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Abstract  
 
Single  cell  transcriptome  analysis  elucidates  facets  of  cell  biology  that  have  been  previously  out  of  reach.                 
However,  the  high-throughput  analysis  of  thousands  of  single  cell  transcriptomes  has  been  limited  by  sample                
preparation  and  sequencing  technology.  High-throughput  single  cell  analysis  today  is  facilitated  by  protocols              
like  the  10X  Genomics  platform  or  Drop-Seq  which  generate  cDNA  pools  in  which  the  origin  of  a  transcript  is                    
encoded  at  its  5’  or  3’  end.  These  cDNA  pools  are  currently  analyzed  by  short  read  Illumina  sequencing  which                    
can  identify  the  cellular  origin  of  a  transcript  and  what  gene  it  was  transcribed  from.  However,  these  methods                   
fail  to  retrieve  isoform  information.  In  principle,  cDNA  pools  prepared  using  these  approaches  can  be  analyzed                 
with  Pacific  Biosciences  and  Oxford  Nanopore  long-read  sequencers  to  retrieve  isoform  information  but  all               
current  implementations  rely  heavily  on  Illumina  short-reads  for  the  analysis  in  addition  to  long  reads.  Here,  we                  
used  R2C2  to  sequence  and  demultiplex  9  million  full-length  cDNA  molecules  generated  by  the  10X  Chromium                 
platform  from  ~3000  peripheral  blood  mononuclear  cells  (PBMCs).  We  used  these  reads  to  –  independent  from                 
Illumina  data  –  cluster  cells  into  B  cells,  T  cells,  and  Monocytes  and  generate  isoform-level  transcriptomes  for                  
these  cell-types.  We  also  generated  isoform-level  transcriptomes  for  all  single  cells  and  used  this  information                
to  identify  a  wide  range  of  isoform  diversity  between  genes.  Finally,  we  also  designed  a  computational                 
workflow  to  extract  paired  adaptive  immune  receptor  –  T  cell  receptor  and  B  cell  receptor  (TCR  and  BCR)  –                    
sequences  unique  to  each  T  and  B  cell.  This  work  represents  a  new,  simple,  and  powerful  approach  that  –                    
using  a  single  sequencing  method  –  can  extract  an  unprecedented  amount  of  information  from  thousands  of                 
single   cells.   
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Introduction  
 
The  analysis  of  transcriptomes  using  high-throughput  sequencers  has  revolutionized  biomedical  research 1,2 .            
Pairing  transcriptome  analysis  with  the  high-throughput  processing  of  single  cells  has  provided  unprecedented              
insight  into  cellular  heterogeneity 3,4 .  Among  many  other  studies,  researchers  have  leveraged  the  strengths  of               
high-throughput  single-cell  transcriptome  analysis  to  create  single  cell  maps  of  the  mouse 5,6  or  C.  elegans 7                
model  organisms,  to  elucidate  a  new  cell  type  in  the  lung  involved  in  cystic  fibrosis 8 ,  and  to  increase  our                    
knowledge   of   adaptive   and   innate   immune   cells 9–12 .   
 
High-throughput  single-cell  transcriptome  analysis  however  comes  with  trade-offs.  In  particular,  droplet-  or             
microwell-based  methods  like  Drop-seq 13 ,  10X  Genomics 14 ,  and  Microwell-Seq 6  or  Seq-Well 15  single  cell             
workflows  generate  pools  of  full-length  cDNA  with  either  the  5’  or  3’  end  containing  cellular  identifiers.  The                  
cDNA  pools  are  intended  for  high-throughput  short-read  sequencing  and  must  therefore  be  fragmented  such               
that  one  read  sequence  includes  the  cellular  identifier  and  the  sequence  of  its  pair  includes  a  fragment  from                   
within  the  original  cDNA  molecule.  As  a  result,  only  a  relatively  short  fragment  of  the  cDNA  is  then  sequenced                    
alongside  the  cellular  identifier  limiting  the  resolution  of  this  approach  to  the  identification  of  genes  associated                 
with   a   given   molecular   identifier.   
 
Instead  of  sequencing  transcript  fragments,  long-read  sequencing  methods  in  the  form  of  Pacific  Biosciences               
(PacBio)  and  Oxford  Nanopore  Technologies  (ONT)  are  now  capable  of  sequencing  comprehensive  full-length              
transcriptomes 16–19 .  These  methods  have  now  been  used  to  analyze  single  cell  cDNA  pools  generated  by                
different  methods,  both  well- 20,21  and  droplet-based 22,23 ,  enriching  the  information  we  can  extract  from  single               
cells  experiments.  However,  for  the  analysis  of  high-throughput  droplet-based  experiments  with  long  reads,              
short-read  data  are  still  required  for  interpreting  experimental  data 24  or  enabling  the  identification  of  cellular  and                 
molecular  identifiers  in  low-accuracy  ONT  reads 23 .  Short-read  data  remain  a  requirement  because  either              
long-read  data  are  not  of  sufficient  depth  to  cluster  cells  into  cell-types  or  not  accurate  enough  to  decode                   
cellular   origin   of   cDNA   molecules.   
 
Because  decoding  the  cellular  origin  of  a  cDNA  molecule  requires  accurate  sequencing  of  the  molecular                
identifier,  error-prone  long  read  technologies  are  generally  not  sufficient  to  sequence  each  cDNA  pool  and  to                 
accurately  interpret  the  single-cell  data  encoded  therein.  We  have  recently  developed  and  applied  the  R2C2                
approach  which  uses  concatemeric  consensus  sequencing  to  improve  ONT  read  accuracy  from  ~92%  to  98%                
while  still  producing  more  than  2  million  full-length  cDNA  sequences  per  MinION  flow  cell 19,20,25 .  The                
combination  of  these  technologies  therefore  has  the  potential  to  illuminate  isoform-level  single  cell  biology  with                
unprecedented   resolution.   
 
In  this  manuscript  we  demonstrate  that  this  combination  of  high  throughput  and  accuracy  is  sufficient  for  the                  
Illumina  short-read  independent  analysis  of  highly  multiplexed  10X  Genomics  cDNA  pools.  To  this  end  we                
independently  analyzed  two  pools  containing  the  cDNA  molecules  of  ~1500  human P eripheral B lood              
M ononuclear C ells  (PBMCs)  with  Illumina  and  R2C2  (ONT)  workflows.  We  showed  that  the  R2C2  approach                
identifies  the  same  cellular  identifiers  in  the  cDNA  pools  and  generates  comparable  single-cell  gene               
expression  profiles  and  cell-type  clusters.  In  addition,  and  in  contrast  to  Illumina  data,  R2C2  data  also  allow  the                   
determination  of  cell-type  specific  and  single-cell  isoform-level  transcriptomes.  Finally,  R2C2  allowed  us  to              
resolve  and  pair  full-length  adaptive  immune  receptors  (AIR)  transcripts  in  the  B  and  T  cell  subpopulations  of                  
our  PBMC  sample  which  currently  requires  specialized  library  preparation  methods  and  sequencing             
approaches.  
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Results  
 
We  extracted  PBMCs  from  whole  blood  and  processed  the  cells  in  replicate  using  the  Chromium  Single  Cell  3'                   
Gene  Expression  Solution  (10X  Genomics)  aiming  to  generate  1500  cells  each  for  two  replicates.  We  divided                 
the  full-length  cDNA  intermediate  generated  by  the  standard  10X  Genomics  protocol  to  perform  both  short-                
and   long-read   sequencing   (Figure   1A).   
 

 

Fig.  1:  Data  Generation  and  Characteristics. A)  Thousands  of  peripheral  blood  mononuclear  cells  (PBMCs)  were                
processed  using  the  10X  Genomics  Chromium  Single  Cell  3'  Gene  Expression  Solution.  The  resulting  full-length                
cDNA  was  either  fragmented  for  Illumina  sequencing  or  processed  using  the  R2C2  workflow.  B)  After  read                 
processing  and  demultiplexing,  the  unique  molecular  identifiers  (UMIs)  associated  with  each  cellular  index  (cell)  in                
R2C2  (top)  and  Illumina  (center)  data  sets  are  shown  as  histograms.  Cells  are  ranked  by  the  number  of  UMIs  and                     
colored  based  on  their  rank  in  the  R2C2  data  set.  Red  lines  indicate  cellular  identifier  found  in  Illumina  but  not  R2C2                      
data.  At  the  bottom,  the  UMIs  shared  between  cellular  identifiers  in  Illumina  and  R2C2  data  sets  or  unique  to  each                     
data  set  are  shown  as  stacked  histograms.  Cells  are  ranked  by  the  number  of  shared  UMIs.  Data  for  replicate  1  are                      
shown.  

 
For  sequencing  on  the  Illumina  NextSeq,  we  fragmented  the  full-length  cDNA  according  to  the  standard  10X                 
protocol.  We  demultiplexed  and  combined  the  resulting  reads  based  on  cellular  barcodes  and  unique               
molecular  identifiers  (UMIs)  associated  with  every  amplified  transcript  molecule  during  reverse  transcription             
(see  Methods).  In  this  way,  we  condensed  202,469,707  raw  read  pairs  to  15,264,862  reads  originating  from  the                  
3’   ends   of   unique   transcript   molecules   across   both   replicates   (~5000   molecules   per   cell).   
 
For  sequencing  on  the  ONT  MinION  and  PromethION  sequencers,  we  processed  10ng  of  full-length  cDNA                
using  the  previously  published  R2C2  workflow  (see  Methods).  The  resulting  R2C2  libraries  were  then               
sequenced  using  standard  ONT  LSK-109  ligation  based  sequencing  kits.  We  processed  the  resulting  ONT  raw                
reads  into  R2C2  consensus  reads  using  the  C3POa  pipeline  (Table  S1).  We  further  combined  7-10%  of                 
consensus  reads  because  unique  molecular  identifiers  (UMIs)  embedded  in  the  dsDNA  splint  used  for               
circularization  identified  them  as  originating  from  the  same  cDNA  molecule.  This  resulted  in  highly  accurate                
merged   consensus   reads   (Table   S2).   Overall,   this   process   generated   ~16.8   million   R2C2   reads   (Table   1).   
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 Basecalled  
reads  

Post-processed  
R2C2   reads  

Splint-UMI   merged  
R2C2   reads  

Demultiplexed  
R2C2   reads  

10X-UMI   merged   R2C2  
reads   (Unique   transcripts)  

Replicate   1  29,527,932  9,480,134   (32.1%)  8,833,532   (93.17%)  6,394,275   (72.39%)  4,754,496   (74%)  
Replicate   2  26,526,607  8,861,132   (33.4%)  7,942,929   (89.65%)  5,737,067   (72.23%)  4,198,397   (73%)  
Table   1:   Read   numbers   throughout   processing.    
 
Next,  we  demultiplexed  these  reads  based  on  the  10X  cellular  barcodes  they  contained.  72%  of  R2C2  reads                  
covering  10X  molecules  could  be  successfully  assigned  to  an  individual  cell,  which  compares  favorably  to  the                 
~6%  Illumina-independent  and  ~67%  Illumina-guided  assignment  rates  determined  for  standard  ONT  reads  in              
a  previous  studies 23,26 .  Moreover,  99.0%  of  the  3000  cellular  identifiers  we  determined  independently  from  the                
R2C2  data  set  also  appeared  in  the  Illumina  data  set.  Further,  the  distribution  of  reads  between  cells  was  also                    
highly  similar  between  the  data  sets  (Fig  1B).  After  demultiplexing,  ~12  million  R2C2  reads  were  merged  if  they                   
contained  perfectly  matching  10X  UMIs  resulting  in  ~9  million  full-length  sequences  originating  from  unique               
transcripts  across  both  replicates  with  a  median  sequence  accuracy  of  96.4%.  As  shown  in  previous  studies                 
analyzing   10X   cDNA   with   long   reads 23,24 ,   R2C2   reads   appeared   to   cover   entire   transcripts   (Fig.   2)  
 
 

Fig.  2:  R2C2  reads  sequence  10X  full-length  cDNA  transcripts.  Genome  Browser  shots  of  ACTB.  Genome  annotation  is  shown                   
on  top  and  Illumina  reads  (center)  R2C2  reads  (bottom)  aligning  to  the  locus  are  shown  below.  Both  Illumina  and  R2C2  read                      
alignments  were  randomly  subsampled  to  60  reads.  The  directionality  of  features  is  indicated  by  color  (“top  strand”=blue,  “bottom                   
strand”=yellow).   Data   for   replicate   1   are   shown.  
 
For  each  cell,  55%  of  the  UMIs  captured  in  the  R2C2  data  set  were  also  captured  by  the  Illumina  data  set,                      
which  at  a  coverage  of  >10  reads  per  molecule  (202,469,707  reads  /  15,264,862  molecules)  can  be  assumed                  
to  be  nearly  comprehensive.  Because  we  would  expect  the  comprehensive  Illumina  data  set  to  cover  all  UMIs                  
in  the  R2C2  data  set,  the  remaining  ~4%  error  in  R2C2  reads  likely  causes  the  remaining  45%  of  UMIs  to  be                      
unmatched.  Indeed,  at  a  depth  of  6  million  reads  per  replicate,  a  4%  error  rate,  and  a  10nt  UMI,  we  roughly                      
expect  6x10 6 *(1-0.96 10 )  or  2  million  (33%)  reads  to  contain  at  least  one  sequencing  error  in  their  UMI.  As  such,                    
base-perfect  UMI  identification  in  the  R2C2  data  set  seems  to  be  about  as  accurate  as  the  residual  error  in                    
R2C2  reads  allows.  Importantly,  although  their  transcript  molecule  of  origin  cannot  be  unambiguously              
identified,  R2C2  reads  with  UMIs  containing  sequencing  errors  are  still  highly  valuable  for  downstream               
analysis.  
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Clustering   single   cells   into   cell-types   based   on   gene   expression  
 

We  next  investigated  whether  these  R2C2  reads  could  be  used  to  determine  gene-expression  accurately               
enough  to  cluster  single  cells  into  cell-types  –  an  analysis  step  that  is  currently  routinely  performed  using                  
short-read  based  gene  expression.  To  this  end,  we  used  minimap2  to  align  R2C2  reads  to  the  human  genome                   
(hg38)  and  used  featureCounts  to  determine  gene  expression  levels  in  each  cell 27,28 .  For  comparison,  Illumina                
reads  generated  from  the  same  cDNA  were  aligned  using  STAR  and  also  processed  using  featureCounts 29 .                
Median  Pearson-r  values  for  R2C2  and  Illumina-based  gene  expression  for  the  same  cell  showed  high                
correlation   at   0.74   (Fig.   S1).   
 

We  then  clustered  R2C2  and  Illumina  data  sets  independently  using  the  Seurat  analysis  package 30 .  R2C2  and                 
Illumina  data  sets  both  grouped  into  three  cell-type  clusters.  Based  on  marker  gene  expression,  the  major                 
cell-types  could  be  identified  as  B  cells  (CD79A) 31 ,  T  cells  (CD7) 32 ,  and  Monocytes  (IL1B) 33  –  the  expected                  
composition  of  a  PBMC  sample  (Fig.  3,  S2).  Importantly  99.5%  of  cells  that  were  clustered  in  both  data  sets                    
associated   with   the   same   cell-type   in   the   two   data   sets.  
 

This  showed  that  R2C2  reads  show  performance  comparable  to  Illumina  data  for  determining  gene  expression                
and   clustering   cell   types   in   massively   multiplexed   single-cell   experiments.   
 
 

Fig.   3:   R2C2   and   Illumina   data   sets   independently   cluster   into   B   cells,   T   cells,   and   Monocytes.  
Gene  expression  profiles  were  determined  independently  for  each  cell  in  R2C2  and  Illumina  data  sets.  The  Seurat  package  was  then                     
used  to  cluster  cells  based  on  the  gene  expression  profiles.  The  cells  in  R2C2  (A)  and  Illumina  (B)  data  sets  both  clustered  into  3                         
groups  which,  based  on  marker  gene  expression  (C  and  D)  could  be  identified  as  B  cells,  T  cells,  and  Monocytes.  The  color  gradient                        
(C  and  D)  encodes  ln(fold  change),  where  the  fold  change  is  comparing  that  cluster’s  expression  to  the  rest  of  the  data.  Data  for                        
replicate   1   are   shown.   
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Generating   cell-type   specific   isoform-level   transcriptomes  
 

Having  successfully  sorted  cells  into  cell-types,  we  set  out  to  generate  high  quality  transcriptomes  for  these                 
cell-types.  First,  as  previously  established 24 ,  we  pooled  all  reads  associated  with  the  cells  of  each  cell  type  and                   
then  identified  transcript  isoforms  for  each  cell-type  using  Mandalorion 19–21,25 .  The  majority  (65-70%)  of              
isoforms  generated  by  Mandalorion  for  the  individual  cell-types  were  classified  by  SQANTI 34  as  either               
‘full-splice-match’  or  ‘novel-in-catalog’  which  represent  likely  full-length  isoforms.  In  aggregate,  the  cell-type             
specific  isoforms  we  generated  represent  full-length  B  cell,  Monocyte,  and  T  cell  transcriptomes,  with  each                
transcriptome’s   depths   dependent   on   the   number   of   cells   and   reads   associated   with   each   cell-type   (Table   2).   
 

Cell-type  Number   of   cells  Number   of   reads  Number   of   genes   with   Isoforms  Number   of   Isoforms  
B   cells  187  509,274  2,782   (plus   1,019   novel   genes)  5,554  
T   cells  2,211  6,805,517  7,696   (plus   1,854   novel   genes)  21,810  
Monocytes  554  1,572,175  4,180   (plus   1,320   novel   genes)  9,622  
Table   2:   Cell-type   specific   full-length   transcriptome   characteristics  
 

Isoform   diversity   is   highly   variably   between   genes  
 

Next  we  investigated  whether  single-cell  derived  transcriptome  information  can  enrich  our  understanding  of              
isoform  diversity.  While  pooling  all  reads  associated  with  a  cell-type  can  serve  as  a  basis  for  defining                  
transcriptome  annotations,  this  approach  loses  information  on  which  isoforms  are  expressed  by  which              
individual  cell  and  due  to  coverage  cut-offs  likely  presents  a  conservative  estimate  of  the  true  isoform  diversity                  
present   in   a   cell-type.  
 

In  the  3000  cell  data  set  we  present  here,  we  have  sufficient  coverage  to  generate  isoforms  for  each  cell                    
independently.  Using  Mandalorion,  we  generated  a  median  of  160  isoforms  per  cell.  We  then  analyzed                
isoforms  across  all  cells  in  a  cell-type.  To  this  end,  we  merged  identical  isoforms  expressed  by  different  cells.                   
We   then   determined   how   many   cells   expressed   any   given   gene   and   isoform.   
 

Interestingly,  isoform  diversity  varied  greatly  between  genes  (Fig.  4A).  On  one  end  of  the  spectrum,  genes                 
encoding  ribosomal  proteins  in  particular  are  expressed  in  the  majority  of  cells  in  each  cell-type,  yet  we  identify                   
few  unique  isoforms  for  these  genes.  For  example,  1255  cells  expressed  a  total  of  1258  isoforms  (as                  
determined  by  Mandalorion)  of  the  ribosomal  protein  gene  RPL35.  After  merging  all  identical  isoforms,  only  7                 
unique  isoforms  remained.  On  the  other  end  of  the  spectrum,  genes  like  LMNA  are  also  expressed  by  a                   
majority  of  cells  but  feature  many  unique  isoforms.  In  fact,  906  cells  expressed  a  total  of  1943  LMNA  isoforms.                    
After   merging   all   identical   LMNA   isoforms,   691   unique   isoforms   remained.   
 

To  quantify  this  range  in  isoform  diversity  systematically,  we  calculated  the  ratio  of  unique  isoforms  we  identify                  
for  a  gene  to  the  number  of  cells  expressing  it.  By  calculating  this u nique- i soforms- p er- c ell  (UIPC)  ratio  for  all                   
genes  expressed  by  at  least  10%  of  cells  in  a  cell-type  we  found  a  wide  range  of  isoform  diversity  (Fig.  4B).  In                       
all  cell-types,  genes  encoding  ribosomal  proteins  represent  the  genes  with  the  lowest  isoform  diversity  (Table                
S3)  with  many  of  these  genes  showing  a  UIPC  ratios  close  to  0.  The  LMNA  gene  has  the  highest  or  second                      
highest   isoform   diversity   in   all   cell-types   with   a   UIPC   ratios   between   0.8   and   1.2.   
 

To  visualize  the  isoform  composition  of  genes  with  a  range  of  UIPC  ratios,  we  extracted  the  isoforms                  
expressed  by  25  random  cells  for  RPL35,  CD37,  NFKB1D,  and  LMNA  (Fig.  4C).  As  expected,  all  25  cells                   
expressing  the  RPL35  genes  expressed  a  single  virtually  identical  isoform.  Cells  expressing  CD37  appear  to                
express  two  majority  isoforms  but  also  diverse  other  isoforms.  Most  cells  expressing  NFKBID  appeared  to                
express   a   different   unique   isoform   while   the   cells   expressing   LMNA   often   expressed   several   unique   isoforms.   
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Fig.   4:   Genes   show   a   wide   range   of   isoform   diversity.   
We  generated  an  isoform  level  transcriptome  for  each  cell  in  our  data  sets  and  then  analyzed  the  isoform  diversity  for  different  genes.                       
A)  The  correlation  of  the  number  of  cells  expressing  an  isoform  for  a  gene  and  how  many  unique  isoforms  we  identified  for  that  gene                         
is  shown  as  a  scatter  plot  for  the  indicated  cell-types.  Genes  encoding  ribosomal  proteins  and  LMNA  proteins  are  shown  in  orange                      
and  blue  respectively.  B)  The  number  of  unique  isoforms  of  a  gene  per  cells  expressing  that  gene  was  calculated  for  genes  that  were                        
expressed  by  at  least  10%  of  cells  in  the  indicated  cell-type.  The  resulting  Unique  Isoforms  per  cell  (UIPC)  measure  is  shown  as  a                        
rank  ordered  histogram.  C)  Genome  Browser  shots  of  genes  representing  different  UIPCs  are  shown.  Genome  annotation  is  shown  on                    
top  and  Isoforms  expressed  by  25  random  single  cells  shown  below  separated  by  grey  lines.  The  Directionality  of  features  is  indicated                      
by   color   (“top   strand”=blue,   “bottom   strand”=yellow)  
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Extracting   paired   adaptive   immune   receptor   sequences   from   B   and   T   cells  
 
We  investigated  whether  our  data  sets  enable  the  identification  and  pairing  of  adaptive  immune  receptor  (AIR)                 
transcripts.  AIR  transcripts  encode  for  antibodies  and  T  cell  receptors  which  pose  unique  challenges  for                
sequencing  applications.  Each  antibody  (IG)  or  T  cell  receptor  (TR)  is  encoded  by  two  AIR  transcripts  each  of                   
which  is  transcribed  from  a  gene  whose  V  (,  D,)  and  J  segments  are  uniquely  rearranged  in  each  individual  B                     
or   T   cell.   
 
Our  standard  Mandalorion  transcript  isoform  identification  workflow  does  not  capture  these  AIR  transcripts              
reliably  because  it  relies  on  read  alignments  which  fail  for  the  highly  repetitive  and  rearranged  IG  heavy  (IGH),                   
IG  light  (IG  kappa  (IGK)  and  lambda  (IGL)),  TCR  alpha  (TRA),  and  beta  (TRB)  loci.  To  capture  AIR  transcripts                    
reliably,  we  first  identified  R2C2  reads  which  aligned  to  the  constant  region  exons  in  the  IG  and  TR  loci.  We                     
then  determined  which  of  these  reads  contained  a  high  quality  V  segment  using  IgBlast 35 .  Finally,  we  used                  
these   filtered   reads   to   determine   consensus   sequences   for   each   locus   and   cell   (Fig.   5A).   
 
For  many  B  cells  we  determined  multiple  sequences  for  different  isotypes  (IGHM,  IGHD,  IGHG(1,  2,  3,and  4),                  
and  IGHA(1  and  2)  (Table  S4)  and  isoforms  (membrane  bound  and  secreted).  In  the  vast  majority  of  cases                   
(92/97)  (Fig.  5B),  transcripts  contained  the  same  V  segment,  indicating  that  they  represent  alternative  splicing                
products  of  the  same  rearrangement.  We  succeeded  in  determining  paired  IG  sequences  for  ~100  B  cells  and                  
~200  T  cells  which  represent  52%  and  10%  of  all  B  and  T  cells  analyzed  in  this  study,  respectively  (Fig.  5C).                      
Importantly,  as  would  be  expected  for  a  random  sample  of  B  cells,  the  V(,  D,)  and  J  segment  usage                    
composition   of   the   paired   transcripts   of   these   cells   was   highly   diverse   (Fig.   5C)   
 

 
Fig.  5:  IG  and  TCR  transcripts  can  be  identified  and  paired  in  10X  R2C2  data. A) The  workflow  to  identify  antibody  (IG)  and  T                         
cell  receptor  (TCR)  transcripts  for  each  individual  cell.  B)  Numbers  of  cells  for  which  IG  or  TCR  transcripts  could  be  identified  and                       
paired.  C)  Schematic  of  IG  identification,  composition,  and  pairing.  Each  column  represents  a  single  B  cell.  Colored  blocks  on  top  of                      
each  column  indicate  whether  a  cell  contains  paired  IG  transcripts  (black),  whether  an  IGH  (Heavy:  grey),  IGK  (Kappa:  teal),  or  IGL                      
(Lambda:  orange)  transcripts  was  detected.  Below  the  diversity  of  the  detected  sequences  is  shown.  Black  lines  indicate  which  gene                    
segments  were  used  when  an  IG  sequence  was  recombined  from  the  germline  genome.  In  C H ,  it  is  also  shown  which  isotype(s)  we                       
detected   (IGHM:   black,   IGHD:   green,   IGHA1   or   2:   red,   IGHG1-4:   blue)   for   each   cell.   
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Discussion  
 

Here,  we  present  a  method  to  analyze  highly-multiplexed  full-length  single-cell  transcriptomes  that  does  not               
require  short-read  sequencing.  We  processed  10ng  of  cDNA  generated  as  an  intermediate  product  of  the  10X                 
Genomics  Chromium  Single  Cell  3'  Gene  Expression  Solution  into  R2C2  sequencing  libraries.  We  sequenced               
these  libraries  and  demultiplexed  the  resulting  data  to  produce  over  9  million  unique  transcripts  generated  from                 
~3000  PBMCs.  We  used  these  single  cell  data  to  determine  monocyte,  T  cell,  and  B  cell  clusters,  generate                   
isoform-level  transcriptomes  for  these  cell  clusters,  investigate  single-cell  isoform  diversity,  and  pair  adaptive              
immune   receptor   transcripts.  
 

The  ability  to  analyze  the  full-length  transcriptomes  of  single  cells  without  the  need  for  Illumina  short-read  data                  
has  the  potential  to  simplify  experimental  workflows.  The  ability  to  perform  this  analysis  on  low  cost  ONT                  
sequencers  will  make  it  more  accessible.  This  is  made  possible  through  the  use  of  the  R2C2  sample                  
preparation  method  which  can  increase  the  base  accuracy  of  ONT  MinION  sequencers  to  ~98%.  In  this  study,                  
the  R2C2  base  accuracy  was  closer  to  96%  due  to  shorter  raw  reads.  We  aimed  for  shorter  raw  reads  to                     
increase  R2C2  read  numbers  and,  to  this  end,  reduced  the  stringency  of  our  size-selection  prior  to  sequencing                  
and  used  the  ONT  PromethION  sequencer  which  inherently  seems  to  produce  slightly  shorter  raw  sequencing                
reads  (Table  S1).  Going  forward,  the  trade-off  between  throughput,  cost,  and  accuracy  of  ONT  MinION  and                 
PromethION   will   have   to   be   considered   closely   and   the   best   compromise   may   well   vary   between   studies.   
 

At  current  throughput  and  accuracy,  the  combination  of  ONT  sequencers  and  the  R2C2  method  allows  the                 
analysis  of  thousands  of  cells.  An  increase  in  read  output  will  make  it  possible  to  either  analyze  more  cells  or                     
sequence  all  transcripts  reverse  transcribed  by  the  10X  Genomics  workflow.  In  this  current  study,  with  about                 
3,000  R2C2  reads  per  cell,  we  estimated  that  we  captured  about  60%  (based  on  ~5000  molecules  per  cell  in                    
Illumina  data  set)  of  all  reverse  transcribed  molecules.  This  was  sufficient  to  cluster  cell-types  and  generate                 
single-cell  transcriptomes.  An  increase  in  accuracy  would  make  future  demultiplexing  and  UMI  merging  steps               
more  efficient.  While  our  demultiplexing  strategy  can  handle  sequencing  errors  (see  Methods),  at  96%               
accuracy  it  still  only  manages  to  demultiplex  ~72%  of  R2C2  reads,  which  is  better  than  previously  published                  
approaches,  but  not  ideal 23,26 .  Further,  at  96%  accuracy,  about  33%  of  reads  will  contain  at  least  one  error  in                    
their  10nt  10X  UMI.  Increasing  accuracy  could  reduce  this  number  significantly.  Paired  with  higher  throughput,                
future  experiments  could  only  retain  UMIs  which  were  observed  more  than  once,  similar  to  how  we  analyze                  
Illumina   data   (see   Methods).   
 

Beyond  establishing  this  method,  we  generated  high-quality  transcriptomes  for  Monocyte,  B  cell,  and  T  cell                
populations.  Because  the  majority  of  PBMCs  are  T  cells,  the  T  cell  transcriptome  is  the  most  comprehensive  of                   
those   three   and   should   serve   as   a   resource   for   understanding   the   biology   of   these   adaptive   immune   cells.   
 

We  performed  additional  analysis  on  the  most  complex  part  of  T  cell  and  B  cell  transcriptomes,  namely                  
adaptive  immune  receptor  transcripts.  By  sequencing  and  pairing  adaptive  immune  receptor  transcripts             
expressed  by  T  and  B  cells,  we  showcased  the  power  of  long  reads  for  resolving  even  the  most  challenging                    
transcript  isoforms  –  without  the  need  for  specialized  protocols.  This  will  be  of  particular  use  when  analysing                  
complex   samples   that   contain,   but   aren’t   limited   to,   immune   cells   like   solid   or   liquid   tumors.  
 

Finally,  we  performed  initial  analysis  into  isoform  diversity  which  varied  widely  between  genes.  While  some                
genes  showed  low  isoform  diversity,  i.e.  most  cells  express  the  same  isoform,  some  genes  showed  high                 
diversity,  i.e.  most  cells  express  one  or  more  unique  isoforms.  This  wide  range  of  isoform  diversity  will  pose  a                    
formidable  challenge  for  isoform  level  differential  expression  analysis  going  forward.  Future  studies  into  how               
this  wide  range  of  isoform  diversity  is  maintained  and  used  by  cells  are  bound  to  generate  fascinating  insights                   
into   cellular   function.    
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Methods  
 
Single   cell   cDNA   library   preparation  
Full-length  cDNA  pools  and  Illumina  libraries  were  prepared  by  10X  Genomics.  PBMCs  were  sourced  from                
Stemcell  Technologies  and  prepared  for  sequencing  using  the  10X  Genomics  Chromium  Single  Cell  3'  Gene                
Expression  Solution.  Preparation  of  the  cDNA  was  done  according  to  manufacturer’s  instructions  with  the               
exception  of  the  extension  time  for  the  final  PCR  reaction  which  was  standard  1  minute  for  replicate  1  but                    
increased   to   4   minutes   for   replicate   2.   
 
Illumina   sequencing   and   read   processing  
Illumina   libraries   were   sequenced   on   the   Illumina   NextSeq   with   Read1   =   26bp   and   Read2   =   134bp.  
Overall  a  NextSeq  flowcell  generated  107,911,006  reads  for  replicate  1  and  75,753,410  reads  for  replicate  2.                 
Reads  were  then  demultiplexed  and  collapsed  by  determining  the  1500  most  frequent  cellular  barcodes,               
perfectly  matching  cell  barcodes  to  the  most  frequent,  and  then  filtering  for  unique  cell  barcode/10X  UMI                 
combinations.  
 
Reads  for  each  cell  were  then  aligned  to  the  human  genome  (hg38)  using STAR  ( --runThreadN  30  --genomeDir                  
/path/to/STAR/index/  --outSAMtype  BAM  SortedByCoordinate  --readFilesIn  /path/to/reads  --outFileNamePrefix        
/path/to/alignment/dir ).   
 
Nanopore   sequencing   and   read   processing  
Full-length  cDNA  pools  were  prepared  as  described  previously.  In  short,  10ng  of  cDNA  is  circularized  using  a                  
DNA  splint  compatible  with  10X  cDNA  and  the  NEBuilder  HIFI  DNA  Assembly  Master  Mix  (NEB).  The  DNA                  
splint   was   generated   by   primer   extension   of   the   following   oligos:  
 
>10X_UMI_Splint_Forward   (Matches   10X   PCR   primer)  

AGATCGGAAGAGCGTCGTGTAG  

TGAGGCTGATGAGTTCCATANNNNNTATATNNNNNATCACTACTTAGTTTTTTGATAGCTTCAAGCCAGAGTTGTCTTTTTCTCTTTGCTGGCAGTAA 

AAG    

>10X_UMI_Splint_Reverse   (Matches   ISPCR   Primer)  

CTCTGCGTTGATACCACTGCTT  

AAAGGGATATTTTCGATCGCNNNNNATATANNNNNTTAGTGCATTTGATCCTTTTACTCCTCCTAAAGAACAACCTGACCCAGCAAAAGGTACACAAT 

ACTTTTACTGCCAGCAAAGAG  

 
Non-circularized  DNA  is  digested  using  Exonucleases  I,  III,  and  Lambda.  Circularized  DNA  is  amplified  using                
rolling  circle  amplification  using  Phi29  (NEB).  The  resulting  HMW  DNA  is  debranched  using  T7  Endonuclease                
(NEB)  and  purified  and  size-selected  using  SPRI  beads.  This  DNA  containing  concatemers  of  the  originally                
circularized  cDNA  is  then  sequenced  using  the  LSK-109  kit  on  either  ONT  MinION  or  PromethION  sequencers                 
(Table  S1).  The  resulting  raw  reads  were  processed  into  consensus  reads  using  the  C3POa  pipeline.  These                 
consensus  reads  are  then  merged  if  the  contained  the  similar  UMIs  in  their  splint  back-bones  using  the                  
ExtractUMIs  and MergeUMIs  utilities  ( https://github.com/rvolden/10xR2C2 ).  All  consensus  reads  were  then           
demultiplexed.  In  a  first  step,  we  determined  the  most  common  ~1500  cellular  identifiers  in  our  sample  using  a                   
simple  counting  strategy.  Then,  we  assigned  reads  to  the  most  similar  cellular  identifiers  if  they  fit  the  following                   
criteria:   
 
1.)   L1   <   3   
and   
2.)   L1   <   L2   -   1   
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where   
L1  is  the  Levenshtein  distance  between  the  read’s  cellular  identifier  and  the  most  similar  known  cellular                 
identifier   
and   
L2  is  the  Levenshtein  distance  between  the  read’s  cellular  identifier  and  the  second  most  similar  known  cellular                  
identifier.   
 
Once  demultiplexed,  reads  for  each  cell  were  merged  again  using  the MergeUMIs10x  utility              
( https://github.com/rvolden/10xR2C2 ),  this  time  based  on  the  UMI  present  in  the  10X  oligodT  primer.  Here,  we                
only  considered  perfect  UMI  matches  and  excluded  UMIs  with  more  than  6  Ts  on  the  end  facing  the  oligodT                    
stretch  of  the  primer.  Reads  were  then  aligned  to  the  human  genome  (hg38)  using minimap2 27  ( -ax  splice                  
--secondary=no ).     
 
Cell-type   clustering  
Both  Illumina  and  R2C2  data  were  analyzed  in  the  same  way  independently.  First  gene  expression  tables  were                  
generated  using featureCounts 28 .  Then  these  tables  were  parsed  for  input  into  the  Seurat  R  package  (v3) 30 .                 
Seurat  generated  cell-type  clusters  using  the  following  main  settings  ( min.cells=3,  min.features=200,            
percent.mt<5,  2500>nFeature_RNA>200,  nfeatures=2000,  dims=1:10,  resolution=0.08  (0.08  used  for         
nanopore,   0.03   for   Illumina),   log   normalization,   and   vst   selection ).  
For   each   cell,   cell-type   information   was   extracted   based   on   location   for   downstream   analysis.  
 
Isoform   analysis  
We  generated  high  confidence  isoforms  using  the  latest  version  of  the  Mandalorion  pipeline  (Episode  III,                
https://github.com/rvolden/Mandalorion-Episode-III ).   
 
Cell-type   transcriptomes:  
All  reads  and  subreads  assigned  to  cells  of  a  cell-type  were  pooled.  Then  Mandalorion  was  run  on  these  files                    
with   the   following   settings:  
 
-c   /path/to/config_file  

-m   /path/to/NUC.4.4.mat  

-s   500   

-g   /path/to/gencode.v29.annotation.gtf   

-G   /path/to/hg38.fa   

-a   /path/to/10x_Adapters.fasta  

-f   /path/to/Pooled_reads.fa   

-b   /path/to/Pooled_subreads.fa   

-p   /path/to/output_folder   

-O   0,70,0,70   

-t   24   

-e   TGGG,AAAA   

 
with    10x_Adapters.fasta    containing   the   following   sequences:  
 
>3Prime_adapter  

CTACACGACGCTCTTCCGATCT  

>5Prime_adapter  

AAGCAGTGGTATCAACGCAGA  
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Single-cell   transcriptomes:  
To  optimize  the  alignment  step  which  would  consume  large  amounts  of  time  if  the  genome  would  be  loaded  for                    
each  individual  cell,  i.e.  thousands  of  times,  all  reads  were  aligned  using minimap2  ( -ax  splice  --secondary=no )                 
and   then   alignments   were   split   into   cells   based   on   read   names.   
Then  Mandalorion  was  run  on  the  reads  and  subreads  of  each  individual  cell  with  the  modification  that  the                   
alignment  step  was  skipped  and  instead .sam  alignment  files  were  provided.  Mandalorion,  without  read               
alignment,   was   run   with   the   following   settings:  
 
-c   /path/to/config_file  

-m   /path/to/NUC.4.4.mat  

-s   500   

-g   /path/to/gencode.v29.annotation.gtf   

-G   /path/to/hg38.fa   

-a   /path/to/10x_Adapters.fasta  

-f   /path/to/SingleCell_reads.fa   

-b   path/to/SingleCell_subreads.fa   

-p   path/to/output_folder   

-O   0,70,0,70   

-t   3  

-e   TGGG,AAAA  

-R   2   

 
Note   that   we   reduced   the   minimum   number   of   reads   required   to   identify   an   isoform   to   2.  
 

The  resulting  isoform  psl  files  were  converted  to  gtf  files  and  classified  using  the sqanti_qc.py  program  and                  
the   following   settings:  
 
-g  

-x   /mnt/memorycore1/refs/gmap/hg38  

-n  

-t   24  

-o   output_prefix  

-d   /path/to/output_folder  

path/to/gtf_file   /path/to/gencode.v29.annotation.gtf   /path/to/hg38.fa  

 
Isoform   diversity   analysis  
Similar  isoforms  were  merged  using  the merge_psls.py  utility which  accepts  a  list  of  isoform  fasta  and  psl  files                   
and   merges   isoforms   if   they:  
 

1) Use   all   the   same   splice   sites   
This  step  is  base-accurate  but  will  treat  splice  site  a  single  base  pair  apart  as  equivalent  if  one                   
site   is   much   less   abundant   than   the   other   

2) Use   the   similar   start   and   end   sites  
This  step  will  consider  sites  similar  if  they  are  at  most  10nt  apart.  Because  isoforms  are                 
iteratively  grouped  at  this  step,  individual  isoforms  in  a  merged  group  might  have  sites  that  are                 
further   than   10nt   apart   but   are   connected   by   a   third   isoform   between   them.  
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Adaptive   Immune   receptor   analysis  
For  each  cell,  reads  aligning  to  the  T  cell  or  B  cell  receptor  loci  were  extracted  from  sam  files  using samtools                      

view 36     and   the   below   genomic   coordinates.   
 
IGH:   chr14:   105,533,853   -   106,965,578  

IGK:   chr2:     89,132,108   -    90,540,014  

IGL:   chr22:    22,380,156   -    23,265,691  

TRA:   chr14:    22,178,907   -    23,021,667  

TRB:   chr7:    141,997,301   -   142,511,567  

 
Reads  were  then  analyzed  for  each  cell  and  locus  (and  for  IGH,  each  isotype/isoform)  separately  by  filtering                  
reads   for   a   high-quality   match   to   a   V   segment   retrieved   from   IMGT 37    using    IgBlast 35    and   the   following   settings:  
 
-germline_db_V   /path/to/V_segments  

-germline_db_J   /path/to/J_segments  

-germline_db_D   /path/to/D_segments  

-organism   human   

-query   /path/to/reads.fasta  

[-ig_seqtype   TCR   ]   -   only   for   T   cell   receptors  

-auxiliary_data   optional_file/human_gl.aux   

-show_translation   

-outfmt   19   

 

Filtered  reads  for  each  cell  were  then  used  to  generate  consensus  reads  for  each  locus.  Those  consensus                  
reads  were  then  assigned  V,  (D,)  and  J  segments  using IgBlast  and  the  same  settings  as  above.  All  scripts                    
used  for  this  analysis  and  a  wrapper  script  automating  this  analysis  are  available  at               
https://github.com/christopher-vollmers/AIRR-single-cell .   
 
 
Data   Access  
 
We  uploaded  all  data  generated  for  this  study  to  the  SRA  where  it  is  available  under  BioProject  accession                   
PRJNA599962.   
B   cell,   T   cell,   and   Monocyte   transcriptomes   are   available   at    https://users.soe.ucsc.edu/~vollmers/10XR2C2/ .  
 
Code   Access  
 
We  have  made  the  code  required  to  demultiplex  R2C2  reads  and  format  gene  expression  matrices  for  Seurat                  
available  on  GitHub  ( https://github.com/rvolden/10xR2C2 ).  Code  for  AIRR  analysis  is  also  available  on  GitHub              
( https://github.com/christopher-vollmers/AIRR-single-cell ).  
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Supplementary  Figure  S1:  Swarm  plots  of  gene  expression  correlation  between  R2C2  and  Illumina. The  median  Pearson                 
correlation  for  each  swarm  is  shown  in  red.  From  left  to  right:  (All  cell  types,  same)  cells  were  matched  based  on  their  cellular                        
barcode  from  R2C2  and  Illumina.  (All  cell  types,  different)  R2C2  cells  were  correlated  to  a  random  cell  in  the  Illumina  data.  The                       
next  three  swarms  were  subsampled  to  85  points  because  there  are  89  B-Cells.  (T-Cells,  same)  Random  T-Cells  were  correlated                    
between  R2C2  and  Illumina  data.  (T-Cells,  different)  Random  R2C2  T-Cells  were  correlated  with  random  Illumina  non-T-Cells.                 
(B-Cells,  same)  Random  B-Cells  were  correlated  between  R2C2  and  Illumina.  (B-Cells,  different)  Random  R2C2  B-Cells  were                 
correlated  with  random  Illumina  non-B-Cells.  (Monocytes,  same)  Random  Monocytes  were  correlated  between  R2C2  and  Illumina.                
(Monocytes,   different)   Random   R2C2   Monocytes   were   correlated   with   random   Illumin   non-Monocytes.  
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Supplementary   Figure   S2:   t-SNE   plots   with   additional   marker   genes   for   replicates   1   and   2.    As   for   Figure   2   plots   are   based   on  
gene   expression   data   as   calculated   by   featureCounts   and   Seurat.     Plots   for   replicate   1   and   replicate   2   are   shown   on   the   left   and   right  
respectively.   Top   left:   replicate   1   cell   type   clusters   for   R2C2   and   Illumina.   Bottom   left:   replicate   1   expression   heat   maps   for   various  
marker   genes   where   the   two   columns   on   the   left   are   for   R2C2   and   the   right   two   are   Illumina.   Top   right:   replicate   2   cell   type   clusters  
for   R2C2   and   Illumina.   Bottom   right:   replicate   2   expression   heat   maps   for   various   marker   genes   where   the   two   columns   on   the   left  
are   for   R2C2   and   the   right   two   are   Illumina.   Additional   marker   genes   taken   from    14 .   The   color   gradient   encodes   ln(fold   change),  
where   the   fold   change   is   comparing   that   cluster’s   expression   to   the   rest   of   the   data.  
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Replicate   1  Basecalled   raw   reads  Median   raw   read   len  R2C2   Consensus   reads  
PromethION   run   1  14,321,713  3482  5,267,578   (36.78%)  
MinION   run   1  2,476,608  4460  1,357,914   (54.82%)  
PromethION   run   2  12,069,611  3913  3,601,214   (29.83%)  
MinION   run   2  660,000  4019  337,080   (51.07%)  
Total  29,527,932   10,563,786   (35.77%)  

 
Replicate   2  Basecalled   raw   reads  Median   raw   read   len  R2C2   Consensus   reads  
PromethION   run   1  21,660,888  2711  8,294,332   (38.29%)  
MinION   run   1  4,865,719  2957  2,291,472   (47.09%)  
Total  26,526,607   10,585,804   (39.90%)  
Table   S1:   Oxford   Nanopore   Technologies   sequencing   run   and   read   numbers.    Values   in   parentheses   indicate   the  
percentage   of   raw   reads   being   successfully   converted   into   consensus   reads.   Note   that   R2C2   Consensus   read   numbers  
indicate   consensus   reads   prior   to   post-processing.   R2C2   Consensus   reads   after   post-processing   are   given   in   Table   1.  
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Replicate   1  
R2C2   reads   combined   into   merged   read   Number   of   merged   reads  Median   accuracy  
2  142415  98.3%  
3  8290  98.7%  
4  876  99.0%  

5  133  99.0%  

6  33  99.0%  

7  13  99.4%  
8  4  99.0 %  
9  2  99.3%  

10+  4  99.6%  
 
Replicate   2  
R2C2   reads   combined   into   merged   read   Number   of   merged   reads  Median   accuracy  
2  227138  98.0%  
3  40953  98.5%  
4  11836  98.9%  
5  4489  99.0%  
6  1677  99.2%  
7  834  99.2%  
8  441  99.3%  
9  204  99.3%  
10+  260  99.4%  
Table   S2:   UMIs   allow   the   merging   of   R2C2   reads   originating   from   the   same   cDNA   molecule.   

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902361doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902361
http://creativecommons.org/licenses/by-nc/4.0/


/

 

B   cells  Monocytes  T   cells   
Gene   Symbol  UIPC  Gene   Symbol  UIPC  Gene   Symbol  UIPC   
RPS18  0.01  RPS12  0.01  RPS17  0.01   
RPL35  0.01  RPLP2  0.01  RPL35  0.01   
RPS27A  0.01  RPL27  0.01  RPS20  0.01   
RPS23  0.01  RPL35  0.01  RPS10  0.01   
RPS15  0.01  RPS23  0.01  RPL37  0.01   
RPS5  0.01  RPS13  0.02  RPL26  0.01   
RPS13  0.01  RPS20  0.02  RPS23  0.01   
RPS4X  0.02  CST3  0.02  RPL27  0.01   
RPLP2  0.02  S100A4  0.02  RPS25  0.01   
RPS14  0.02  RPL37A  0.02  RPL24  0.01  Bottom   20  
RPS10  0.02  RPL23  0.02  RPS14  0.01   
RPL18  0.02  RPS14  0.02  RPS29  0.01   
RPL27  0.02  RPLP1  0.02  RPL32  0.01   
FTL  0.03  RPS19  0.02  RPS15A  0.01   
RPS20  0.03  RPL32  0.02  RPS5  0.01   
RPS25  0.03  RPS15  0.02  FAU  0.01   
RPL32  0.03  RPS10  0.02  RPS4X  0.01   
RPS16  0.03  RPS15A  0.02  RPL37A  0.01   
TPT1  0.03  RPL37  0.02  RPLP2  0.01   
RPL34  0.03  S100A8  0.02  RPS18  0.01   
       

AES  0.49  CEBPB  0.37  IL32  0.28   
HLA-E  0.49  CD68  0.37  GNLY  0.3   
GNB2  0.5  EIF4A1  0.37  IDS  0.3   
CRIP1  0.5  FCGRT  0.37  SEPT9  0.3   
ARPC1B  0.52  HLA-E  0.4  LINC-PINT  0.3   
TRAF4  0.6  UPP1  0.42  DPP7  0.31   
DPP7  0.61  KLF4  0.43  ITGB2  0.31   
DDX5  0.63  CARD19  0.46  UBE2D3  0.31   
ADGRE5  0.68  PSAP  0.47  DDX5  0.32   
EIF4A1  0.68  KLF2  0.47  ATG2A  0.38  Top   20  
CD83  0.69  VASP  0.49  IRF1  0.48   
FAM129C  0.71  PABPC1  0.5  PIK3IP1  0.53   
NFKBID  0.74  ITGB2  0.53  SPOCK2  0.54   
IRF1  0.76  ITGAX  0.55  PLK3  0.59   
TAPBP  0.86  GRN  0.56  ADGRE5  0.61   
NR4A2  0.88  LST1  0.77  NR4A2  0.62   
TBC1D10C  0.89  TRABD  0.79  POLR2A  0.63   
EZR  0.95  TOM1  0.81  CD6  0.77   
LMNA  0.97  SLC11A1  0.99  TMC8  0.78   
IGHM  1  LMNA  1.21  LMNA  0.8   
Table   S3:   Isoform   diversity   in   B   cells,   T   cells,   and   Monocytes.    The   20   genes   with   the   most   or   least   isoform   diversity   as   determined  
by   the   Unique   Isoforms   per   Cell   (UIPC)   measure   are   shown   for   the   indicated   cell-types.  
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