) by adjusting the stage. Drift and image quality stability 
were verified post-hoc by examining 1,000x sped-up movies of the entire experiment after 
motion correction and temporal downsampling, and experiments that were unstable were 
discarded without further analysis. Data from mouse 1 and 2 were from previously published 
experiments (Chettih & Harvey, 2019), where a small fraction of neurons were photostimulated 
simultaneous to drifting gratings presentation. All photostimulated neurons were excluded from 
analysis for this paper. 

Data processing 
Imaging data were processed as previously described (Chettih & Harvey, 2019). Briefly, imaging 
frames were first motion-corrected using custom MATLAB code 
(https://github.com/HarveyLab/Acquisition2P_class) on sub-frame, full-frame, and long (minutes 
to hours) timescales. Batches of 1,000 frames were corrected for rigid translation using subpixel 
image registration, after which frames were corrected for non-rigid warping on sub-frame 
timescales using a Lucas-Kanade method. Non-rigid deformation on long timescales was 
corrected by selecting a global alignment reference image (average of a 1,000-frame batch) and 
aligning other batches by fitting a rigid 2D translation, followed by an affine transform and then 
nonlinear warping. After motion correction, due to large dataset size (~130 GB), imaging frames 
were temporally downsampled by a factor of 25 from 30 Hz to 1.2 Hz. Downsampled data was 
used to find spatial footprints, using a CNMF-based method (https://github.com/Selmaan/NMF-
Source-Extraction). Full temporal-resolution fluorescence traces for each source (including cell 
bodies, processes, and unclassified sources) were then extracted and deconvolved using the 
constrained AR-1 OASIS method. Using a convolutional neural network trained on manually 
annotated labels, sources were identified as cell bodies, axial processes (bright spots), 
horizontal processes, or unclassified. Only data from cell bodies were used in this paper. 

Tuning curve fits 
We used three nested models to fit tuning curves for each neuron. In the direction-tuned model, 
the average neural response of each neuron was fitted by a mixture of two Von Mises function 
given by 

𝑓"(𝜃) = 𝑎 + 𝑏"	exp(𝑐	cos(𝜃 − 𝜃jklmlkkln)) + 𝑏#	exp(−𝑐	cos(𝜃 − 𝜃jklmlkkln)), 
where 𝑎, 𝑏", 𝑏#, 𝑐, and 𝜃jklmlkkln are model parameters, and 𝜃 is the stimulus’ drift direction. In 
the orientation-tuned model, the average neural response of each neuron was fitted using a 
single Von Mises function given by 

𝑓#(𝜃) = 𝑎 + b	exp(𝑐	cos(2(𝜃 − 𝜃jklmlkkln))), 
with parameters 𝑎, 𝑏, 𝑐, and 𝜃jklmlkkln. The third and last model is a null model that assumes 
neurons are not significantly tuned to drift direction, and fits a constant value to neural 
responses, that is 𝑓:(𝜃) = 𝑎. We fitted all three models to the response of neuron across all 
trials by minimizing the sum of squared residuals between observed neural response and the 
tuning function across different stimulus drift direction. We then compared the nested models by 
an F−test (with Bonferroni correction for multiple comparisons) to test whether neurons are 
direction-tuned, orientation-tuned or untuned. 

Generalized Fisher information 
Linear Fisher information (Ganguli & Simoncelli, 2014; Moreno-Bote et al., 2014; Seriès, 
Latham, & Pouget, 2004), which is the Fisher information that can be recovered by a linear 
decoder, can for stimulus 𝜃T be computed by 𝐼(𝜃T) = 𝒇′(𝜃T)q𝚺@"(𝜃T)𝒇′(𝜃T). Here, 𝒇′(𝜃T) is the 
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vector of derivatives of each neuron’s average response with respect to 𝜃, with the 𝑖th element 
given by 𝜕𝑓t(𝜃T)/𝜕𝜃 = 𝜕 < 𝑟t|𝜃T >/𝜕𝜃, and 𝚺(𝜃T) = cov(𝒓|𝜃T) is the noise covariance of the 
population activity vector 𝒓. Therefore, linear Fisher information is fully determined by the first 
two moments of the population activity, irrespective of the presence of higher-order moments. 
Furthermore, if 𝜃y = 𝒘qz𝒓 − 𝒇(𝜃T){ + 𝜃T is the unbiased minimum-variance locally linear estimate 
of 𝜃, its variance is given by var(𝜃y|𝜃T) = 1/𝐼(𝜃T) (Cover & Thomas, 2006). In practice, 𝒇′(𝜃T) 
and 𝚺(𝜃T) are approximated by their empirical estimates, 𝒇′(𝜃T) ≈ (𝒇y(𝜃#) − 𝒇y(𝜃"))/𝛿𝜃, and 
𝚺(𝜃T) ≈ (cov(𝒓|𝜃") + cov(𝒓|𝜃#))/2, where 𝜃",# = 𝜃T ∓ 𝛿𝜃/2. This naïve estimate is biased but a 
bias-corrected estimate can be used (Kanitscheider, Coen-Cagli, Kohn, et al., 2015). 
 By definition, Fisher information is a measure of fine discrimination performance around 
a specific reference 𝜃T, requiring small 𝛿𝜃. As we show in the SI, the same measure with 𝒇′(𝜃T) 
and 𝚺(𝜃T) replaced by their empirical estimate, can be used for coarse discrimination for which 
𝛿𝜃 is larger. Furthermore, this generalization corresponds to (𝑑′/𝛿𝜃)#, where 𝑑′ is the sensitivity 
index used in signal detection theory (Green & Swets, 1966), becomes equivalent to Fisher 
information in the 𝛿𝜃 → 0 limit, and shares many properties with the original Fisher information 
estimate. In particular, the same bias correction leads to unbiased estimates. Kanitscheider et 
al. (2015) lack an estimate of the variance of the bias-corrected Fisher information estimate that 
can be computed from data, so we provide a derivation thereof in the SI. 
 To relate (generalized) Fisher information to discrimination thresholds, we observe that 
the variance of the stimulus estimate 𝜃y is 1/𝐼(𝜃T). Assuming this estimate to be Gaussian 
across trials, the difference in estimates across two stimuli which differ by Δ𝜃 is distributed as 
N(Δ𝜃, 2/𝐼(𝜃T)). Therefore, the probability of correctly discriminating these stimuli is 
Φ(Δ𝜃�𝐼(𝜃T)/2)	 (Averbeck & Lee, 2006; Y. Chen, Geisler, & Seidemann, 2006; Nogueira et al., 
2019), where Φ(⋅) is the cumulative function of a standard Gaussian. Setting the desired 
probability correct to 80% and solving for Δ𝜃 results in the drift direction discrimination threshold 
Δ𝜃 = Φ@"(0.8)�2/𝐼(𝜃T). 

Estimating Fisher information from neural data 
Our Fisher information estimates have two sources of uncertainty. First, they rely on empirical 
estimates of 𝒇′(𝜃T) and 𝚺(𝜃T) from a limited number of trials that are thus noisy. Second, we 
assume that recorded neurons to be a small, random subsample of the full population. As we 
want to estimate the average Fisher information across such subsamples across different 
population sizes, observing only a single subsample introduces additional uncertainty. 

We will first focus on the uncertainty due to a limited number of trials. We can find an 
unbiased estimate of 𝐼D for a population of 𝑁 neurons by a biased-corrected estimate 𝐼�D. Our 
aim is to fit models to how 𝐼�D changes with 𝑁. We can estimate this change by computing 𝐼�" for 
a single neuron, and then successively add neurons to the population to find 𝐼�#, 𝐼�:, … However, 
this procedure causes 𝐼�D and 𝐼�DI" to be correlated, as their estimates share the data of the 
previous 𝑁 neurons. Therefore, we need to account for these correlations when fitting the 
information estimates across multiple 𝑁. Fortunately, the change in information across 
successive 𝑁, Δ𝐼�D = 𝐼�D − 𝐼�D@" is uncorrelated, that is cov(Δ𝐼�D, Δ𝐼�DI") = 0 (see SI). The intuition 
underlying this independence is that the response of each neuron can be decomposed into a 
component that is collinear to the remaining population and one that is independent of it. Only 
the independent component contributes additional information, making the information increase 
due to adding this neuron independent of the information encoded in the remaining population. 
Overall, rather than fitting the information estimates, we will instead fit the information increases 
across different 𝑁. 

To handle the uncertainty associated with subsampling larger populations, we assumed 
that the small recorded population is statistically representative of the full population. Then, our 
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aim is to simulate random draws of the size of the recorded population from the full, much larger 
population. We achieved this simulation by randomly drawing neurons from the recorded 
population, without replacement, up to the full recorded population size, effectively resulting in a 
random order of adding recorded neurons to the population. For each such ordering, we 
estimated the information increase with each additional neuron. As the information in the total 
recorded population is the same, irrespective of this ordering, the information increases Δ𝐼D and 
Δ𝐼� for 𝑁 ≠ 𝑀 will on average be negatively correlated across different orderings. This is an 
artifact of re-using the same data to simulate samples from a larger population. As long as the 
full population is significantly larger than the one we recorded from, the probability of re-
sampling the same pair of neurons from the full population is exceedingly small, such that we 
can ignore these correlations (see SI). Any negative correlations between information increases, 
however small, will reduce the variance of our Fisher information estimates. Therefore, by 
ignoring these correlations, we will estimate an upper bound of this variance, and thus 
overestimate the uncertainty. In summary, we estimated the uncertainty associated with 
subsampling larger populations by estimating the moments of the Fisher information increase by 
bootstrap estimates across different orderings with which neurons are added to the population. 
As shown in Fig. S7a, this procedure also captures the uncertainty associated with a limited 
number of trials, such that no extra correction is needed to account for this second source of 
uncertainty. 

Overall, we estimated the moments of the Fisher information increase Δ𝐼�D for the 
discrimination of 𝜃" and 𝜃# as follows. First, we estimated the empirical moments 𝒇y′ and 𝚺� using 
the same number of trials for 𝜃" and 𝜃#. Second, we chose a particular random order with which 
to add neurons to the population. Third, we used this order to estimate Δ𝐼�", Δ𝐼�#, … by use of the 
biased-corrected Fisher information estimate applied to 𝒇y′ and 𝚺�. Fourth, we repeated this 
estimate across 104 different neural ordering to get 104 bootstrap estimates of the Fisher 
information increase sequence. Fifth, we used the bootstrap estimate to compute the moments 
µD = 〈Δ𝐼�D〉 and 𝜎D# = var(Δ𝐼�D) for each 𝑁, which we in turn use to fit the information scaling 
curves (see below). As the individual increases are independent across 𝑁, we used its moments 
to additionally estimate the moments of 𝐼�D = ∑ Δ𝐼�cD

c�" , which are given by 〈𝐼�D〉 = ∑ 𝜇cD
c�"  and 

var(𝐼�D) = ∑ 𝜎c#D
c�" . We used these moments to plot the Fisher information estimates in Figs. 3a, 

4b/d and 5a. 

Fisher information scaling with limited information 
Moreno-Bote et al. (2014) have shown that for large populations encoding limited asymptotic 
information 𝐼C, the noise covariance can be decomposed into 𝚺 = 𝚺T + 𝐼C@"𝒇′𝒇′q, where only the 
𝒇′𝒇′q component, called differential correlations, limits information. Assuming a population size 
of 𝑁 neurons, we can apply the Sherman-Morrison formula to the above noise covariance 
decomposition (Moreno-Bote et al., 2014; Pitkow et al., 2015) to find 𝐼D@" = 𝐼T,D@" + 𝐼C@", 
where 𝐼D = 𝒇′q𝚺D@"𝒇′ is the Fisher information in this population, and 𝐼T,D = 𝒇′q𝚺T@"𝒇′ is the Fisher 
information associated with the non-limiting noise covariance component 𝚺T. Furthermore, 
assuming that this non-limiting component contributes average information 𝑐 per neuron, that is 
𝐼T,D = 𝑐𝑁, results in Eq. (1) in the main text. We also tested a model in which 𝐼T,D initially scaled 
supralinearly in 𝑁. We found this model by integrating 𝑐(1 − 𝑒@D/�) from zero to 𝑁, resulting in 
𝐼T,D = 𝑐(𝑁 + 𝜏(𝑒@D/� − 1)) with parameter 𝜏 that controls the extent of the initial supralinearity. 
The two models become equivalent with 𝜏 → 0. The above derivation relies on the traditional 
Fisher information definition for fine discrimination. The results remain unchanged when moving 
to Fisher information generalized to coarse discrimination. 
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Fitting information scaling models 
We compared three models for how Fisher information 𝐼D scales with population size 𝑁. The 
first unlim model assumes linear scaling, 𝐼D = 𝑐𝑁, and has one parameter, 𝜙" = {𝑐}. The 
second lim model, given by Eq. (1) in the main text, assumes asymptotic information 𝐼C, and 
that the Fisher information associated with the non-limiting covariance component increased 
linearly, 𝐼T,D = 𝑐𝑁. This model thus has two parameters, 𝜙# = {𝑐, 𝐼C}. The third lim-exp model 
assumes an initial supralinear scaling of 𝐼T,D, as described above, and has three parameters, 
𝜙: = {𝑐, 𝐼C, 𝜏}. The lim-exp model fits the data consistently worse than the lim model (Fig. S1b), 
such we did not consider it in the main text. 

As the Fisher information estimates in data are correlated across different population 
sizes, we did not directly fit these estimates. Instead, we fitted how they changed when adding 
additional neurons, as the estimated Fisher information increase is uncorrelated across different 
population sizes. That is, we used the likelihood function 𝑝(𝑋|𝜙) = ∏ N(𝜇c(𝑋)|Δ𝐼c,�, σ�#(𝑋))	D

c�" , 
where 𝑋 is the recorded data (that is, the recorded population activity in all trials with the drift 
directions that are being discriminated, yielding the desired moments 𝜇", … , 𝜇D and 𝜎"#, … , σ�# ), 𝜙 
are the model parameters, Δ𝐼c,� = 𝐼c,� − 𝐼c@",� is the information increase predicted by that 
model, and 𝜇c and 𝜎c# are the mean and variance of the estimated information increase in data 
𝑋 for a particular discrimination when moving from population size 𝑛 − 1 to 𝑛 (see further 
above). 

We regularized the fits by weakly informative parameter priors. For 𝑐 we used 𝑝(𝑐) ∝
St"(〈𝜇c〉, 100(〈𝜇c〉 + 0.5)#), which is a Student’s t distribution with mean 〈𝜇c〉, variance 
100(〈𝜇c〉 + 0.5)# and one degree of freedom, and where 〈𝜇c〉 is the average estimated 
information increase in the recorded population. Thus, the prior is centered on the empirical 
estimate for 𝑐 for the linear scaling model, but has a wide variance around this estimate. We 
furthermore limited 𝑐 to the range 𝑐 ∈ [0,∞]. For 𝐼C we used 𝑝(𝐼C) ∝ St"(〈𝐼�D〉, 100	𝑚𝑎𝑥{1, 〈𝐼�D〉}#) 
over 𝐼C ∈ [0,∞], which is a weak prior centered on the empirical information estimate 〈𝐼�D〉 =
∑ 𝜇cD
c�"  for the recorded population. For 𝜏 we used 𝑝(𝜏) ∝ St"(0, 𝑁#) over 𝜏 ∈ [0,∞]. 

Technically, the data shouldn’t inform the priors, as it does here. However, this is not a concern 
for the extremely weak and uninformative priors used here. 

We fitted the different models to data 𝑋 of individual sessions/mice and discriminations 
by sampling the associated parameter posteriors, 𝑝(𝜙|𝑋) 	∝ 𝑝(𝑋|𝜙)𝑝(𝜙), by slice sampling 
(Neal, 2003). The slice sampling interval widths were set to (〈𝜇c〉 + 0.5)/2 for 𝑐, to 
𝑚𝑎𝑥{1, 〈𝐼�D〉}/5 for 𝐼C, and to 10 for 𝜏. The samplers were initiated by parameter values found by 
maximum-likelihood fits for the respective model. For each fit, we sampled four chains with 105 
posterior samples each, after discarding 100 burn-in samples, and keeping only each 10th 
sample. We used the Gelman-Rubin potential scale reduction factor (Gelman & Rubin, 1992) to 
assess MCMC convergence. To fit the same model to multiple discriminations simultaneously 
(i.e., our pooled fits), we sampled from the pooled posterior 𝑝(𝜙|𝑋":¤) ∝ 𝑝(𝜙)∏ 𝑝(𝑋¥|𝜙)¤

¥�" , 
where 𝑋¥ is the data associated with the 𝑘the discrimination. 

We compared the fit quality of different models by the Watanabe-Akaike information 
criterion (WAIC; Watanabe, 2013). This criterion supports comparing models with different 
numbers of parameters, as it takes the associated change in model complexity into account. It is 
preferable to the Akaike information criterion or Bayesian information criterion, as it provides a 
better approximation to the cross-validated predictive density than other methods (Gelman, 
Hwang, & Vehtari, 2014). 

We found posterior predictive densities by empirically marginalizing over the posterior 
parameter samples, 𝜙("), . . . , 𝜙(§), pooled across all four chains. That is, we approximated the 
density of any function 𝑓(𝜙) of these parameters by 𝑝(𝑓|𝑋) ≈ 𝐽@" ∑ 𝛿 ©𝑓 − 𝑓z𝜙(ª){«§

ª�" , where 
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𝛿(⋅) is the Dirac delta function. This approach was used to find the predictive density of the fitted 
information increase in Fig. 4a (top), as well as the information in Fig. 4a (bottom) and Fig. 4c. 
We also used it to estimate the posterior distribution of the required population size 𝑁[X to 
capture 95% of the asymptotic information. 

Additional data analysis and statistical tests 
Except for Figs. 6 and 7, all statistical tests across sessions/mice were restricted to mice 1-4. 

Figure 3. We removed noise correlations in the recorded data by, for each neuron, 
randomly permuting the trial order across all trials in which the same drift direction was 
presented. We then compared the total information in the recorded population with (𝐼D

¬®mm¯ln) 
and without (𝐼D) trial-shuffling by a bootstrap test (Fig. 3d). To do so, we estimated mean and 
variance of that total recorded information as described above, and then computed the 
probability of the null hypotheses ( 𝐼D

¬®mm¯ln ≤ 𝐼D) by 𝑝 = 𝑝𝑟(𝐼D
¬®mm¯ln −	𝐼D < 0), where we 

assumed Gaussian information estimates. We compared 𝐼D
¬®mm¯ln to 𝐼D across sessions/mice 

by a paired t-test across all non-overlapping discriminations with 𝛿𝜃 = 45∘ (Fig. 3d). We focused 
exclusively on discriminations that didn’t share any drift directions, to avoid comparing estimates 
that rely on the same underlying set of trials. Unless otherwise noted, all non-overlapping 
discriminations with 𝛿𝜃 = 45∘ were performed on the 0° vs. 45°, 90° vs. 135°, 180° vs. 225°, and 
270° vs. 315° discriminations. To test for significant differences in the drift direction 
discrimination thresholds (Fig. 3f) across multiple discriminations with the same difference in 
drift directions, 𝛿𝜃 , we relied on the one-to-one mapping between information and 
discrimination threshold, and performed the test directly on the estimated information. For 
𝐾discriminations (in our case 𝐾 = 4 for non-overlapping discriminations), let 𝐼D,¥, 𝑘 = 1, . . . , 𝐾 
denote the information in the recorded population for discrimination 𝑘, 𝐼D,¥ ∼ N(𝜇D,¥, 𝜎D,¤# ). To 
test the null hypothesis that all 𝐼D,¥ share the same mean, we drew 105 bootstrap samples each 
from 𝑇𝑆µF = ∑ z𝐼D,¥ − 𝜇D,¥{

#¤
¥�"  and 𝑇𝑆µ¶ = ∑ z𝐼D,¥ − 𝜇D{

#¤
¥�"  with 𝜇D = 𝐾@" ∑ 𝜇D,¥¤

¥�" , and then 
computed the probability that 𝑇𝑆µ¶ is larger than 𝑇𝑆µF by 𝑝 = 𝑝𝑟(𝑇𝑆µF − 𝑇𝑆µ¶ < 	0). 
 Figure 4. To test how 1/𝐼D scales with 1/𝑁 (Fig. 4b), we found the moments of 1/𝐼D by 
〈1/𝐼D〉 ≈ 1/〈𝐼D〉 and var(1/𝐼D) ≈ 𝑣𝑎𝑟(𝐼D)/〈𝐼D〉¸. To fit 〈1/𝐼D〉 over 1/𝑁, we performed weighted 
linear regression with weights 1/var(1/𝐼D) for each 𝑁. The pooling across different 
discriminations in Fig. 4d was performed over 45° vs. 90°, 135° vs. 180°, 225° vs. 270°, and 0° 
vs. 315° for pooled 1, and 0° vs. 45°, 90° vs. 135°, 180° vs. 225°, and 270° vs. 315° for pooled 
2. All other pooled estimates (Figs. 4e, 6d and e, and 7b) were pooled across 45° vs. 90°, 135° 
vs. 180°, 225° vs. 270°, and 0° vs. 315° for 𝛿𝜃 = 45∘, across  45° vs. 135°, 90° vs. 180°, 225° 
vs. 315°, and 0° vs. 270° for 𝛿𝜃 = 90∘, and across 45° vs. 180°, 90° vs. 315°, and 0° vs. 225° for 
𝛿𝜃 = 135∘. Note that the estimate 𝐼D’s are correlated across different 𝑁’s, and we did not correct 
for these correlations. Such a correction might lower the reported 𝑅# values. Therefore, the 
Bayesian model comparison across different information scaling models, as reported in the 
main text, provides a statistically sounder confirmation of limited asymptotic information. 
 Figure 5. The shaded error regions in Fig. 5a relied on parametric bootstrap estimates. 
For information scaling for a fixed ordering, we computed the estimate and variance of 𝐼", 𝐼#, … 
by the Fisher information and the variance of this estimator (see SI), and used these estimates 
to compute mean and variance of the information increase associated with adding individual 
neurons to the population. We then re-sampled these information increases from Gaussian 
distributions with the found moments, and summed the individual samples to find different 
samples for the whole information scaling curve. These samples were in turn used to estimate 
mean and variance of the information scaling for a fixed order with which neurons were added 
to the population. This procedure was chosen, as the increase in Fisher information is 
independent across added neurons, whereas the total Fisher information is not. A similar 
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procedure was used to find the estimates for random orderings, for which we additionally 
shuffled the order of neurons across different samples of the information scaling curve. The 
above procedures yielded 103 bootstrap samples for each information scaling curve, which we 
in turn used to find samples for the population sizes required to capture 90% of the total 
information (Figs. 5a and b). In neither case did we apply bias-correction of the Fisher 
information estimate. This bias correction would have been stronger for larger population sizes, 
which would have led to a seeming (but not real) drop of information with population size, 
resulting from a lower number of trials per neuron in the population, and an associated stronger 
bias correction. 
 Figure 6. To identify for individual discriminations if increasing the stimulus contrast 
increased information in the recorded population (Figs. 6a and b), we estimated information in 
the recorded population by the bias-corrected Fisher information estimate (Kanitscheider, Coen-
Cagli, Kohn, et al., 2015), and its variance by our analytical expression for this estimate’s 
variance (see SI). We assumed the estimate for low and high contrast, 𝐼D¹º and 𝐼Dµ», to be 
Gaussian, and found the probability of no information increase by 𝑝𝑟(𝐼Dµ» ≤ 𝐼D¹º), using the 
aforementioned moments. The paired t-test across sessions/mice (Fig. 6b) did not take into 
account the information estimates’ variance. For Fig. 6e, higher contrast was considered to 
significantly increase the information in the recorded population (filled dots in Fig. 6e), if it did so 
for at least five out of eight possible discriminations with 𝛿𝜃 = 45∘. 
 Figure 7. To test the relationship between 𝑐 and 𝐼C in Fig. 7d, we performed the linear 
regression 𝑙𝑜𝑔"T(𝑐) = 𝛽T + 𝛽"𝑙𝑜𝑔"T(𝐼C). The relationship between 𝑁[X and 𝐼C was found by 
substituting 𝑐 = 10¿¶𝐼C

¿F into the expression for 𝑁[X, resulting in 𝑁[X = 0.95	𝐼C
"@¿F/(0.05 × 10¿¶). 

To find the information loss for using a smaller population size than required, we assumed 𝐼Ct =
𝛼𝐼C¯À and computed the fraction 𝐼Dt/𝐼Ct at 𝑁 = 𝑁[X¯À, which is the population size that captures 
95% of 𝐼C¯À. Substituting the found relationships between 𝐼C, 𝑐, and 𝑁[X results in this fraction to 
be given by 0.95/(0.95 + 0.05	𝛼"@¿F), which, for 𝛼 = 3, equals 0.93. Interestingly, this fraction 
depends only the relationship between 𝐼C¯À and 𝐼Ct, as quantified by 𝛼, but not on their individual 
values. 

Figure 8. All estimates in Fig. 8 are averages across 10 random splits of the recorded 
data. For each split, half of the trials were used to compute the principal dimensions, 𝑸ÂkÃtc, 
using the spectral decomposition 𝚺ÂkÃtc = 𝑸ÂkÃtc𝑫ÂkÃtc𝑸ÂkÃtcq , where 𝑫ÂkÃtc is diagonal, 𝑸ÂkÃtc is 
the matrix of unit eigenvectors, and we denote the 𝑛th column vector of 𝑸ÂkÃtc by 𝒒c,ÂkÃtc. The 
second half of trials was used to find 𝒇ÂlÆÂÇ  and 𝚺ÂlÆÂ, from which we computed the shown 
estimates as follows. The noise variance associated with the 𝑛th principal dimension was found 
by 𝒒c,ÂkÃtcq 𝚺ÂlÆÂ𝒒c,ÂkÃtc. The 𝒇′ alignment to the 𝑛th principal dimension was found by cos#(𝛼c) =
z𝒒c,ÂkÃtcq 𝒇ÂlÆÂÇ {#/𝒇ÂlÆÂÇ q𝒇ÂlÆÂÇ . The information encoded in the first 𝑛 principal dimensions was 
found by 𝐼c = 𝒇ÂlÆÂÇ q𝑸":c,ÂkÃtc(𝑸":c,ÂkÃtcq 𝚺ÂlÆÂ𝑸":c,ÂkÃtc)@"𝑸":c,ÂkÃtcq 𝒇ÂlÆÂÇ , where 𝑸":c,ÂkÃtc is the 
matrix formed by the first 𝑛 columns of 𝑸ÂkÃtc. 

Discussion. To compare the estimated population sizes to the number of neurons in V1, 
we asked for the number of neurons required to encode 95% of the asymptotic information 
associated with a direction discrimination threshold of 1°. This threshold most likely exceeds the 
behavioral performance that mice can reach even for high contrast stimuli (Abdolrahmani et al., 
2019; Glickfeld et al., 2013) and thus provides an upper bound on the required population size. 
Achieving such a low threshold requires an asymptotic information of 4651 rad-2 (Fig. 3e), and 
approximately 48,000 neurons are necessary to encode 95% of this information (Fig. 7d). 
Current estimates of the neural density of mouse V1 range from 92,400 to 214,000 neurons per 
mm3 (Herculano-Houzel et al., 2013; Keller et al., 2018). For area V1 with an approximate size 
of 3.063mm3 (Herculano-Houzel et al., 2013), this amounts to 283,000 to 655,500 neurons 
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(Keller et al., 2018). Therefore, our estimated population sizes are well within those available in 
V1 of mice. 
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