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Abstract 14 

Background: Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly 15 

established or unknown mechanisms. While there is a wealth of data on the biological and biophysical 16 

properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds 17 

commonly present in food. Computational methods for high-throughput identification of food compounds with 18 

specific biological effects, especially when accompanied by relevant food composition data, could enable more 19 

effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) 20 

to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of 21 

foods and food compounds. 22 

 23 

Results: PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to 24 

uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a 25 

random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using 26 

structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a 27 

library of food compounds with known molecular structures from the FooDB database. The output is a list of 28 

food compounds with high confidence of eliciting relevant biological effects, along with their source foods and 29 

associated quantities in those foods, where available. Applying PhyteByte to the PPARG gene, we identified 30 

irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified 31 

agonists of this important metabolic regulator. 32 

 33 

Conclusions: PhyteByte identifies food-based compounds that are predicted to interact with specific protein 34 

targets. The identified relationships can be used to prioritize food compounds for experimental or 35 

epidemiological follow-up and can contribute to the rapid development of precision approaches to new 36 

nutraceuticals as well as personalized dietary planning. 37 

 38 
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Background 41 

While a select set of essential nutrients for humans has been well characterized, there is an abundance of 42 

lesser-known compounds in the human diet, representing a type of exposure that has been referred to as the 43 

“dark matter” of the human exposome [1-2]. These dietary bioactive compounds can have meaningful effects 44 

on human phenotypes, to the extent that some, such as lutein and several flavonoids, are under discussion for 45 

the establishment of dietary recommended intakes [3]. Despite the potentially important cumulative effects of 46 

these compounds, little is known about their bioactivity in the body due to the difficulty of experimentally 47 

assaying thousands of compounds for activity against thousands of potential gene products, combined with the 48 

complexities of absorption, microbial interactions, and metabolism [4]. Cheminformatic methods, including 49 

quantitative structure activity relationship (QSAR) models, can provide in silico approaches to prioritize 50 

compounds and foods in experimental and epidemiological settings when only the structure of a food 51 

compound is known. Pharmaceutical drugs can provide a critical set of anchors for such models, as their 52 

primary biological mechanisms of action are typically well characterized.  53 

 54 

Computational approaches to generating hypotheses related to food and food compound bioactivity have been 55 

introduced [5-6]. However, existing methods have focused primarily on literature mining based on natural 56 

language processing, rather than optimizing for the output of food compound activities related to a given input 57 

gene or protein of interest. Methods described to date have used relatively basic QSAR methods, such as 58 

comparisons based on Tanimoto similarity scores, which may fail to capture important signals. Additionally, 59 

there can be significant utility in identifying the food(s) that contains a compound of interest both as a source 60 

material or in the formulation of a novel product. The growth of relevant databases containing pharmaceutical 61 

and food composition information continually offers opportunities to revisit and improve QSAR tools. The 62 

United States Department of Agriculture (USDA) has a long history of producing high-quality data for its food 63 

composition databases [7], and inclusion of established or potential health effects would be a useful extension 64 

of these data. 65 

 66 
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Here, we develop and demonstrate a machine learning-based approach, PhyteByte, that assigns putative 67 

bioactivity to food compounds based on a training set of pharmaceutical drugs. We show the efficacy of 68 

PhyteByte using the specific example of PPARG, the known target of the thiazolidinedione (TZD) drug class. 69 

 70 

Implementation 71 

In order to identify functional relationships between a food compound and a drug, along with its associated 72 

bioactivity data, we used data from two sources: ChEMBL and FooDB. ChEMBL is a manually curated 73 

database of almost 2 million (1,879,206 in version 25) bioactive molecules with drug-like properties [8-9]. 74 

These data were retrieved from ebi.ac.uk/chembl/ on 9/27/2019. FooDB (version 1.0) is a comprehensive 75 

resource on food constituents, chemistry and biology, with over 85,000 compounds in its repository [10]. These 76 

data were accessed from foodb.ca on 9/27/2019. As allele-specific binding data are not available in ChEMBL, 77 

PhyteByte currently does not have the means to incorporate genetic variants into its prediction. 78 

 79 

The PhyteByte computational pipeline is outlined in Figure 1 (along with details related to a specific gene input; 80 

see Results & Discussion). The processing of data through PhyteByte is initiated by selection of an input 81 

protein target query, from which drugs acting on that target (sourced from ChEMBL) are obtained to provide 82 

computational fingerprints of their molecular structure. The fingerprints are processed by a predictive model to 83 

yield likely bioactivity for food compounds (sourced from FooDB), which in turn are queried in FooDB to 84 

retrieve foods containing those compounds, with quantified amounts where available. 85 

 86 
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 87 

Figure 1. Schematic data flow for PhyteByte from protein target input to predicted bioactive food compounds. 88 

 89 

Specifically, a target specification (provided in the form of an HGNC gene symbol) serves as input for a query 90 

to ChEMBL that retrieves chemical structures for molecules with evidence of relevant bioactivity for the protein 91 

encoded by that gene. Bioactivity is defined as an IC50 (inhibitory concentration: the concentration of the 92 

molecule required to inhibit the biochemical function of the target by 50%) or EC50 (effective concentration; the 93 

concentration of the molecule required to induce 50% of the maximal response or effect on the target) of 94 
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<20,000 nM based on the user-specified compound effect type (antagonist vs. agonist). Because ChEMBL 95 

does not contain explicit annotations as to the effect type, a heuristic is used in which the strength of 96 

antagonists and agonists are evaluated using IC50 and EC50 values, respectively. Compound structures are 97 

retrieved as simplified molecular-input line-entry system (SMILES) strings. SMILES strings are a dense, 98 

character-based representation of chemical compounds (for example, 99 

“COC1=CC(=CC(=C1OC)O)C2=COC3=C(C2=O)C(=C(C(=C3)O)OC)O” for irigenin, a compound in Table 1). 100 

The SMILES strings are then converted into FP2 binary fingerprints using the Pybel Python package [11], 101 

which acts as a wrapper for the OpenBabel chemical file format interconversion tool. FP2 fingerprints are a 102 

binary compound representation (as a 1024-bit vector) formulated based on the occurrence of specific linear 103 

fragments up to 7 atoms in length. Further details on the SMILES and FP2 formats are available from the Open 104 

Babel publication [12] and online Wiki (https://openbabel.org). A set of negative examples, chosen to be 10 105 

times the size of the positive set, is also retrieved at random from the full set of ChEMBL molecules. The 106 

negative examples are converted to FP2 fingerprints after filtering such that no negative compound has a 107 

Tanimoto similarity score >0.6 with any molecule in the positive set. The Tanimoto coefficient is defined as an 108 

association coefficient (in comparison to a distance coefficient) that measures similarity, here as chemical 109 

similarity based on SMILES representation of the molecule [13]; formulae for the Tanimoto coefficient are 110 

presented elsewhere [14]. No explicit upper limit for molecular mass of the bioactive molecules is set, but we 111 

note that the vast majority (>98%) of molecules in ChEMBL are categorized as small molecules. 112 

 113 

Next, a random forest model is trained (using the sklearn Python package) to classify compounds as to their 114 

bioactivity against the protein of interest. Inputs consist of the binary fingerprints (a binary feature vector of 115 

length 1024) and class labels (positive if evidence of bioactivity for the target exists in ChEMBL, or negative if 116 

not). The random forest classifier is an ensemble learning method that trains a set of independent decision 117 

trees to discriminate between positive and negative examples. Given a new compound (in this case, a food 118 

compound), binary predictions from each individual decision tree are averaged to output a probability of 119 

bioactivity. Models in PhyteByte use 100 component trees, with all additional parameters following sklearn 120 

defaults. The training and testing dataset split is created by assigning a random 30% of compounds to the 121 
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testing dataset (including a consistent random seed for reproducibility), with the remaining 70% assigned to the 122 

training dataset. We note that after evaluation, the final model used to process food compounds is trained on 123 

the full dataset. An initial indication of model performance is evaluated in a 30% held-out testing set using the 124 

F1 score, or the harmonic mean of precision and recall. This metric is calculated as 𝐹𝐹1 = 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 125 

where precision is the fraction of predicted bioactive compounds that have evidence for bioactivity in ChEMBL, 126 

and recall is the fraction of compounds with evidence for bioactivity in ChEMBL that are predicted to be 127 

bioactive. True positive (TP) is defined as bioactivity in ChEMBL and predicted to be bioactive; false positive 128 

(FP) is defined as no bioactivity in ChEMBL but predicted to bioactive; false negative (FN) is defined as 129 

bioactivity in ChEMBL but not predicted to be bioactive. Thus, precision = TP / (TP + FP), recall = TP / (TP + 130 

FN), and F1 is calculated as above. 131 

Using this trained model, the full set of food compounds available from FooDB are then characterized as to 132 

their probability of bioactivity with respect to the input protein. The list of probable dietary bioactive compounds 133 

is presented as output, along with their concentrations in foods as available in FooDB and an indication of 134 

whether the relationship is novel (i.e. does the compound lack existing evidence of bioactivity for the input 135 

protein in ChEMBL?). PhyteByte source code and installation instructions are available at 136 

https://github.com/seanharr11/phytebyte, and as a standalone tarball in Additional file 1 (capturing this 137 

repository at the time these analyses were performed). 138 

 139 

Results & Discussion 140 

We have demonstrated the functionality and output of PhyteByte using the input gene PPARG (CHEMBL235), 141 

whose protein product is the target of the thiazolidinedione (TZD) drug class. TZDs are widely prescribed to 142 

treat type 2 diabetes, and additionally may have broader cardiometabolic benefits [15]. However, TZDs also 143 

have documented side effects and FDA-issued alerts of adverse effects [16], suggesting a potential benefit of 144 

identifying alternative or complementary food-based bioactives. Details of the PhyteByte pipeline as realized 145 

for PPARG agonists are presented in Figure 1. 2977 positive compounds were retrieved from ChEMBL, along 146 

with 297,700 negative compounds. The trained model exhibited an F1 score (harmonic mean of precision and 147 

recall) of 0.94 in a 30% held-out set, indicating a reasonably strong discriminative capacity within the set of 148 
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molecules in ChEMBL. This score may be biased upwards due to limitations in the set of pharmaceutical 149 

compounds explored to date, but nonetheless indicates an ability to classify potential food compounds 150 

effectively. 151 

 152 

When used to score compounds from FooDB, the model identified a series of molecules with potential agonist 153 

bioactivity for PPARG. Table 1 lists the 10 molecules with a predicted bioactivity confidence of greater than 154 

0.60 that also had associated foods in FooDB; tabulated results include the identified food compound, common 155 

synonyms, CAS and FooDB identifiers, PhyteByte output score, whether the compound-PPARG interaction is 156 

a novel finding, and foods reported to contain that compound. Molecules such as pirinixic acid (or WY-14643) 157 

and xanthoxylol have been shown to activate PPARG [17-19], albeit the latter only as an activator of PPARG 158 

transcription [20]. Other molecules have little to no existing evidence in the scientific literature of acting as 159 

PPARG agonists. These include irigenin (an O-methylated flavone found in lima bean), sesamin (a lignan 160 

found in sesame and flaxseed), fargesin (a lignan from tea, herbs and spices), delta-sanshool (an n-acyl amine 161 

from herbs and spices), and the lignan sanshodiol (from herbs and spices). Such molecules could be 162 

prioritized for detailed experimental validation. Complete output of PhyteByte for PPARG as input and resulting 163 

identified compounds scoring above 0.50 is presented in Additional file 2. 164 

 165 

Tools such as PhyteByte consider only small molecules and are limited by the content of the input databases. 166 

Importantly, these resources are expected to become increasingly comprehensive, especially for food 167 

compounds. For example, efforts are underway by the USDA to expand their food composition databases [7], 168 

and recent investigations have identified additional compounds produced during food processing [21] and by 169 

human microbiota [22], which may promote certain health effects. While QSAR models are susceptible to false 170 

positives due to activity cliffs (key discontinuities in the structure-activity landscape), outputs from PhyteByte 171 

are intended to be only putative structure-activity relationships to be explored further through complementary 172 

computational and laboratory methods [23]. Experimental and/or epidemiological assessment eventually will be 173 

required to validate at least some subset of the algorithmic predictions before this tool could be used in clinical 174 

settings or for dietary recommendations. 175 
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 176 

In future versions of the software, we anticipate more flexibility in both the inputs and databases. For example, 177 

inputs may include phenotypes (to be linked to a set of target gene products and user-defined food compound 178 

datasets following a pre-defined schema may be used to complement FooDB. Additionally, as more follow-up 179 

testing of food compound-target interactions is performed, those results can be used as a complementary 180 

source of interactions for PhyteByte and form the basis for a catalog of all such interactions for a single food. 181 

Complementary data streams, such as those based on text mining [5], pharmacology networks [24] or drug 182 

interaction data (to identify potential similar food compound interaction effects), could provide additional 183 

support for food compound-phenotype links. Future work also should include more fine-grained annotations of 184 

positive training molecules (based on type of effect on the target, strength, and mechanism of action) as well 185 

as alternative QSAR modeling approaches [25].  186 

 187 

Conclusions 188 

PhyteByte is a machine learning-based tool for discovery of interactions between food compounds and specific 189 

proteins or phenotypes. The software enables prioritization of these compounds for future research and 190 

hypothesis generation for condition-specific dietary interventions. Applied to the PPARG gene, this tool 191 

recovered known ligands and generated the basis for new hypotheses useful for cell-based assays or 192 

epidemiological inquiries. Our work provides additional proof-of-concept for the emerging field of 193 

“computational nutrition” based on food compounds, building on previous research that applied cheminformatic 194 

approaches to assign putative biological function to molecules of interest. 195 

 196 

Availability and requirements 197 

Project name: Phytebyte 198 

Project home page: https://github.com/seanharr11/phytebyte 199 

Operating system(s): Unix-based (MacOS, Linux) 200 

Programming language: Python  201 

Other requirements: Python 3.6 or higher 202 
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License: AGPLv3 203 

Any restrictions to use by non-academics: License needed 204 

 205 

Abbreviations 206 

EC50 – effective concentration 207 

IC50 – inhibitory concentration 208 

PPARG – peroxisome proliferator activated receptor gamma 209 

QSAR – quantitative structure activity relationship 210 

SMILES – simplified molecular-input line-entry system 211 

TZD – thiazolidinedione 212 

USDA – United States Department of Agriculture 213 
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Table 1. Top food compound results from PhyteByte for input of PPARG. 291 

Compound Synonyms CAS ID1 FooDB ID Score2 Novel 

finding 

Foods3 

Pirinixic acid 2-Methylthioribosyl-trans-

zeatin; WY-14,643; CXPTA 

50892-23-4 FDB001402 0.96 False pea, wheat 

Amorfrutin A 3-Hydroxy-4-isopentenyl-

5-methoxybibenzyl-2-

carboxylic acid 

80489-90-3 FDB001743 0.88 False pigeon pea 

Irigenin 5,7,3'-Trihydroxy-6,4',5'-

trimethoxyisoflavone 

548-76-5 FDB008016 0.79 True lima bean, iris 

kemaonensis, leopard lily 

Xanthoxylol  (-)-Piperitol 54983-95-8 FDB000580 0.72 False herbs and spices, Asarum 

sieboldii 

Sesamin  (+)-Asarinin; Fagarol 607-80-7 FDB012573 0.72 False sesame, flaxseed, fats and 

oils 

2,3-

Dihydrobenz

ofuran 

2,3-Dihydro-1-benzofuran; 

Coumaran; 

Dihydrocoumarone 

496-16-2 FDB007352 0.72 True fenugreek 

(+)-Fargesin  (+)-Spinescin; 2-(3',4'-

Dimethoxyphenyl)-6-

(3'',4''-

methylenedioxyphenyl)-

3,7-

dioxabicyclo(3,3,0)octane; 

Methylpluviatilol; Planinin 

68296-27-5 FDB017481 0.69 True tea, herbs and spices  

delta-

Sanshool  

N-Isobutyl-2,4,8,10,12-

tetradecapentaenamide; 

g-Sanshool 

78886-65-4 FDB003203 0.65 True herbs and spices (general) 

Sanshodiol (5-Chloro-2-

hydroxyphenyl)acetic acid 

54854-91-0 FDB002461 0.65 True herbs and spices  

Samin  NA FDB018392 0.61 True fats and oils  
 

         

          

1 Chemical Abstracts Service Registry Number for the compound 

2 Score represents the predicted probability of the compound acting as a PPARG agonist 
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3 For results presented, data on compound amounts in food as extracted from FooDB were 

available only for sesamin in sesame, range: 62.7 mg/100 g to 644.5 mg/100 g 

 

Additional file 2. 
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