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ABSTRACT 
 
Linking mitochondrial DNA (mtDNA) mutations to patient outcomes has been a serious challenge. The 
multicopy nature and potential heteroplasmy of the mitochondrial genome, differential distribution of 
mutant mtDNAs among various tissues, genetic interactions among alleles, and environmental effects 
can hamper clinicians as they try to inform patients regarding the etiology of their metabolic disease. 
Multiple sequence alignments using samples ranging across multiple organisms and taxa are often 
deployed to assess the overall conservation of any site within a mtDNA-encoded macromolecule and to 
determine the acceptability of any given variant at a particular position. However, the utility of multiple 
sequence alignments in pathogenicity prediction can be restricted by factors including sample set bias, 
alignment errors, and sequencing errors. Here, we describe a novel and empirical approach for 
assessing site-specific conservation and variant acceptability that depends upon phylogenetic analysis 
and ancestral prediction and minimizes current alignment limitations. Next, we use machine learning to 
predict the pathogenicity of thousands of so-far-uncharacterized human alleles catalogued in the clinic. 
Our work demonstrates that a substantial portion of encountered mtDNA alleles not yet characterized 
as harmful are, in fact, likely to be deleterious. Beyond general applications of our methodology that lie 
outside of mitochondrial studies, our findings are likely to be of direct relevance to those at risk of 
mitochondria-associated illness.  
 
INTRODUCTION 
 

Because of the critical role that mitochondria play in metabolism and bioenergetics, mutations of 
mitochondria-localized proteins and ribonucleic acids can adversely affect human health (Alston et al. 
2017; Suomalainen and Battersby 2018; Khan et al. 2020). Indeed, at least one in 5000 people 
(Chinnery et al. 2000; Gorman et al. 2015) is overtly affected by mitochondrial disease. While some 
mitochondrial DNA (mtDNA) lesions can be clearly linked to mitochondria-associated illness, the clinical 
outcome for many other mtDNA alleles is more ambiguous (Vento and Pappa 2013). Heteroplasmy 
among the hundreds of mitochondrial DNA (mtDNA) molecules found within a cell (Stewart and 
Chinnery 2015; Hahn and Zuryn 2019), differential distribution of disease-causing mtDNA among 
tissues (Boulet et al. 1992), and modifier alleles within the mitochondrial genome (Elliott et al. 2008; 
Wei et al. 2017) magnify the problem of interpreting effects of any given mtDNA allele. Mito-nuclear 
interactions and environmental effects may also determine the outcome of mitochondrial DNA 
mutations (Wolff et al. 2014; Matilainen et al. 2017; Hill et al. 2019). Beyond the obvious importance of 
determining the genetic etiology of symptoms as a patient enters the clinic, the rapidly increasing 
prominence of direct-to-consumer genetic testing (Phillips et al. 2018) calls for an improved 
understanding of which mtDNA polymorphisms might affect human health (Blell and Hunter 2019). 
 

While a continuous increase in the number of human mtDNA sequences provides some 
indication of which mitochondrial changes may be deleterious, simple tabulation of which mtDNA alleles 
are or are not found among healthy individuals (Whiffin et al. 2017) may, on its own, lack power in 
predicting mitochondrial disease. Differing, strand-specific mutational propensities for mtDNA 
nucleotides at different locations within the molecule (Tanaka and Ozawa 1994; Reyes et al. 1998; 
Faith and Pollock 2003) should be taken into account when assessing population-wide data, yet allele 
frequencies are rarely, if ever, normalized in this way. Moreover, population sampling biases and recent 
population bottleneck effects can lead to misinterpretation of actual allele frequencies when determining 
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pathogenicity (Keinan and Clark 2012; Zuk et al. 2014; Chheda et al. 2017; Landry et al. 2018). A lack 
of selection against alleles that might act in a deleterious manner at the post-reproductive stage of life 
also makes likely the possibility that some mtDNA alleles will contribute to age-related phenotypes 
while avoiding clear linkage to mitochondrial disease (Medawar 1952; Maklakov et al. 2015).  
 

Multiple sequence alignments can offer important assistance when predicting an allele’s 
potential pathogenicity (Raychaudhuri 2011). However, caveats are also associated with predicting 
allele outcome by the use of these alignments. First, while knowledge of amino acid physio-chemical 
properties is widely considered to be informative regarding whether an amino acid substitution may or 
may not have a damaging effect on protein function (Dayhoff et al. 1978), the site-specific acceptability 
of a given substitution is ultimately decided within the context of its local protein environment 
(Zuckerkandl and Pauling 1965). Second, sampling biases and improper clade selection may deceive 
the clinician regarding the relative acceptability of a specific allele (Keinan and Clark 2012; Zuk et al. 
2014; Chheda et al. 2017; Landry et al. 2018). Third, epistasis between sites, combined with, loosely 
defined, the ‘environment’ can further complicate pathogenicity prediction (Kondrashov et al. 2002; 
Starr and Thornton 2016). Finally, alignment errors (Kawrykow et al. 2012; Iantorno et al. 2014) and 
sequencing errors (Chen et al. 2017; Smith 2019) may falsely indicate acceptability of a particular 
mtDNA alteration. 
 

Here, we deploy a novel methodology to calculate, with potentially unlimited dynamic range, and 
in a manner robust against sample bias, sequencing error, and alignment error, the relative 
conservation of mtDNA-encoded positions. By subsequent application of machine learning, we 
demonstrate that a surprising number of discovered, yet so-far uncharacterized mtDNA alleles are likely 
to promote disease. 
 
RESULTS 
 
Mapping apparent substitutions to a phylogenetic tree allows measurement of the relative 
conservation of positions within a macromolecule 
 

We previously introduced an improved, empirical approach for quantification of substitutions 
within evolving mtDNA-encoded macromolecules (Dunn et al. 2019), and we sought here to develop 
our methods for prediction of human allele pathogenicity. Toward this goal, we first retrieved full 
mammalian mtDNA sequences from the National Center for Biotechnology Information Reference 
Sequence (NCBI RefSeq) Database, then extracted specific sequences of from each RNA or protein 
coding gene based upon annotation of the Homo sapiens reference mtDNA (NC_012920.1). Next, we 
translated protein-coding sequences using the appropriate codon table, and aligned protein, tRNA, and 
rRNA sequences (Figure 1a). After concatenating sequences of each species based upon molecule 
class, we generated maximum likelihood trees (Figure 1b) before performing ancestral prediction 
(Figure 1c) to reconstruct the character values of each position at each bifurcating node within each 
tree. Subsequently, using the sequences of extant species and the predicted ancestral node values, we 
analysed each edge of the tree for the presence or absence of a mutation at each aligned human 
position (Figure 1d), since using character frequencies as a proxy of conservation is sensitive to sample 
biases among extant sequences. Subsequently, we centered our attention upon mutations localized 
between internal nodes of maximum likelihood trees (Figure 1e), excluding edges leading directly to 
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extant sequences and thereby minimizing the effects of alignment errors and sequencing errors that 
may lead to misinterpretations of variant pathogenicity. Moreover, mutations mapped to internal edges 
are more likely to represent fixed changes informative for the purposes of disease prediction, while 
polymorphisms that have not yet been subject to selection of sufficient strength or duration might be 
expected to lack predictive power. Inferred ancestral and descendent characters at each edge were 
extracted following generation of the substitution mapping matrix (Figure 1f). While our approach was 
first applied to mammalian sequence data, we subsequently performed the same analysis on a more 
limited set of primate sequences. 

 
Emerging from this workflow, we introduce a metric, SumSub(Int), for which we summed the 

number of these positional substitutions localized to internal edges of the tree. The SumSub(Int) value 
provides a readout of relative mutational propensity and, consequently, conservation. To ensure useful 
predictions regarding the relative conservation of each position with regard to substitution, we limited 
our analysis to alignment columns with infrequent gaps. When plotting increasing SumSub(Int) values 
across all amino acid positions with gap values of 1% or less, we noted a characteristic curve for both 
mammals (Figure 2a) and primates (Figure 2b). We first noted many positions that were nearly or 
completely invariant, implying critical roles for the folding or function of each polypeptide. Next, there 
was a slope of increasing SumSub(Int) values associated with amino acids of decreasing evolutionary 
constraint. At the end of each curve, there is a drastic increase in the slope associated with degenerate 
positions apparently under minimal or no selection. Similar curves are apparent when examining 
SumSub(Int) distributions associated with all rRNA- and tRNA-encoding nucleotides (Figures 2c - 2f) 
and when studying individual macromolecules within each class (Figures S1 - S3).  
 

Kolmogorov-Smirnov analysis of SumSub(Int) distributions for mammalian mtDNA-encoded 
proteins confirmed (da Fonseca et al. 2008) that there are often differences among mtDNA-encoded 
subunits when considering the number of positions under evolutionary constraint and/or the strength of 
selection upon those positions (Figures 3a and 3b). Importantly, our novel methodology supports 
previous data (da Fonseca et al. 2008; Nabholz et al. 2013) suggesting that the core subunits of 
cytochrome c oxidase (COX), and particularly the COI polypeptide, are the most highly conserved when 
considering mutability across amino acid positions (Figure 3c). We note the possibility that plots of 
SumSub(Int) values, and the statistical comparison of the distributions between two clades, may be an 
excellent methodology for detection of relaxed selection (B.A. Akpinar and C.D. Dunn, manuscript in 
preparation). 
 

To further demonstrate that low SumSub(Int) values correspond with conservation, we plotted 
mammalian SumSub(Int) sums for the three mitochondria-encoded subunits of cytochrome c oxidase 
(COX) onto the high-resolution structure of the bovine enzyme (Yoshikawa et al. 1998). Indeed, 
according to SumSub(Int) values extracted from the mammalian mtDNA tree, conserved positions were 
localized to the catalytic core of COX (Figure 3d and Movie S1). In contrast, more divergent amino 
acids faced toward external regions of the complex, especially in regions contacting the lipids of the 
mitochondrial inner membrane. 
 

Further advancing the idea that SumSub(Int) values are of utility in comparing conservation 
across sites of a macromolecule, we considered whether turning away from model- or simulation-based 
substitution rates and toward empirical measurement of mutations, as we have done here, would lead 
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to the undercounting of substitutions if the evolutionary divergence between two nodes in too large. To 
test the extent to which our method may undercount substitutions at aligned sites, we first selected 
alignment positions that were equal to or less than 1% gapped, then selected those sites of protein, 
rRNA, or tRNA that were under the most minimal selective constraint, ranking in the top 1% of 
SumSub(Int) values. We then compared the number of apparent changes summed across all positions 
along an internal tree edge to the number of substitutions occurring only in those selected, degenerate 
sites. The binary nature of our edge-focused substitution analysis, like other approaches investigating 
substitution, obscures the development of any Poisson distribution (Zuckerkandl and Pauling 1965; 
Goldman 1990) based on repeated degenerate site substitutions, so we expected the total number of 
degenerate sites mutated along an edge to plateau with increased evolutionary distance. Indeed, when 
an edge contained ~150 - 200 mtDNA-encoded protein positions with substitutions, the relationship 
between total degenerate sites substituted and the total substitutions along the edge changed from 
linear to asymptotic when examining mammalian (Figure 4a) or primate (Figure S4a) protein data. The 
relationship between tRNA and rRNA degenerate site substitutions and total edge substitutions is less 
clear-cut than for proteins (Figure S4b-S4e), potentially as a result of a lower number of degenerate 
positions available for analysis and of fewer substitutions at selected degenerate sites. Because the 
vast majority of edges (~90%) of our analyzed mammal and primate internal tree edges are 
characterized by less than 150 protein changes, and because most polypeptide positions encoded by 
mtDNA appear to be evolutionarily constrained and cannot reach the substitution levels characterizing 
the most degenerate sites (Figure 2), we expect that any potential under-counting of substitutions along 
longer edges will minimally affect our analysis of site-specific conservation within mtDNA.  
 
Summing apparent substitutions across a phylogenetic tree can provide a measurement of 
evolutionary divergence 
 

While SumSub(Int) values clearly provide a measure of relative selection when comparing 
different positions within the same type of mtDNA-encoded macromolecule, results obtained above also 
indicate that maximal SumSub(Int) values can scale with evolutionary divergence when moving from 
one taxonomic rank to another. When considering the set of aligned positions that are less than 1% 
gapped and are ranked within the top 2% of SumSub(Int) values, the median value was approximately 
six-fold higher in mammals than primates for protein coding positions and nearly five-fold higher for 
both rRNA and tRNA positions (Figure 4b). While measures of sequence divergence certainly need not 
correspond with chronological time (Kumar 2005), these values are consistent with the emergence of 
mammals roughly 200 million years ago (Upham et al. 2019) and the divergence of primates from other 
mammals approximately 70 million years ago (Pozzi et al. 2014; Reis et al. 2018). While our primary 
purpose here will be to predict the pathogenicity of mtDNA mutations, SumSub(Int) values from well-
aligned, yet degenerate sites along edges of a phylogenetic tree should be an important supplement to 
existing molecular clock methods. In this case, useful comparison of evolutionary divergence using our 
approach would require sufficient mtDNA sampling across clades of interest. 
 
Conservation values obtained from substitution sums are not limited in dynamic range 
 

Measures of conservation based upon character frequencies extracted from multiple sequence 
alignments, such as Shannon entropy, can be limited in dynamic range. Limits on dynamic range that 
can characterize frequency-based approaches to position analysis in alignments are especially 
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prominent when considering nucleotides, where only four possibilities exist at any given position. In 
contrast, given the demonstrated scaling of SumSub(Int) values with taxonomic rank, summing 
positional substitutions across edges of a phylogenetic tree should circumvent limitations on the 
dynamic range of calculated conservation values. To demonstrate the increased dynamic range 
provided by our method, we compared Shannon entropy values and SumSub(Int) values for well-
aligned protein (Figure 5a), rRNA (Figure 5b), and tRNA (Figure 5c) positions encoded by mammal and 
primate mtDNA. Since Shannon entropy values and SumSub(Int) values can both report upon 
conservation at aligned positions, these two variables were, as expected, correlated with one another. 
However, while the range of Shannon entropy values cannot increase when moving from primate-level 
analysis to mammal-level analysis, the range of SumSub(Int) values did increase, suggesting that our 
approach to comparing selection at different sites will benefit from the continuous accumulation of 
mtDNA sequence information.  
 
Low substitution at specific positions along phylogenetic tree edges is linked to human mtDNA 
allele pathogenicity 
 

Since summation of detected substitutions across a phylogenetic tree provided a robust 
measure of relative conservation at different macromolecular positions, we were confident that a 
phylogenetic analysis that includes SumSub(Int) values would be informative about the pathogenicity of 
human mtDNA alleles. To test this possibility, we focused our attention upon specific variants of protein 
and RNA encoding genes annotated within the MITOMAP database of human mtDNA alleles (Lott et al. 
2013). Indeed, we detected a clear relationship between the confirmed pathogenicity of mutations at 
mitochondria-encoded proteins and the conservation at amino acid positions, as reflected by 
SumSub(Int) values extracted from mammal (Figure 6a) and primate (Figure 6b) trees. Similarly, there 
was a strong link between tRNA mutation pathogenicity and SumSub(Int) values obtained from 
mammal (Figure 6c) and primate (Figure 6d) trees. The paucity of confirmed pathogenic mitochondrial 
rRNA mutations in the MITOMAP database made comparisons using this class of molecules 
impractical, yet future confirmation of additional pathogenic mutations in mitochondria-encoded rRNAs 
is expected to permit future analyses. Together, findings obtained by phylogenetic analysis of 
mitochondria-encoded proteins and tRNAs indicate that SumSub(Int) values will indeed be of valuable 
assistance in the prediction of which mtDNA mutations may lead to disease. 
 
Many mtDNA polymorphisms lead to uncharacterized pathogenicity 
 

We noted that the alignment positions of a subset of alleles currently annotated as ‘polymorphic’ 
in the MITOMAP database were distinguished by very low SumSub(Int) scores, suggesting that 
mutations at those positions would, in fact, be deleterious. In order to examine whether additional 
pathogenic mutations may exist among so-called ‘polymorphic’ alleles in MITOMAP, we devised an 
approach reliant upon our edge-wise mapping of apparent substitutions, yet only indirectly related to 
our SumSub(Int) values. Specifically, we looked to the predicted ancestral and descendent characters 
at mutations mapped to internal tree edges. If direct substitution from the human reference character to 
the mutant character (or the inverse, assuming the time-reversibility of evolution) is predicted internal to 
a tree, than such a change at a given position might be expected to be less deleterious than a 
substitution to or from the human character that was never encountered during evolution. Measuring 
selection by assessment of population allele frequencies is problematic due to potential sampling 
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biases and population bottlenecks (Auer and Lettre 2015), timing of mutation arrival within an 
expanding population (Luria and Delbrück 1943), and the divergent nucleotide- and strand-specific 
mutational propensities of mtDNA  (Tanaka and Ozawa 1994; Reyes et al. 1998; Faith and Pollock 
2003). Even so, we tested whether those MITOMAP-extracted protein mutations which cannot be 
directly linked to the human character in the mammal phylogenetic tree would be deleterious and might 
lead, by purifying selection, to a consequent reduction in the number GenBank full-length mtDNA 
samples harboring the mutation. Indeed, the distribution of MITOMAP samples was significantly 
different for those mutations for which a direct substitution could be identified in the mammalian tree 
than for those for which such a substitution could not be identified (Figure 7), strongly supporting the 
idea that many alleles currently considered polymorphic are harmful and may cause illness.  
 

Graphs of amino acids possible at each tested protein position (regardless of mtDNA sequence 
gaps) that emerge from analysis of direct substitutions within mtDNA-encoded Complex I (Figure S5) or 
Complex III, IV, and V (Figure S6), as predicted by use of mammalian data, are provided. Apparent 
direct substitutions to or from the human reference amino acid in mammals and primates derived from 
analyzing internal tree edges (Tables S1 and S2) or all tree edges (Tables S3 and S4) are also 
provided in tabular form. Moreover, we provide tables indicating the simple presence or absence of 
each amino acid at aligned human positions, as derived from internal tree nodes (including the 
predicted root) (Tables S5 and S6) or all nodes (Tables S7 and S8). 

 
Deployment of a support vector machine to predict deleterious mtDNA polymorphisms 
 

After finding that SumSub(Int) scores could help predict pathogenicity, and given the clear 
presence of harmful alleles among uncharacterized polymorphisms, we sought a high-throughput 
method that would identify potentially pathogenic polymorphisms. We turned to machine learning, and 
specifically a support vector machine (SVM) (Cortes and Vapnik 1995), to predict the risk of mtDNA 
polymorphisms detected in full-length human mtDNA sequences. Along with the mutations enumerated 
in MITOMAP, we also included mtDNA changes found in the recently established HelixMT database 
(HelixMTdb), which harbors the results of a new genetic survey, performed agnostic to phenotype, of 
nearly 200,000 people (Bolze et al. 2019). Positive training sets for protein consisted of mutations listed 
as confirmed pathogenic alterations within the MITOMAP database. Positive training sets for tRNA 
included confirmed deleterious alleles, as well as several alleles reported, but not confirmed, to be 
pathogenic. Negative training sets included those variants both annotated as polymorphic in MITOMAP 
and characterized by the highest counts of homoplasmic alleles in HelixMTdb, interpreted here as a 
sign of benignancy. Analyzed positions were gapped at 1.5% of sequences or less. We did not limit our 
input SVM features to SumSub(Int) scores, but expanded our features to SumSub(All), which includes 
edges leading to extant mtDNA sequences; the number of characters found at alignment positions 
(internal edges or all edges); direct substitution between the human reference character and the mutant 
human character within analyzed trees (internal edges or all edges); whether the mutant character is 
found at all in internal nodes or all nodes; and positional Shannon entropy.  
 

For alleles found within protein-coding genes, a SVM clearly permitted very reliable and 
automated predictions regarding which polymorphisms not yet classified as pathogenic may cause or 
contribute to disease. When analyzing data from mammalian (Figures 8a and 8b) or primate (Figures 
S7a and S7b) phylogenies, few confirmed pathogenic mutations were found among the predicted 
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negative set. Importantly, when examining the behavior of alleles in our negative training sets (Figures 
8c and S7c), no false-positives were predicted, suggesting that those test alleles predicted as 
pathogenic will have a high likelihood of causing effects in humans. Error rates for prediction dependent 
upon mammalian or primate datasets averaged less than 5%. No specific feature stood out as 
dominant in providing predictive value (Figure 8d and S7d), although this might be expected due to the 
lack of true independence of any given feature from the others (all, to some degree, are affected by site 
conservation). The robustness of our model in correctly identifying the true positives in the training set 
without corresponding loss in specificity (or false positive rate) is highlighted in the Receiver Operating 
Characteristic (ROC) curves of mammalian (Figure 8e) and primate (Figure S7e) protein predictions 
(Figure S7e).  

For tRNAs, a SVM-based approach provided predictive value, yet analysis of data rooted in 
mammal (Figure S8) or primate (Figure S9) datasets did not provide the superlative separation of 
negative and positive training sets that characterized the protein-coding alleles. ROC curves also 
suggest more modest predictive power of our SVM in predicting tRNA allele pathogenicity. The lack of 
confirmed pathogenic mutations in rRNA annotated in MITOMAP prevented predictive approaches. 
Protein (Tables S9 and S10) and tRNA (Tables S11 and S12) pathogenicity predictions are also 
provided in tabular form. 
 

While our positive training set consisted of alleles of confirmed pathogenicity, there are 
numerous other alleles provided in the MITOMAP database that are reported, yet not confirmed, to be 
pathogenic. Protein-coding alleles of this type were distributed on both sides of the SVM decision 
boundary (Figure 8a and S7a). Our machine learning approach predicted 38% (n = 227) of reported 
disease-associated alleles to be pathogenic when using the mammalian phylogenetic dataset (Figure 
8f), and 42% (n = 213) of reported disease-associated alleles were predicted to be pathogenic when 
using the primate phylogenetic dataset (Figure S7f). We note that MITOMAP annotations of these 
alleles of reported pathogenicity encompass clinical outcomes ranging from neuromuscular syndromes 
to consequences, like prostate cancer, not typically associated with mitochondrial disease. Given the 
very low false positive rate associated with our approach to predicting pathogenicity of alleles in 
protein-coding genes, our SVM approach provides strong additional support for nearly 100 alleles 
already suspected to cause disease. 
 

Since our training sets were initially gleaned from the MITOMAP database, we next turned to 
alleles reported only in HelixMTdb for further validation of our SVM prediction output. First, we expected 
that pathogenic alleles are more likely to be detected as heteroplasmic within human samples, since 
overt mitochondrial disease can require a deleterious allele to rise to a high proportion of the mtDNA 
molecules maintained by the cell (Stewart and Chinnery 2015; Hahn and Zuryn 2019). Strikingly, we 
found that for 69% of alleles that we predicted to be pathogenic using mammalian phylogenetic data (n 
= 640) and for 68% of alleles that we predicted to be pathogenic using primate phylogenetic data (n = 
706), all samples harvested were heteroplasmic (Figure 9a). In contrast, for samples predicted as non-
pathogenic, the number of alleles characterized by 100% homoplasmy was nearly six-fold lower: 12% 
for samples analyzed using mammal (n = 5877) or primate (n = 5575) phylogenetic data. The 
distribution of the fraction of samples heteroplasmic for each allele also differed significantly for those 
alleles that we predicted as pathogenic versus those predicted as not pathogenic (Figures 9b and 9c).  
Finally, the number of total samples in HelixMTdb harboring any given allele differed substantially 
between those predicted as pathogenic and those predicted as non-pathogenic (Figures 9d and 9e), 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902239


9 

suggesting purifying selection of now predicted, but not yet reported or confirmed, pathogenic 
mutations within the human population. Together, these analyses strongly support the utility of our SVM 
predictions in determining the pathogenicity of alleles affecting mtDNA-encoded polypeptides. 
 
DISCUSSION 
 
Establishment of a novel and empirical approach to quantifying conservation and evolutionary 
divergence 
 

We describe here the elaboration of a new methodology allowing quantification of the relative 
conservation of sites within and between genes, RNAs, and proteins. Rooted in the use of existing 
methods of phylogenetic tree generation and ancestral prediction, mapping subtitutions to phylogenetic 
tree edges can minimize errors resulting from sampling biases, from sequencing errors, and from 
alignment errors when calculating conservation. Moreover, our approach provides a measure of 
conservation that is theoretically unlimited in dynamic range and, consequently, can continue to benefit 
from the ever-increasing mtDNA sequence information available in public databases. Even nearly 
identical sequences can be utilized by our approach, allowing for a larger input dataset that can be 
deployed toward calculation of site-specific conservation. Moreover, SumSub(Int) values at degenerate 
sites can provide a measure of evolutionary divergence that should compliment other approaches 
dedicated to the calculation of branch length.  
 

Researchers often refer to generalized substitution matrices when predicting whether a change 
may be harmful or not (Dayhoff et al. 1978; Jones et al. 1992), yet amino acid exchangeability matrices 
change across clades (Zou and Zhang 2019), and successful substitution of any given character 
obviously occurs in the context of a very specific local environment (Zuckerkandl and Pauling 1965). By 
mapping substitutions to phylogenetic tree edges, ample sequence data can allow determination of 
character acceptability within the context of a particular macromolecular position, thereby improving 
prediction of variant pathogenicity. Accordingly, we have generated look-up tables emerging from the 
prediction of direct substitutions at well-supported internal edges within the mammalian and primate 
phylogenetic trees. These data will be, beyond application in our automated approaches to 
pathogenicity prediction, of great use to clinicians and genetic counselors when determining the 
potential outcome of detected mtDNA alleles.  
 

While we have currently taken advantage of the relatively abundant mtDNA sequence data 
available, the continuous compilation of nuclear sequences obtained by advancing next-generation 
sequencing technologies will also allow study of nucleus-encoded genes relevant to disease. We note 
that our approach is, of course, not limited to the study of mitochondria-encoded components, but can 
be applied to any macromolecule for which sufficient sequence exists toward generation of a high 
quality alignment, a well-supported phylogenetic tree, and reliable ancestral predictions. 
 
Machine learning predicts polymorphism pathogenicity 
 

Protein and tRNA alleles of confirmed pathogenicity were clearly characterized by low 
SumSub(Int) values. Furthermore, a lack of apparent direct substitutions mimicking protein-coding 
mutations from the human reference sequence could also be indirectly linked to pathogenicity. But how 
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should one weigh these and other available factors when classifying, in a high-throughput manner, the 
many polymorphisms already encountered or waiting to be discovered during the sequencing human 
mtDNAs? We deployed a machine learning approach, trained on existing data in the MITOMAP 
database, toward determination of mtDNA mutation pathogenicity. For alleles found in protein-coding 
genes, our methodology appeared effective, in that predicted deleterious alleles obtained from a 
second, independent database of mtDNA polymorphisms showed strong signs of indeed being 
pathogenic. Specifically, our false-positive rate for protein-coding alleles appeared to be practically non-
existent, predicted pathogenic protein mutations were characterized by low prominence in the 
population, and there was a strong bias against homoplasmy when considering polypeptide mutations 
that we predicted to be harmful. SVM prediction efficiency for tRNA alleles, based upon receiver 
operating characteristic curves, appeared to be more moderate. Confirmed disease-causing alleles 
appear to be disproportionately localized to mitochondrial tRNA genes (Florentz et al. 2003; Tuppen et 

al. 2010). Consequently, it is possible that a greater fraction of mutations in analyzed positions are 
deleterious than for protein-coding sequence, even when the number of clinical samples harboring the 
allele is high, thereby leading to incorporation of false negatives within our negative training sets. 
Moreover, while some tRNAs appear to more readily accept nucleotide substitutions, mutations upon 
other tRNAs appear to be more readily associated with disease (Florentz et al. 2003; Wittenhagen and 
Kelley 2003), suggesting further sub-classification of tRNA molecules may improve pathogenicity 
prediction. Many tRNA mutations occuring at second sites within the molecule can act in a 
compensatory manner (Kern and Kondrashov 2004), potentially suppressing pathogenicity of otherwise 
harmful alleles, and therefore leading to false positives during prediction. Prediction of rRNA allele 
pathogenicity was not attempted due to the scarcity of confirmed, disease-associated rRNA alleles 
encoded within human mitochondria. Automated predictions focused upon both classes of RNA 
molecules should greatly improve upon the development of improved training sets, and our phylogeny-
based metrics will serve as valuable resources for clinicians and geneticists in predicting pathogenicity. 
 
Previously uncharacterized mtDNA alleles may lead to cryptic and age-related mitochondrial 
disease 
 

Our examination of MITOMAP and HelixMTdb entries strongly suggests that a substantial 
number of deleterious human mutations remain to be classified as pathogenic, so why have these 
potentially harmful alleles not yet been classified as harmful within the clinic? 
 

First, if a mutation is too common, clinicians may quickly consider the allele to be unlinked to 
patient symptoms (Whiffin et al. 2017). Our findings do, in fact, support the idea that allele population 
frequency can correspond with pathogenicity. However, population frequency cannot be a dependable 
predictor of clinical outcome, since, as mentioned above, population counts need to be heavily 
corrected for strand- and nucleotide-specific mtDNA mutational biases  (Tanaka and Ozawa 1994; 
Reyes et al. 1998; Faith and Pollock 2003), and sampling biases are typically a hazard when carrying 
out population-wide studies (Keinan and Clark 2012; Zuk et al. 2014; Chheda et al. 2017; Landry et al. 
2018). 
 

Second, deleterious mtDNA alleles often must rise beyond a certain threshold among the 
hundreds of mtDNA molecules potentially resident within a cell in order for overt symptoms to manifest. 
Concordantly, our data suggest a strong propensity for heteroplasmy in the set of alleles that we predict 
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to be pathogenic, but are not yet clinically annotated. Differential distribution of these alleles, either 
during development or other bottleneck effects in both non-mitotic and renewable tissues (Stewart and 
Chinnery 2015; Zhang et al. 2018), may generate clones with a high proportion of deleterious mutations 
and to complex, tissue-specific outcomes (Nekhaeva et al. 2002; Fayet et al. 2002; Greaves et al. 
2006; Bratic and Larsson 2013). Moreover, the phenomena described above may lead to age-related 
symptoms not easily classified as mitochondrial disease, since even relatively common mtDNA 
sequence variants have been suggested to contribute to diseases like diabetes, heart disease, and 
cancer (Marom et al. 2017; Wei et al. 2017; Chinnery and Gomez-Duran 2018). We are certainly 
tantalized by the prospect that pathogenic alleles illuminated by our approach might impinge upon 
human lifespan. 
 
METHODOLOGY 
 
Mitochondrial DNA sequence acquisition and conservation analysis 

 
Mammalian mtDNA sequences were retrieved from the National Center for Biotechnology 

Information database of organelle genomes 
(https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/ on September 26, 2019). These 1184 
mammalian mtDNA genomes were aligned using MAFFT on the ‘auto’ setting (Katoh and Standley 
2013). Four sequences that were egregiously misaligned were removed, and MAFFT alignment with 
the ‘auto’ setting was carried out again. Individual gene sequences were extracted from these 
alignments, based upon the annotated human mtDNA (NC_012920.1). After gap removal, translation of 
protein coding genes was performed using the vertebrate mitochondrial codon table in AliView (Larsson 
2014). MAFFT alignments of each gene product were performed using the G-INS-i iterative refinement 
method, then individual concatenates for each species were generated from protein coding sequences, 
tRNAs, and rRNAs. Duplicates were removed from the protein, tRNA, and rRNA concatenates using 
seqkit v0.10.2 (Shen et al. 2016). Primate subsets containing concatenates from each molecule class 
were generated after analysis of species names using the taxize package (v0.9.9) in R (Chamberlain 
and Szöcs 2013). 
 

Maximum likelihood trees for each molecule class concatenate were built using FastTreeMP 
(Price et al. 2010) with four subtree-prune-regraft moves, two rounds of branch length optimization, 
slow nearest neighbor interchange, and a generalized time-reversible model. Next, ancestral prediction 
was carried out using the PAGAN package (Löytynoja et al. 2012), with concatenated alignments and 
phylogenetic trees used as input. The PAGAN output files for tRNAs and rRNAs were, before inferring 
a substitution, processed so that each ambiguous IUPAC nucleotide code was replaced by one of the 
possible standard nucleotides represented by that IUPAC code within the entire tree at that given 
position. This process was carried out using using script “replace-nonstandard.py” 
(https://github.com/corydunnlab/Edge_mapping_conservation), where the standard nucleotide was 
picked at random from available standard characters at a given alignment position using the 
random.choice() function of the Python random module. For positions that contained only N’s and gaps, 
N’s were replaced by gaps. The PAGAN output was then analysed using “binary-table-by-edges-v3.1” 
(https://github.com/corydunnlab/hummingbird) (Dunn et al. 2019) to allow for a sum of substitutions at 
alignment positions encoded by human mtDNA. All fluctuating edges were extracted using “report-on-F-
values-v1.1” (https://github.com/corydunnlab/hummingbird). Custom scripts were used to merge 
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various data tables. Gap percentage for each position, with mammal and primate concatenates handled 
separately, was calculated using trimAI v1.4.rev22 (Capella-Gutiérrez et al. 2009). Shannon entropy 
was calculated using the ‘Shannon’ script (https://gist.github.com/jrjhealey/). Correspondence files for 
the human mtDNA (NC_012920.1) convention and alignment positions were generated using “extract-
correspondence-for-merged-alignment-v.1.1.py”, followed by the construction of the  look-up tables of 
amino acid direct substitution and presence using “direct-subst-lookup-table-proteins-v.1.1.py” and “AA-
presence-lookup-table-v.1.1.py”, respectively 
(https://github.com/corydunnlab/Edge_mapping_conservation). All scripts were written using Python 
2.7. 
 

Chimera v1.13.1 was used for plotting structural data (Pettersen et al. 2004), and statistical 
testing and graph production were performed using Prism 8.3.0 (https://www.graphpad.com). Heat 
maps were generated using Matrix2png (Pavlidis and Noble 2003). 
 
Database utilization 

 
MITOMAP data used in this study (Lott et al. 2013) were downloaded on October 1, 2019. 

HelixMTdb data used in this study (Bolze et al. 2019) were downloaded on October 15, 2019. 
 
Support vector machine development 

 
Our SVM classifier (Cortes and Vapnik 1995) was developed using the R-language 

(https://www.R-project.org/) package e1071 (Meyer et al. 2014), whose implementation is based on 
libsvm (Chang and Lin 2011). A supervised binary classification model was built using positive and 
negative training sets. Each negative training set included alleles with the highest number of 
homoplasmic samples in HelixMTdb and also annotated as a polymorphism within MITOMAP. For 
proteins, the negative training sets consisted of 100 alleles, and for tRNAs, the negative training sets 
consisted of 50 alleles. The positive training sets for proteins consisted of alleles confirmed as 
pathogenic in MITOMAP. Development of a useful positive training set for tRNA pathogenicity required 
merging of the list of confirmed pathogenic tRNA alleles with a list of tRNA alleles reported (but not 
confirmed) to be pathogenic and manually selected based upon annotated symptoms or syndromes 
typically associated with mitochondrial disease. Analyzed positions for protein and tRNA included those 
gapped at 1.5% or less for mammalian or primate alignments. The best parameters for model fitting 
were found using the tune.svm wrapper in e1071. The best parameters for the radial basis kernel 
"rbfdot" were found by performing a log2 grid search of gamma and cost values during 5-fold cross-
validation. Cross-validation error rate averaged from 10 independent repeats was used as the metric in 
choosing the best parameters. Subsequently, the full training set was used to train the SVM using these 
best parameters. Features were scaled internally in both training and when applying the model to 
predict the full data sets of mtDNA mutations. ROC curves were drawn with the mgraph function from 
rminer package (Cortez 2015), which uses ksvm from kernlab package (Karatzoglou et al. 2004). 
Feature importance was measured using the Importance function from rminer (Cortez and Embrechts 
2013). 
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FIGURE LEGENDS 
 
Figure 1: A workflow for generation of SumSub(Int) values and substitution information from 
mtDNA sequence data. (a) Sequences for each macromolecule class (protein, rRNA, tRNA) are 
selected, aligned, and concatenated. (b) From these concatenates, phylogenetic trees are produced, 
followed by (c) ancestral prediction performed using alignments and phylogenetic trees as input. (d) 
Next, a binary matrix is generated, in which the presence or absence of mutations at each aligned 
position along each tree edge is tabulated. Conversion to a specific species convention is then 
achieved, if desired. (e) From this matrix, substitutions at internal tree edges, which are less subject to 
sequence errors, alignment errors, and unselected polymorphisms, can be summed. (f) Using the 
predicted internal node values, apparent direct substitution between ancestral and descendant 
characters are determined. 
 
Figure 2: Most protein- and RNA-encoded positions in the human mitochondrial genome are 
under selective constraint. Concatenated sequences of each macromolecule class were analyzed at 
two different levels of taxonomy. Distributions of SumSub(Int) values are provided for all positions equal 
to or less than 1% gapped in their respective alignments: (a) mammalian proteins, (b) primate proteins, 
(c) mammalian rRNAs, (d) primate rRNAs, (e) mammalian tRNAs, (f) primate tRNAs. 
 
Figure 3: SumSub(Int) values reflect conservation associated with important structural and 
catalytic residues. (a) Mitochondria-encoded subunits of the oxidative phosphorylation machinery 
often differ in the extent of positions under evolutionary constraint. Distributions of SumSub(Int) values 
for proteins analyzed using mammalian mtDNA sequence data were analyzed using a Kolmogorov-
Smirnov test. Approximate P-value of < 0.0005, red; < 0.005, orange; < 0.05, yellow; >= 0.05, green. 
Kolmogorov-Smirnov D values are provided in (b). (c) Subunits of COX exhibit the most conservation, 
as reflected by SumSub(Int) values across positions. The same data examined above were analyzed 
by a box and whiskers plot, with whiskers indicating minimum and maximum values, box encompassing 
25 through 75th percentile, and the line internal to the box representing the median. (d) Side chains of 
mtDNA-encoded COX subunits that are associated with high SumSub(Int) values face away from core, 
catalytic residues. Mitochondria-encoded subunits COI, COII, and COIII from one half of the dimeric 
crystal structure of Bos taurus cytochrome c oxidase (PDB: 1OCO) are represented in colored, ribbon 
format, with the remainder of the polypeptides depicted in grey, wire format. Bound heme groups are 
painted red and orange, and the conserved, catalytic E242 residue is colored green. SumSub(Int) 
values from analysis of mammalian phylogenetic data, without respect to gap percentage, are reflected 
as follows: 0 substitutions, black; 1-6 substitutions, dim grey; 7-12 substitutions, blue; 13-24 
substitutions, cornflower blue; 25 substitutions and above, purple. In (d), the mitochondrial matrix lies at 
the bottom of the model. In (e), the viewer looks down toward the mitochondrial matrix. 
 
Figure 4: SumSub(Int) values can report upon evolutionary divergence. (a) Degenerate positions 
characterized by the top 1% of SumSub(Int) values and gapped at 1% or less were extracted during 
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analysis of mammalian protein concatenates. The number of those degenerate sites mutated along 
each edge of the mammalian protein tree is plotted against the total number of substitutions along the 
tree edge. Superimposed upon these data is a restricted cubic spline curve. (b) Maximal SumSub(Int) 
values are greater for a tree encompassing mammals than for a tree comprised of primates. The top 
2% of SumSub(Int) values at positions gapped 1% or less for each molecule class and for each clade 
are presented.  
 
Figure 5: SumSub(Int) values provide unlimited dynamic range and can scale with level of 
taxonomy. SumSub(Int) values obtained from positional analysis of (a) protein, (b) rRNA, or (c) tRNA 
sequence concatenates and primate and mammal phylogenetic trees are compared to Shannon 
entropy values for the same alignment positions. All positions shown here are gapped at 1% or less. 
 
Figure 6: Confirmed pathogenic mutations are associated with low SumSub(Int) values. The 
SumSub(Int) values for positions of alleles annotated in the MITOMAP database as either confirmed 
pathogenic or as polymorphisms are plotted for (a) protein positions analyzed using mammalian data, 
(b) protein positions analyzed using primate data, (c) tRNA positions analyzed using mammalian data, 
and (d) tRNA positions analyzed using primate data. All analyzed positions are gapped at equal to or 
less than 1%. ****, Kolmogorov-Smirnov test approximate P-value of <0.0001; ***, 0.0005. Dotted 
horizontal lines, median, with solid horizontal lines providing interquartile range. 
 
Figure 7: Alleles currently annotated as polymorphic are deleterious. Alleles found within the 
MITOMAP database and encoding protein substitutions were classified based on whether an apparent 
direct substitution between the human reference character and the mutant character could be detected 
within a mammalian phylogenetic tree. All analyzed positions are gapped at equal to or less than 1%. 
Population prevalence for each allele is provided, with a trend toward low population frequency 
indirectly indicating pathogenicity. ****, Kolmogorov-Smirnov test approximate P-value of <0.0001. 
 
Figure 8: A machine-learning approach predicts pathogenicity of mitochondrial polymorphisms 
in protein-coding genes using sequence data from mammals. (a) SVM-based prediction of 
pathogenicity for protein-coding alleles found in MITOMAP and HelixMTdb using features taking 
advantage of mammalian alignment positions of gap value 1.5% or less. Positive and negative training 
sets are superimposed on the curve of alleles and decision values. For clarity, the positive training set 
(b) and the negative training (c) set are also shown separately, demonstrating the lack of false positives 
within the predictive model. (d) Feature importance is calculated by calculation of the model’s prediction 
error after shuffling its values. Error bars, mean with 95% confidence interval. (e) The receiver 
operating characteristic (ROC) curve demonstrates very high sensitivity is achieved with no loss in 
specificity for mammalian protein predictions. The true positive rate (sensitivity) of the predictive model 
is plotted against the false positive rate (1 - specificity) at various decision value thresholds. (f) Those 
MITOMAP alleles reported, but not confirmed to be associated with disease are plotted upon the 
prediction curve. 
 
Figure 9: Protein-coding alleles predicted as pathogenic by a support vector machine differ in 
sample heteroplasmy and population frequency from those alleles predicted as non-pathogenic. 
(a) Protein-coding alleles predicted to be pathogenic are more commonly heteroplasmic than alleles 
predicted to be non-pathogenic. Alleles restricted to HelixMTdb were separated by SVM predictions 
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using mammal or primate sequences, and the fraction of population samples from each class for which 
the allele is always found to be heteroplasmic is shown. (b) The percentage of protein-coding alleles 
with detectable heteroplasmy represented within HelixMTdb is, following SVM analysis of mammalian 
data, higher for samples predicted to be pathogenic than for samples predicted to be non-pathogenic. 
Percent of samples heteroplasmic is plotted against alleles. (c) as in (b), but SVM learning was 
performed using primate data. (d) Pathogenicity predicted by an SVM approach is associated with a 
lower frequency of allele acquisition during clinical sampling. For the prediction sets examined above 
and generated using mammalian sequence data, the number of human samples harboring a given 
allele is plotted. (e) as in (d), but but SVM learning was performed using primate data. ****, 
Kolmogorov-Smirnov test approximate P-value of <0.0001. 
 
SUPPLEMENTAL FIGURE LEGENDS 
 
Figure S1: Selective constraint upon individual polypeptides as determined by analysis of 
mammalian protein alignments. Analysis of (a) Complex I, (b) Complex III, (c) Complex IV, and (d) 
Complex V proteins was performed as in Figure 2a. 
 
Figure S2: Selective constraint upon individual polypeptides as determined by analysis of 
primate protein alignments. Analysis of (a) Complex I, (b) Complex III, (c) Complex IV, and (d) 
Complex V proteins was performed as in Figure 2b. 
 
Figure S3: Selective constraint upon individual RNAs as determined by alignment analysis. (a) 
Analysis of mitochondria-encoded rRNAs performed using mammalian alignments as in Figure 2c. (b) 
Analysis of mitochondria-encoded rRNAs performed using primate alignments as in Figure 2d. (c) 
Analysis of tRNAs encoded upon the human mtDNA H-strand performed using mammalian alignments 
as in Figure 2e. (d) Analysis of tRNAs encoded upon the human mtDNA L-strand performed using 
mammalian alignments as in Figure 2e. (e) Analysis of tRNAs encoded upon the human mtDNA H-
strand performed using primate alignments as in Figure 2f. (f) Analysis of tRNAs encoded upon the 
human mtDNA L-strand performed using mammalian alignments as in Figure 2f.  
 
Figure S4: Comparison of total substitution number and summation of substitution at 
degenerate sites. Comparisons are carried out as in Figure 4b for (a) proteins analyzed using primate 
data, (b) rRNAs analyzed using mammal data, (c) rRNAs analyzed using primate data, (d) tRNAs 
analyzed using mammal data, and (e), tRNAs analyzed using primate data. 
 
Figure S5: Apparent direct substitutions in Complex I proteins found along edges of a 
mammalian tree of mtDNA-encoded proteins. For each map, amino acid possibilities are provided 
on the X axis and amino acid positions within the human convention are listed along the Y-axis. White 
boxes include the human character and any amino acids reached by an apparent direct substitution 
along tree internal edges to or from the human character. Black boxes represent amino acids not found 
as acceptable direct substitutions from the human character within the same tree. 
 
Figure S6: Apparent direct substitutions in Complex III, IV, and V proteins found along edges of 
a mammalian tree of mtDNA-encoded proteins. Calculations and panel preparation are performed 
as for Figure S5. 
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Figure S7: A machine-learning approach predicts pathogenicity of mitochondrial 
polymorphisms in protein-coding genes using sequence data from primates. As in Figure 8a - 8f, 
except primate protein data were utilized. 
 
Figure S8: A machine-learning approach predicts pathogenicity of mitochondrial 
polymorphisms in tRNAs using sequence data from mammals. As in Figure 8a - 8e, except 
mammal tRNA data were utilized. 
 
Figure S9: A machine-learning approach predicts pathogenicity of mitochondrial 
polymorphisms in tRNAs using sequence data from primates. As in Figure 8a - 8e, except primate 
tRNA data were utilized. 
 
SUPPLEMENTAL TABLE LEGENDS 
 
Table S1: Inferred direct amino acid substitutions at each human alignment position between 
the human reference amino acid and other amino acids are quantified within internal edges of a 
mammalian phylogenetic tree of mitochondria-encoded proteins. These changes were extracted 
from the appropriate PAGAN output using the script “direct-subst-lookup-table-proteins-v.1.1.py”. 
 
Table S2: Inferred direct amino acid substitutions at each human alignment position between 
the human reference amino acid and other amino acids are quantified within internal edges of a 
primate phylogenetic tree of mitochondria-encoded proteins.  Analysis was performed as in Table 
S1. 
 
Table S3: Inferred direct amino acid substitutions at each human alignment position between 
the human reference amino acid and other amino acids are quantified within all edges of a 
mammalian phylogenetic tree of mitochondria-encoded proteins.  Analysis was performed as in 
Table S1. 
 
Table S4: Inferred direct amino acid substitutions at each human alignment position between 
the human reference amino acid and other amino acids are quantified within all edges of a 
primate phylogenetic tree of mitochondria-encoded proteins.  Analysis was performed as in Table 
S1. 
 
Table S5: Presence or absence of each amino acid at each human alignment position is inferred 
by study of internal edges of a mammalian phylogenetic tree of mitochondria-encoded proteins. 
These changes were extracted PAGAN output using the script “AA-presence-lookup-table-v.1.1.py”. 
 
Table S6: Presence or absence of each amino acid at each human alignment position is inferred 
by study of internal edges of a primate phylogenetic tree of mitochondria-encoded proteins. 
Analysis was performed as in Table S5. 
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Table S7: Presence or absence of each amino acid at each human alignment position is inferred 
by study of all edges of a mammal phylogenetic tree of mitochondria-encoded proteins. Analysis 
was performed as in Table S5. 
 
Table S8: Presence or absence of each amino acid at each human alignment position is inferred 
by study of all edges of a primate phylogenetic tree of mitochondria-encoded proteins. Analysis 
was performed as in Table S5. 
 
Table S9: SVM output analyzing protein-encoding alleles found in the MITOMAP and HelixMTdb 
by use of mammalian sequence data. Details of SVM analyses and features are found in the 
methodology section. 
 
Table S10: SVM output analyzing protein-encoding alleles found in the MITOMAP and 
HelixMTdb by use of primate sequence data. Details of SVM analyses and features are found in the 
methodology section. 
 
Table S11: SVM output analyzing tRNA-encoding alleles found in the MITOMAP and HelixMTdb 
by use of mammalian sequence data. Details of SVM analyses and features are found in the 
methodology section. 
 
Table S12: SVM output analyzing tRNA-encoding alleles found in the MITOMAP and HelixMTdb 
by use of primate sequence data. Details of SVM analyses and features are found in the 
methodology section. 
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