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Abstract 39 
 40 

A common analysis measure for neuro-electrophysiological recordings is to compute the 41 
power ratio between two frequency bands. Applications of band ratio measures include 42 
investigations of cognitive processes as well as biomarkers for conditions such as attention-deficit 43 
hyperactivity disorder. Band ratio measures are typically interpreted as reflecting quantitative 44 
measures of periodic, or oscillatory, activity, which implicitly assumes that a ratio is measuring the 45 
relative powers of two distinct periodic components that are well captured by predefined frequency 46 
ranges. However, electrophysiological signals contain periodic components and a 1/f-like aperiodic 47 
component, which contributes power across all frequencies. In this work, we investigate whether 48 
band ratio measures reflect power differences between two oscillations, as intended. We examine 49 
to what extent ratios may instead reflect other periodic changes—such as in center frequency or 50 
bandwidth—and/or aperiodic activity. We test this first in simulation, exploring how band ratio 51 
measures relate to changes in multiple spectral features. In simulation, we show how multiple 52 
periodic and aperiodic features affect band ratio measures. We then validate these findings in a 53 
large electroencephalography (EEG) dataset, comparing band ratio measures to parameterizations 54 
of power spectral features. In EEG, we find that multiple disparate features influence ratio measures. 55 
For example, the commonly applied theta / beta ratio is most reflective of differences in aperiodic 56 
activity, and not oscillatory theta or beta power. Collectively, we show how periodic and aperiodic 57 
features can drive the same observed changes in band ratio measures. Our results demonstrate how 58 
ratio measures reflect different features in different contexts, inconsistent with their typical 59 
interpretations. We conclude that band ratio measures are non-specific, conflating multiple possible 60 
underlying spectral changes. Explicit parameterization of neural power spectra is better able to 61 
provide measurement specificity, elucidating which components of the data change in what ways, 62 
allowing for more appropriate physiological interpretations. 63 
 64 
Keywords 65 
 66 
neural oscillations, frequency band ratios, spectral power ratios, theta / beta ratio, theta / alpha 67 
ratio, alpha / beta ratio, electroencephalography, 1/f activity, aperiodic neural activity 68 
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 71 
EEG: electroencephalography; MEG: magnetoencephalography; ECoG: electrocorticography; LFP: 72 
local field potential; TBR: theta / beta ratio; TAR: theta / alpha ratio; ABR: alpha / beta ratio; CF: 73 
center frequency; PW: power; BW: bandwidth; EXP: aperiodic exponent; ADHD: attention-deficit 74 
hyperactivity disorder 75 
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Materials Descriptions & Availability Statements 77 
 78 
Project Repository 79 
 80 
This project is also made openly available through an online project repository in which the code 81 
and data are made available, with step-by-step guides through the analyses.  82 
 83 

Project Repository:   http://github.com/voytekresearch/BandRatios 84 
 85 
Datasets 86 
 87 
This project uses simulated data, literature text mining data, and electroencephalography data.  88 
 89 
Simulated Data 90 
 The simulations used in this project are created with openly available software packages. 91 
Settings and code to re-generate simulated data is available with the open-access code for the 92 
project. Copies of the simulated data that were used in this investigation are available in the project 93 
repository.  94 
 95 
Literature Data 96 
 Literature data for this project was collected from the PubMed database. Exact search terms 97 
used to collect the data are available in the project repository. The exact data collected from the 98 
literature and meta-data about the collection are saved and available in the project repository. 99 
 100 
EEG Data 101 

The EEG data used in this project is from the openly available dataset, the ‘Multimodal 102 
Resource for Studying Information processing in the Developing Brain’ (MIPDB) database. This 103 
dataset is created and released by the Childmind Institute. This dataset was released and is re-used 104 
here under the terms of the Creative Commons-Attribution-Non-Commercial-Share-Alike License 105 
(CC-BY-NC-SA), and is described in (Langer et al., 2017).  106 
 107 

Child Mind Institute:   https://childmind.org 108 
Data Portal:    http://fcon_1000.projects.nitrc.org/indi/cmi_eeg/ 109 

 110 
Software 111 
 112 
Code used and written for this project was written in the Python programming language. All the 113 
code used within this project is deposited in the project repository and is made openly available 114 
and licensed for re-use.  115 
 116 
As well as standard library Python, this project uses 3rd party software packages numpy and pandas 117 
for data management, scipy for data processing, matplotlib and seaborn for data visualization and 118 
MNE for managing and pre-processing data. 119 
 120 
This project also uses open-source Python packages developed and released by the authors:  121 
 122 

Simulations and spectral parameterization were done using the FOOOF toolbox.  123 
  Code Repository:  https://github.com/fooof-tools/fooof 124 

Literature collection and analyses were done using the LISC toolbox. 125 
  Code Repository:  https://github.com/lisc-tools/lisc 126 
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Introduction  128 
 129 
1.1 History & Introduction of Band Ratio Measures 130 
 131 
 Studies in cognitive and clinical neuroscience employ a broad range of analyses that are 132 
designed to measure how electrophysiological measures vary with, and potentially predict, features 133 
of interest such as behavioral outputs and disease states. Many such analyses focus on putative 134 
rhythmic, or oscillatory, activity, organized into distinct frequency bands such as theta, alpha and 135 
beta, that will collectively be referred to as ‘periodic’ activity. One such analysis method is to 136 
calculate the ratio of power between two of these pre-specified frequency bands. For example, the 137 
theta / beta ratio is calculated as the average power in the theta band, typically 4-8 Hz, divided by 138 
the average power in the beta band, typically within the range of 13-30 Hz. Such measures can be 139 
applied to electroencephalography (EEG), magnetoencephalography (MEG), electrocorticography 140 
(ECoG) and/or local field potential (LFP) data and have been argued to be a biomarker for a variety 141 
of cognitive correlates (for example, attentional control: Angelidis, van der Does, Schakel, & 142 
Putman, 2016), and clinical disorders (for example, ADHD: Arns, Conners, & Kraemer, 2013; or 143 
Alzheimer's: Cassani, Estarellas, San-Martin, Fraga, & Falk, 2018). 144 
 145 
 An early example of such an approach was to measure, from the correllelogram of EEG data, 146 
the ratio of the dominant rhythm to the 'background' activity (Daniel, 1964). This measure was 147 
developed to leverage emerging tools for spectral analysis to quantify electrophysiological features 148 
of interest and integrate computational approaches, in what would later come to be referred to as 149 
'quantitative EEG' or 'qEEG'. As spectral power estimation procedures became more common, 150 
studies began using frequency band ratios calculated directly from estimations of band powers 151 
extracted from power spectra, such as the ratio of theta to alpha power (Matoušek, 1968), which is 152 
now the standard approach for calculating frequency band ratio measures (see Figure 1A). 153 
 154 
 Early work used band ratio measures because they were found to be more stable than either 155 
absolute or relative measures of individual frequency band powers (Daniel, 1964; Matoušek, 1968). 156 
Relative power measures, including band ratios, are also used as a data normalization method, to 157 
control for potential differences in confounds such as skull thickness and volume conduction, that 158 
otherwise make absolute measures difficult to compare and interpret across individuals. Several 159 
investigations also reported correlated changes between frequency bands, such as a frequency 160 
'slowing', whereby low frequency power increases and high frequency power decreases, and 161 
therefore recommended frequency band ratio measures as an ideal measure to capture such 162 
changes (Lubar, 1991). 163 
 164 
1.2 – Applications of Band Ratio Measures 165 
 166 

In cognitive neuroscience, band ratio measures are often used in EEG studies investigating 167 
possible physiological correlates of behaviors of interest, including investigations exploring 168 
vigilance and alertness (Matoušek & Petersén, 1983), cognitive development and aging (Clarke et 169 
al., 2001), reward processing (Schutter & Van Honk, 2005), and affect (Putman et al., 2010). One of 170 
the most consistent lines of research in this area focuses on the theta / beta ratio as a potential 171 
biomarker for executive function, and in particular attentional processing (Angelidis et al., 2016; 172 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.11.900977doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.11.900977
http://creativecommons.org/licenses/by-nc/4.0/


 Band Ratios 

  5 

Gordon et al., 2018; Lubar, 1991), with recent reports investigating, for example, cognitive control 173 
(Angelidis et al., 2018), and attentional control (van Son et al., 2019). Other work using EEG 174 
experiments have explored ratio measures in learning and memory, examining, for example, short 175 
term memory using the theta / beta ratio (Trammell et al., 2017), and memory impairment using the 176 
theta / gamma ratio (Moretti et al., 2009). Similar work in animals has investigated the theta / delta 177 
ratio in hippocampal recordings during associative learning paradigms in rabbits (Nokia et al., 2008) 178 
and rats (Kim et al., 2016).  179 
 180 

Frequency band ratio measures have also been used to explore changes within and between 181 
individuals in contexts such as state mapping and sleep scoring, and work in development and 182 
aging. In developmental work, ratio measures have been included in investigations of age related 183 
electrophysiological changes (Clarke et al., 2001; Gasser et al., 1988; Matoušek & Petersén, 1973). 184 
Several proposed approaches for automated sleep stage classification have also used band ratio 185 
measures and found them to be useful measures (Costa-Miserachs et al., 2003; Krakovská & 186 
Mezeiová, 2011; Reed et al., 2017; van Luijtelaar & Coenen, 1984). This includes work using the 187 
theta / delta ratio for sleep scoring of hippocampal local field data in rats (Costa-Miserachs et al., 188 
2003; van Luijtelaar & Coenen, 1984), and delta / beta ratio for human data analysis, including EEG 189 
(Krakovská & Mezeiová, 2011) and ECoG (Reed et al., 2017).  190 
 191 
 In clinical neuroscience, band ratios are also a common approach, including in studies 192 
seeking biomarkers for diagnosis, clinical monitoring, and potential intervention. Investigations into 193 
the potential clinical utility of band ratio measure include investigations of anesthesia (Long et al., 194 
1989), disorders of consciousness (Pfurtscheller et al., 1986), multiple sclerosis (Keune et al., 2017), 195 
cerebral ischemia (Sheorajpanday et al., 2009), and Parkinson's disease (Geraedts et al., 2018). In 196 
psychiatry, band ratios measures have been applied in studies of autism (Wang et al., 2016) and as 197 
a potential biomarker for psychotic disorders (Howells et al., 2018). Band ratios are also commonly 198 
investigated in the search for biomarkers for mild-cognitive impairment, dementia, and Alzheimer’s 199 
(Bennys et al., 2001; Moretti et al., 2013; Penttilä et al., 1985), recently reviewed in (Cassani et al., 200 
2018).  201 
 202 
 The most common clinical application of band ratios measures is in investigations of 203 
attention-deficit hyperactivity disorder (ADHD) (Loo & Makeig, 2012). After early work reported a  204 
relative increase in theta and decrease in beta in ADHD, theta / beta ratios were proposed as a 205 
potential biomarker for the disorder (Lubar, 1991), which prompted a large number of studies 206 
investigating the theta / beta ratio as a descriptive feature and potential diagnostic biomarker for 207 
ADHD (see reviews in Arns, Conners, & Kraemer, 2013 & Snyder & Hall, 2006). Initial work was very 208 
promising with an early meta-analysis supporting that theta / beta ratios may be a predictive marker 209 
of ADHD, reporting a pooled effect size of 3.08 (Snyder & Hall, 2006). However, a more recent 210 
review found much weaker support for this conclusion, also reporting that the effect size of theta / 211 
beta ratios differentiating between ADHD and control groups has been decreasing across time 212 
(Arns et al., 2013). Notably, the theta / beta ratio has been investigated as a potential diagnostic 213 
marker of ADHD (Snyder et al., 2015), and although this led to approval by the Food and Drug 214 
Administration of the United States, inconsistent evidence regarding the efficacy of using the theta 215 
/ beta ratio in diagnostic practice has led to a practice advisory against using it (Gloss et al., 2016).  216 
 217 
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 As well as being used in investigations seeking diagnostic biomarkers, band ratio measures 218 
are commonly targeted in neurofeedback paradigms. This includes clinical applications using 219 
protocols aimed at manipulating theta / beta ratio for the treatment of ADHD (Arns et al., 2014), 220 
and as potential treatments for disorders such as autism (Wang et al., 2016). Non-clinically related 221 
neurofeedback protocols using band ratio measures have also been explored, including 222 
investigations aimed at manipulating and improving attentional and executive functions (Studer et 223 
al., 2014; Vernon et al., 2003) and relaxation (Egner et al., 2002; Raymond et al., 2005). 224 
 225 

Collectively, band ratio measures are used across basic, clinical, and applied neuroscience 226 
to examine a wide variety of their correlates. To explore the breadth of reported band ratio 227 
correlations, we also ran an automated literature search that collects information on the number of 228 
published articles that reference each ratio term and their major associates (Figure 1). This analysis 229 
shows that theta / beta ratio measures are the most common, though a variety of other band ratios 230 
are commonly applied, with distinct applications. We find over 250 articles that mention band ratio 231 
measures, supporting that these are a relatively common method to apply to electrophysiological 232 
data, across a wide range of applications. This is also likely an underestimate, as our text-mining 233 
approach is limited to specific phrases that appear only in article abstracts.  234 
 235 

A B

Figure 1. Literature Analysis of Band Ratio Related Articles. A) Associations between published journal 
articles referring to band ratio measures and cognitive and clinical associations. Each cell represents 
the proportion of articles referring to a specified band ratio measure that also mentions the 
corresponding association term. B) Total counts of the number of articles mentioning each band ratio 
measure. 
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1.3 – Methodological Properties & Interpretations of Band Ratio Measures  236 
 237 
 Given the popularity of band ratios across domains, and their reported clinical utility, it is 238 
important to investigate and understand the properties and assumptions of such analyses, and how 239 
those assumptions relate to their interpretations. In this investigation we examine whether the 240 
general conception of band ratios as measures that specifically reflect periodic neural activity is well 241 
founded in the face of work showing that periodic properties of electrophysiological data are highly 242 
variable, often violating the assumptions of predefined frequency bands, and that they co-exist with 243 
variable and dynamic aperiodic activity (Haller et al., 2018). 244 
 245 

Methodologically, studies using band ratios typically follow a stereotyped procedure 246 
whereby power in pre-defined, fixed frequency bands are calculated, from which a ratio is 247 
calculated. Band ratios are typically calculated from absolute power values, though some studies 248 
use relative or normalized power measures in which the power within a band is normalized by total 249 

Band 
Ratio =

avg(low band power) 

avg(high band power)

A B

C

Figure 2. Overview of Band Ratio Measures and Spectral Parameters. A) An example power spectrum in 
which shaded regions reflect the theta (4-8 Hz) and beta band (20-30 Hz) respectively. Band ratio 
measures, such as the theta / beta ratio are taken by dividing the average power between these two 
bands. B) An example of a parameterized power spectrum, in which aperiodic activity is separated 
from measured periodic components. C) Examples of simulated power spectra with and without 
component oscillations of the theta / beta ratio. Black lines indicate the simulated data, with red line 
reflecting the model fit, the dashed blue line indicating the aperiodic component of the model fit, 
and the green lines indicating the location of canonical theta and beta oscillations. Band ratio 
measures, though intended to measure periodic activity, will reflect power at the pre-determined 
frequencies regardless of whether there is evidence of periodic activity at these frequencies. 
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power. Because ratios typically display a non-normal, skewed distribution, they are often log-250 
transformed before further analysis.  251 
 252 

This ratio measure is then used as an electrophysiological marker that is then either analyzed 253 
for potential correlations with features of interest, and/or used as a target in neurofeedback 254 
paradigms. Band ratio measures are often conceptualized as capturing the proportion of a 'slower' 255 
frequency band relative to some 'faster' one, and are often interpreted as a relative 'slowing' of 256 
neural activity (eg: Monastra, Lubar, & Linden, 2001; Poza, Hornero, Abásolo, Fernández, & Mayo, 257 
2008) or as a shift of power from one band to another (eg: Gasser, Verleger, Bächer, & Sroka, 1988), 258 
which conceptualize one process explaining a change in periodic activity. Other interpretations 259 
focus on interpreting and investigating ratio measures more in terms of changes within the 260 
component bands, for example interpreting a decrease in theta / beta ratio as changes in the theta 261 
or beta band (eg: Clarke et al., 2013), which conceptualizes one or more distinct changes in periodic 262 
bands. Differences in these such interpretations include whether ratio measures are conceptualized 263 
to reflect one change of reapportioning activity, or potentially multiple changes in distinct bands. 264 
 265 

What is common across these conceptualizations is that they interpret ratio measures as 266 
reflecting periodic power, and so presume, as many investigations do, that pre-specified frequency 267 
bands specifically measure periodic oscillatory activity. For this assumption to be valid, defined 268 
frequency bands of interest, for example, 4-8 Hz theta, must capture periodic activity that is to be 269 
considered as relating to that band. A known problem with applying predefined frequency bands 270 
uniformly across all participants is that variation in center frequencies can lead to misestimations of 271 
the desired features. This can be an underestimation, if frequency variation causes band power to 272 
'move' outside the canonical range, or an overestimation, if power from an adjacent frequency band 273 
is captured in the examined range. Similar issues can arise if the bandwidth of frequency bands 274 
violates expectations and/or is different between groups. These potential periodic confounds 275 
challenge the assumption that band ratio measures relate specifically to relative periodic power (see 276 
Figure 3A). 277 
 278 

An example of this issue has been previously demonstrated in a sample of participants with 279 
ADHD, whereby an increased theta / beta ratio, as measured using canonical band definitions, was 280 
found to actually reflect a slowed alpha peak in the ADHD group (Lansbergen et al., 2011). In this 281 
case, the theta / beta ratio calculated using individualized frequency bands found no difference 282 
between groups. This suggests that, in at least some cases, frequency variation can lead to 283 
measurements and interpretations of band ratios that do not accurately reflect the actual properties 284 
of the data. This has led to suggestions that band ratios measure should be computed using 285 
individualized frequency bands (Saad et al., 2018).  286 
 287 
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 Beyond the periodic confounds, a broader issue is the implicit assumption that frequency 288 
definitions reflect periodic activity in the data, and that this activity can be specifically captured by 289 
measuring power averaged across a frequency range. This assumption is in general invalid, as 290 
electrophysiological activity includes not only periodic components, but a 1/f-like distributed 291 
aperiodic component (Haller et al., 2018; B. J. He, 2014), which has power at all frequencies, but 292 
does not consist of periodic activity (see Figure 2B). The presence of this 1/f-like activity, henceforth 293 
referred to as the ‘aperiodic component’, entails that there will always be power in a given frequency 294 
range, but that this power should not necessarily be assumed to reflect periodic activity. Rather, 295 
power at a particular frequency, or frequency range, reflects, at least in part, aperiodic activity, and 296 
only partially, if at all, reflects periodic activity. A marker that there is actual periodic power in a 297 
signal is that there should be a band specific peak over and above this aperiodic component 298 
(Buzsáki et al., 2013). To specifically measure this periodic component of the signal, one should 299 
measure the power in this band specific peak relative to the aperiodic component of the signal 300 
(Haller et al., 2018). 301 
 302 
 Band ratio measures, as currently applied, do not address the confound of ubiquitous 303 
aperiodic activity in neural signals. Aperiodic neural activity is known to be variable both within 304 
(Podvalny et al., 2015) and between individuals (Voytek et al., 2015). This variability raises the 305 
possibility that band ratio measures may reflect, at least partially, aperiodic activity and that 306 
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Figure 3. Equivalent Band Ratio Differences from Distinct Changes. Simulations demonstrating the 
underdetermined nature of band ratio measures. In each case, the power spectrum plotted orange 
has the same difference of measured theta / beta ratio from the reference spectrum, in blue. This 
difference in ratio can arise from changes in multiple different features of the data, including a shift 
in: A) the periodic properties such as the center frequency, power or bandwidth of oscillations, and/or 
from a shift in; B) aperiodic component of the data. Differences in aperiodic activity can induce 
differences in measured band ratios, even without any periodic components present. 
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measured differences within and between individuals may be driven by differences in aperiodic 307 
properties of the data (see Figure 3B). The very observation that there are correlated changes across 308 
frequency bands that helped popularize band ratio measures (Lubar, 1991) can even be interpreted 309 
to support the suggestion that a parsimonious description of the data could be changes in aperiodic 310 
properties, across all frequencies. This is also broadly consistent with the interpretations of ratios 311 
reflecting ‘substitutions’ of power between bands (Gasser et al., 1988) in the sense that one process 312 
explains the changes across different frequency regions (though inconsistent with this being a shift 313 
of periodic activity).  314 
 315 
 In summary, band ratio measures are a common analyses measure that are calculated across 316 
two frequency bands that are designed to, and are interpreted as, reflecting relative periodic 317 
activity. However, even when oscillations are clearly present, variations in the measure may reflect 318 
not only the power across the two bands, but may be driven by differences in the center frequencies, 319 
and/or the bandwidths of such periodic components and, can also be driven by changes in 320 
aperiodic activity with or without periodic activity being present (see Figure 2C). Altogether, this 321 
suggests that band ratio measures are underdetermined, whereby a change in one or many 322 
different features of the data may drive analogous differences in band ratio measures (Figure 3). If 323 
so, not only are typically interpretations of band ratio measures unsupported, but band ratio 324 
measures, by themselves, may be essentially uninterpretable, as underlying physiological causes of 325 
changes in the measure are undecipherable from the measure itself, but reflect different properties 326 
of the data. 327 
 328 
 To investigate these issues, we examine the properties and validity of band ratio measures, 329 
including, 1) how are band ratio measures influenced by different features of periodic activity, 330 
including center frequency, power and bandwidth, and 2) how band ratio measures are influenced 331 
by changes in aperiodic properties of the data, including the aperiodic exponent and offset. We 332 
start by systematically exploring the properties of band ratio measures across simulated data that 333 
mimic the statistics of real data, for which ground truth is known. We use these simulations to 334 
evaluate how changes in different features, and their combinations, influence band ratio measures. 335 
We follow by analyzing a large EEG dataset (n = 126) in which we applied band ratio measures and 336 
compared ratios to methods that explicitly parameterize periodic and aperiodic features of the data, 337 
to infer which neural features influence and contribute to band ratio measures. We find that many 338 
different features of the data can give rise to band ratio differences, making them effectively 339 
uninterpretable in isolation, without additional context of the rest of the power spectral features 340 
involved. Therefore, we conclude that band ratios should not be interpreted as a well-posed 341 
method to specifically measure periodic properties of neural times series, and comment on how the 342 
methodological findings from this work can be used to interpret prior work, and what it suggests 343 
for future investigations. 344 
  345 
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Methods 346 
 347 
 In order to investigate the properties of frequency band ratios, we explored calculating band 348 
ratio measures across simulated power spectra, for which ground truth values were known, as well 349 
as investigating their application in EEG data. As a comparison to the band ratio measures, periodic 350 
(oscillatory) and aperiodic properties of power spectra were characterized using the fitting-351 
oscillations-&-one-over-f (FOOOF) toolbox (Haller et al., 2018). Band ratio measures were 352 
compared to the outputs of the parameterization of the power spectra, which quantifies the center 353 
frequency (CF), power (PW) and bandwidth (BW) of identified periodic components, as well as the 354 
exponent and offset (described below) of the aperiodic component. Using these parameterizations, 355 
we evaluate which components of the data the band ratio measures reflect. For all analyses, 356 
canonical frequency band definitions were defined as: theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 357 
Hz). 358 
 359 

Analyses were done using Python (version 3.7), including common libraries numpy, pandas, 360 
scipy, matplotlib and seaborn for analysis and visualization. The MNE library was used for managing 361 
and processing EEG data (Gramfort et al., 2014). Custom code was used to calculate band ratio 362 
measures and perform analyses. All code for this project is available in the project repository 363 
(https://github.com/voytekresearch/BandRatios). 364 
 365 
2.1 Literature Analysis 366 
 367 
 The literature analysis was done use the ‘Literature Scanner’ (LISC) Python toolbox 368 
(Donoghue, 2019). Briefly, this toolbox allows for collecting and analyzing literature data by curating 369 
search terms of interest, gathering related articles from available databases, and analyzing the 370 
results. For this analysis, a list of band ratio terms (e.g., “theta / beta ratio”) and related association 371 
terms (e.g., “attention”), with relevant synonyms and exclusion words, was manually curated. 372 
Searches were performed to determine the number of articles in the PubMed database that 373 
reference these terms in their abstract, and the number of co-occurrences of band ratio terms with 374 
association terms. Association scores were calculated as the proportion of articles referencing a 375 
band ratio measure that also mention one of the included association terms.  376 
 377 
2.2 Simulations 378 
 379 
 Neural power spectra were simulated to match the statistics of electrophysiological neural 380 
data, by combining a 1/f-like aperiodic component with overlying peaks of periodic activity, with 381 
overlying noise (Haller et al., 2018). The aperiodic component describes the 1/f-like characteristic 382 
of neural power spectra and is entirely described by the aperiodic ‘exponent’ and ‘offset.’ The 383 
aperiodic exponent, meaning the 𝜒  in "

#$
, describes the steepness of the 1/f, and the ‘offset,’ 384 

describes the vertical translation of the aperiodic activity. Periodic components describe putative 385 
oscillations which display power above the aperiodic component. Periodic components are 386 
simulated as Gaussians, and are described by a ‘center frequency’ (CF) in hertz, ‘power’ (PW) from 387 
the aperiodic component to the oscillatory peak in arbitrary units (au), and ‘bandwidth’ (BW) which 388 
describes the width of the peak, also measured in hertz. The simulation ultimately follows: 389 
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𝑃 = 𝐿 +	*𝐺, 390 
in which L is the aperiodic component, described as 391 

𝐿 = 10/ ∗	
1
𝑓2

 392 

in which b is the offset and 𝜒 is the exponent. On top of this, periodic components are added with 393 
each of n peaks described as a Gaussian, as: 394 

𝐺, = 𝑎 ∗ exp	(
−(𝐹 − 𝑐)<	
2 ∗ 𝑤< ) 395 

in which c is the peak center frequency, and a and w are the height and width of the gaussian, 396 
equivalent to the power and bandwidth of the peak.  397 

 398 
Spectra were simulated for the frequency range of 1-35 Hz, with a 0.5 Hz frequency 399 

resolution. Default aperiodic and periodic parameter values were chosen to capture physiologically 400 
realistic values. A small amount of normally distributed noise (0.005 au) was added to all spectra to 401 
emulate real power spectra. 402 
 403 
 We calculated band ratios from simulated power spectra by dividing mean power across the 404 
low band range by the mean power across a high band range. We calculated the theta / beta ratio, 405 
theta / alpha ratio, and alpha / beta ratio. 406 
 407 
 To measure how spectral parameters relate to band ratio measures, spectra were simulated 408 
where a single parameter was varied across a range while the remaining parameters were kept at 409 
their default values. From these spectra the theta / beta, theta / alpha and alpha / beta ratios were 410 
calculated to track how individual parameters affect ratio measures. Since CF, PW, and BW are 411 
specific to a peak, they were all individually varied for both low-band and high-band peaks. The 412 
ranges of values for each parameter are given in supplemental tables 1 & 2. 413 
 414 

We then studied how band ratio measures are affected by multiple interacting changes in 415 
spectral parameters. Further simulations were carried out as two parameters from the set {CF, PW, 416 
BW, EXP} were simultaneously varied across their respective ranges. All combinations of paired 417 
parameter simulations were calculated and analyzed. The default parameter settings and ranges 418 
remained the same as the single parameter simulations. 419 
 420 
2.3 EEG Data Analysis 421 
 422 
 To study how various spectral parameters affect band ratio measures, we used the openly 423 
available ‘Multimodal Resource for Studying Information Processing in the Developing Brain’, or 424 
MIPDB, dataset of human EEG data released by the Child Mind Institute (Langer et al., 2017). The 425 
study population is a community sample of children and adults (n = 126, age range = 6-44, age 426 
mean = 15.79, age standard deviation = 8.03, number of males = 69). Data for each subject includes 427 
resting state and task EEG data, behavioral measures, and eye tracking data. For the current 428 
investigation, we analyzed eyes-closed resting state data, collected on a 128 channel Geodesic 429 
Hydrocel system. Of the 126 participants in the dataset, 9 did not include resting state data 430 
collection, as indicated by the dataset description, and were therefore excluded. In addition, a 431 
further 6 participants were excluded from this analysis due to missing the resting state recording 432 
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file (1 subject) or not having enough resting data events to analyze (5 participants) leaving 111 433 
participants included in the final analysis.  434 
 435 
 In the resting state protocol, participants were instructed to fixate on a central cross, and 436 
open or close their eyes when they heard a beep, alternating between 20 second blocks of eyes 437 
open and 40 second blocks of eyes closed. The dataset includes a pre-processed and artifact 438 
corrected copy of the data, which was used here, with full details of the pre-processing described 439 
in (Langer et al., 2017). Briefly, bad electrodes were identified and interpolated, eye artifacts were 440 
regressed out of the EEG from EOG electrodes, and a PCA approach was used to remove sparse 441 
noise from the data. We further identified flat channels (channels with no data) and interpolated 442 
them, and re-referenced data to a common average reference. 443 
 444 
 For the current analyses, we used the eyes closed resting state data, and extracted the time 445 
period of 5 – 35 seconds within the 40 second eyes closed resting segments, excluding the 5 446 
seconds post and prior to eye opening. We used the first block for each participant for analysis. 447 
Power spectra were calculated for each channel using Welch’s method, using 2 second windows 448 
with 25% overlap. 449 
 450 
 We then parameterized the calculated power spectra to return estimates of periodic and 451 
aperiodic parameters. The model parameterization we used is agnostic to frequency bands, fitting 452 
peaks wherever they’re found in the frequency spectrum regardless of canonical band definitions 453 
(Haller et al., 2018). We determined that activity was contained in a band if the peak of an oscillation 454 
was contained in our aforementioned band definitions. Settings for parameterizing power spectra 455 
are as follows: the width for a detected peak was bound between 1 - 8 Hz, with a maximum number 456 
of detectable peaks set at 8, a minimum threshold for detecting a peak set at 0.1 au, the threshold 457 
for detecting was set at the default value of 2 standard deviations above the noise floor, and spectra 458 
were fit in ‘fixed’ mode without a knee. 459 
 460 
 For all band ratio measures, we calculated Spearman correlations between spectral 461 
parameters, including center frequency, power and bandwidth of each oscillation band, as well as 462 
the aperiodic exponent, across all channels. We do not report correlations to aperiodic offset, as 463 
offset shifts by themselves do not affect ratio measures (see simulation results). In addition, we 464 
calculated Spearman correlations between each ratio measure and participants’ ages, and between 465 
spectral parameters and age. 466 
  467 
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Results 468 
 469 
3.1 Simulation Results 470 
 471 
 We started by investigating, in simulation, the extent to which band ratios capture periodic 472 
power as typically interpreted, and/or to what extent they are potentially related to other periodic 473 
or aperiodic spectral parameters. Measured theta / beta ratios across simulations in which one 474 
spectral parameter was changed at a time, are reported in Figure 4. As expected, when examining 475 
periodic changes (Figure 4A) the theta / beta ratio is strongly driven by power of theta and beta 476 
oscillations. However, ratio measures can also be influenced by the center frequency and bandwidth 477 
of the theta and beta peaks. We also replicate previous work showing that the center frequency of 478 
the alpha peak can impact measures of theta / beta ratio, (Lansbergen et al., 2011), and extend this 479 
to include alpha bandwidth. For aperiodic changes (Figure 4B), we see that the aperiodic exponent 480 
has a significant effect on measured ratio values.  481 
 482 
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Figure 4. Single Parameter Simulations. Simulations of changes in measured theta / beta ratio as 
individual parameters are varied, including: A) periodic parameters and B) aperiodic parameters. 
Changes in theta center frequency show an increase in theta / beta ratio as the heightened activity is 
better captured in the canonical band, then decreases as activity leaves the band. Increasing theta 
power and bandwidth both increase TBR while increasing beta power and bandwidth decreases theta 
/ beta ratio. The center frequency and bandwidth of alpha peaks also influences measured theta / 
beta ratio, even though alpha is not supposed to be included in the measure. Beta parameters 
essentially have the inverse effect of changes in theta parameters. Changes in aperiodic exponent 
also substantially impact measured theta / beta ratio. 
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Collectively, we see that a wide range of different parameter changes can affect measured 483 
ratios. In this case, 8 of the 10 parameters alter theta / beta band ratio, with the only exceptions 484 
being the aperiodic offset, which changes power equally between ratio bands, and power in the 485 
non-included band, in this case alpha (for the theta / beta ratio). Of note, however, is that the scale 486 
of this effects can be quite different, with the power of the included bands and the aperiodic 487 
exponent having the biggest impacts. The findings for other band ratio measures are consistent 488 
with those for the theta / beta ratio, with full results for them available in the project repository.  489 
 490 
 We further explored simulations of pairwise combinations of parameter changes, to 491 
investigate how ratio measures are affected by concomitant changes in multiple parameters (Figure 492 
5). These simulations include, for example, measured theta / beta band ratios as the aperiodic 493 
exponent and theta center frequency both vary, showing an interaction between them (Figure 5A). 494 
We can see how changes in aperiodic exponent interact with power changes in the lower (Figure 495 
5B) and higher (Figure 5C) bands. These simulations also demonstrate that both features have an 496 
impact on measured ratios, and allow a comparison of scale, showing, for example, that although 497 
the influence of low band power and aperiodic exponent is of a similar magnitude, when compared 498 
to high band power, the effect of aperiodic exponent changes is relatively much larger. Collectively, 499 
through these simulations, we see that changes in different spectral parameters can interact and 500 
drive different patterns of differences in measured band ratios. Further simulations of interacting 501 
parameters across all other combinations are available in the project repository.  502 
 503 
3.2 EEG Data Results 504 
 505 
 We continue our investigation with EEG data recorded during resting state, and compare 506 
band ratio measures to parameterized power spectral features. For all correlations here, we report 507 
results across all channels. Re-running these analyses with channel groups, using frontal, central, 508 

A B C

Figure 5. Interacting Parameter Simulations. Measured theta / beta ratio values in simulations as two 
spectral parameters are varied together. Ratio measures plotted in log10 space due to their skewed 
distributions. Combinations plotted are aperiodic exponent with low band center frequency (A), as 
well as with low band power (B) and high band power (C). All combinations of varying parameters 
influence measured band ratio values. 
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and parietal sub-selections showed qualitatively similar patterns, the results of which are available 509 
in the project repository.  510 
 511 
 For the theta / beta ratio, within periodic spectral parameters we find, as expected, that the 512 
strongest relationship is between theta / beta ratio and theta power (r = 0.35, p < 0.001) with a 513 
similarly high correlation with beta power (r = -0.29, p < 0.01). However, when considering aperiodic 514 
parameters, we find a much stronger relationship between theta / beta ratio and aperiodic exponent 515 
(r = 0.77, p < 10-20). The full set of spectral parameter correlations is available in Figure 6A.  516 
 517 
 In contrast, for the theta / alpha ratio, the highest correlation across both periodic and 518 
aperiodic spectral parameters was for alpha power (r = -0.89, p < 10-35), with a much lower 519 
correlation with aperiodic exponent (r = 0.27, p < 0.01). This pattern of correlations was also similar 520 
for the alpha / beta ratio, with a strong correlation with alpha (r = 0.87, p < 10-30), and a much weaker 521 
one with aperiodic exponent (r = 0.33, p < 0.001). Spectral parameter correlations for the theta / 522 
alpha ratio and alpha / beta ratio are available in Figure 6B & 6C respectively.  523 
 524 
 We also calculated average ratio measures and spectral parameters for each channel, across 525 
the group. Topographies of these measures are plotted in Figure 7. Here we can see, for example, 526 
that the spatial topography of the theta / beta ratio is most similar to that of the aperiodic exponent, 527 
with a strong spatial correlation (r = 0.77, p < 10-20). The topography of alpha / beta ratio is nearly 528 

Figure 6. Correlations between 
Spectral Parameters and Band 
Ratio Measures in EEG Data.  
In a large EEG dataset,  
correlation results are reported 
for band ratios as compared to 
the periodic (left) and aperiodic 
(right) parameters for the (A) 
theta / beta ratio, (B) theta / 
alpha ratio  and (C) alpha / beta 
ratio. In (A), these results show 
that the theta / beta ratio is most 
strongly correlated with the 
aperiodic exponent, and less 
related to power in the theta or 
beta. In contrast, (B) and (C) 
show that any ratio measure that 
includes an alpha band is most 
strongly correlated to alpha 
power, meaning any alpha ratio 
is mostly reflecting just alpha 
power. 
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identical to the topography of alpha power (r = 0.97, p < 10-70), with a strong inverse relation 529 
between the theta / alpha ratio and alpha power (r = -0.92, p < 10-45). 530 
 531 

We also calculated how each measure correlated with age. The theta / beta ratio was found 532 
to be highly correlated with age (r = .67, p < 10-15), with the negative correlation indicating that 533 
older adults have higher theta / beta ratios. In comparison, the theta / alpha ratio had a much 534 
smaller correlation with age (r = -0.37, p = 0.0001) and the alpha / beta ratio was not significantly 535 
correlated with age (r = -0.12, p = 0.22). For spectral parameters, the aperiodic exponent was found 536 
to be highly correlated with age (r = 0.68, p < 10-15), consistent with previous reports (W. He et al., 537 
2019; Voytek et al., 2015). 538 
  539 

Aperiodic Exponent

Theta / Beta RatioA

B C D Alpha Power

Alpha / Beta RatioTheta / Alpha Ratio

Figure 7. Topographies of Band Ratio Measures and Spectral Parameters. Topographical maps of the A) 
ratios measures, including the theta / beta ratio, theta / alpha ratio and alpha / beta ratio. For 
comparison, the topography of the aperiodic exponent (B) and of alpha power (D) are also presented. 
Each topography is scaled to relative range of the data, with higher values plotted in lighter colors 
(yellow). C) The spatial correlation between topographies of each ratio measure to spectral 
parameters including power of theta, alpha and beta, and the aperiodic exponent. 
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Discussion 540 
 541 
4.1 Methodological Discussion Points 542 
 543 
 Through investigations of both simulated and real data, we find that frequency band ratio 544 
measures, though typically applied and interpreted as reflecting the relative periodic power of 545 
distinct frequency bands, can actually reflect a large number of distinct changes in the underlying 546 
data. These band ratio measures therefore capture multiple different changes in periodic and 547 
aperiodic properties. Part of this stems from the use of predefined frequency bands of interest, as 548 
has been previously reported (Lansbergen et al., 2011; Saad et al., 2018). Here, we replicate and 549 
extend this finding, showing how center frequency, and also oscillatory bandwidth, can influence 550 
band ratio measures in ways that can be misinterpreted as reflecting power differences. In addition, 551 
we show how frequency band ratio measures may commonly capture, at least partially, aperiodic 552 
components of electrophysiological data.  553 
 554 
 Specifically, we used a parameterization model conceiving of the power spectrum as the 555 
combination of an aperiodic, 1/f-like spectrum, characterized by an offset and exponent, with 556 
overlying periodic 'peaks', each characterized by a center frequency, power (over and above the 557 
aperiodic background) and bandwidth measure. With this approach, we show many of these 558 
parameters can similarly affect band ratio measures in simulation. When applied to real data, we 559 
find that different parameters do affect ratio measures, with different patterns for different ratio 560 
measures. For example, theta / beta ratio measures mostly reflect aperiodic exponent, whereas 561 
theta / alpha and alpha / beta ratios mostly reflect alpha power. In no ratio measures did we find 562 
evidence that the measure primarily reflects power within both specified bands. 563 
 564 
 Given the underdetermined nature of band ratio measures in the face of multiple features 565 
of the data that may be changing, we conclude that band ratio measures are not an appropriate 566 
measure for characterizing electrophysiological data, at least not in isolation. This is because are 567 
uninterpretable in terms of knowing which component(s) of the data they actually reflect. Therefore, 568 
we recommend complementary or alternate approaches. These include methods that fully 569 
parameterize neural power spectra, specifically measuring periodic and aperiodic components 570 
(Haller et al., 2018), which allows for precise quantification of which features of the data vary within 571 
and between individuals.  572 
 573 
 A prior recommendation, that attempts to address center frequency differences (Lansbergen 574 
et al., 2011), is that band ratio measures should use individualized frequency bands (Saad et al., 575 
2018). It should be noted that the recommended approach, originally proposed by (Klimesch, 576 
1999), is to use individualized bands based on an alpha band anchor point, whereby theta and beta 577 
can be defined as below and above the observed alpha peak. Though this addresses some issues 578 
with varying alpha center frequency, it does not specifically establish if there is a defined theta or 579 
beta peak, over and above aperiodic power, nor does it identify specific center frequencies should 580 
such periodic activity be present. Because this approach also does not separate aperiodic from 581 
periodic power, individualized peak detection, especially when anchored to alpha peaks, is 582 
insufficient to address the problems highlighted here.  583 
 584 
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 It has previously been reported that ratio measures are stable and have high test-retest 585 
reliability within individuals (Angelidis et al., 2016; Monastra et al., 2001; Ohlund, 2000). This is not 586 
necessarily in conflict with the finding here that band ratio measures may reflect many distinct 587 
features of the data; stable test-retest reliability merely suggests that whichever feature(s) are 588 
captured by band ratios within a given subject are themselves stable. However, that band ratios 589 
across individuals, and in particular across different populations, may reflect different properties of 590 
the data may well help explain why there has been difficulty in reproducing several findings using 591 
band ratios. For example, recent failures to replicate band ratio measures include follow ups on 592 
previously reported relations with trait anxiety (van Son et al., 2018) or attentional control (van Son 593 
et al., 2019). In clinical work, there have been inconsistent findings relating the theta / beta ratio to 594 
ADHD (Liechti et al., 2013; Ogrim et al., 2012). It is possible that when investigating varying 595 
populations, different features of the data may be driving different observed ratio measures, and 596 
this may relate to the significant variance of band ratio measures and their correlates found across 597 
studies.  598 
 599 
4.2 Interpretation Related Discussion Points 600 
 601 
 The findings cast doubt on the interpretations of prior reports that use band ratio measures 602 
and interpret them as primarily reflecting periodic power. Where such studies are reproducible, 603 
recontextualization of such findings should consider multiple possible interpretations, including, for 604 
example that, a) there is a true change in the power ratio of activity between distinct frequency 605 
bands reflecting periodic activity, b) there is a difference in periodic parameters other than power, 606 
such as in center frequency and/or bandwidth, c) band ratio measures reflect differences in 607 
aperiodic activity, or, d) some combination of the above. Based on data analyzed, the theta / beta 608 
ratio is most likely to reflect aperiodic activity, whereas the theta / alpha and alpha / beta ratios are 609 
most likely to primarily reflect alpha power. That said, ratio measures could vary across studies in 610 
what they reflect, and/or reflect interactions between parameters. Re-evaluations of prior work 611 
and/or follow up investigations should seek to re-evaluate such data to investigate which features, 612 
in each case, are driving the measured changes in band ratios, and update interpretations 613 
accordingly.  614 
 615 

In this investigation we replicated the consistently reported finding that band ratio measures 616 
vary systematically with age (Angelidis et al., 2016; Bresnahan et al., 1999; Buyck & Wiersema, 2014; 617 
Clarke et al., 2001; Gasser et al., 1988; Monastra et al., 2001; Ogrim et al., 2012; Putman et al., 618 
2010), as well as the finding that aperiodic activity also varies systematically with age (Voytek et al., 619 
2015). Since we also find that band ratio measures are highly correlated with aperiodic activity 620 
(especially the theta / beta ratio), this is altogether consistent with the idea that the relation of band 621 
ratio measures to age is plausibly due to band ratios reflecting aperiodic activity. We note that the 622 
dataset used here consists of young participants, and the pattern of findings here is also consistent 623 
with recent work showing that the relation of aperiodic activity to age is also apparent in younger 624 
participants, and that changes in aperiodic activity across age better explains developmental 625 
patterns rather than previous reports of correlated changes across multiple distinct oscillation bands 626 
(W. He et al., 2019).  627 
 628 
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Overall, the EEG data analyzed here suggests that ratio measures, and the theta / beta ratio 629 
in particular, often largely reflects aperiodic activity. As well as the relationship of aperiodic activity 630 
and band ratios to age, this is also consistent with other reports that previously reported correlates 631 
of band ratios have also been found to relate to aperiodic activity. For example, when band ratios 632 
are used in sleep scoring, it is typically done with the delta / theta ratio, which we predict likely also 633 
captures aperiodic changes, which would be consistent with recent reports that aperiodic activity 634 
changes systematically with sleep (Lendner et al., 2019). Collectively, these shared correlates are 635 
consistent with suggestion that band ratio measures likely often reflect aperiodic activity. 636 
 637 
 A key prediction, if ratio measures often reflect aperiodic properties, is that the reported 638 
findings will not be specific to the frequency ranges used to measure the ratios, as aperiodic effects 639 
should exist across all frequencies. Indeed, correlated change across frequency bands is one of the 640 
observations that led to the popularity of band ratio measures (Lubar, 1991). It has also been 641 
reported that distinct ratio measures across different frequency bands show similar patterns, for 642 
example that both delta / beta and theta / beta ratios relate to cognitive correlates (Schutter & Van 643 
Honk, 2005; Tortella-Feliu et al., 2014), both theta / alpha and theta / beta have been reported to 644 
relate to ADHD (Barry et al., 2003), and multiple different ratios show similar patterns in 645 
investigations of Alzheimer’s disease (Poza et al., 2008). In cases such as these, in which different 646 
band ratio measures show approximately similar trends across a wide array of band pairs, a plausible 647 
interpretation is that these findings do not reflect correlated changes across multiple distinct 648 
frequency bands, but rather that they are all capturing frequency-agnostic aperiodic shifts. 649 
 650 
 In neurofeedback designs, where band ratios are a target for manipulation rather than a 651 
descriptive measure, findings are also consistent with the possibility that targeting ratios at least 652 
partially manipulates aperiodic properties, rather than targeting oscillation bands specifically. For 653 
example, a recent report showed that targeting beta in a feedback design also induces changes in 654 
the alpha band (Jurewicz et al., 2018), which challenges the possibility of targeting different bands 655 
independently. Where investigations probe the specificity of neurofeedback protocols, non-specific 656 
effects have been reported, such as an effect on beta from a theta / alpha protocol (Egner et al., 657 
2004), and changes in alpha when using a theta / beta protocol (Bazanova et al., 2018; Limin Yang 658 
et al., 2015), all of which is consistent with ratios reflecting aperiodic activity. 659 
 660 
 If a considerable proportion of the variance of band ratios measures is due to aperiodic 661 
properties, and not well described or interpreted as band specific changes, then it becomes an 662 
open question to ask what the physiological interpretation should be, and therefore how these 663 
findings should be interpreted. One hypothesis is that the aperiodic properties of neural time series 664 
may relate the relative balance of excitatory and inhibitory activity (Gao et al., 2017). Though further 665 
work is required to explore this hypothesis and how it relates to measurements done with band 666 
ratios, this does suggest a potential link between what has been measured in band ratios, as a 667 
correlate of various cognitive markers and disease states, and potential interpretations related to 668 
excitation and inhibition. A more general review of aperiodic properties in neural data, sometimes 669 
referred to 'scale-free' activity, is available in (B. J. He, 2014).  670 
 671 

Particular attention should be paid to ratio measures applied in clinical applications, in which 672 
the pursuit of biomarkers based on faulty measures could hinder, rather than ameliorate, clinical 673 
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practice. For example, the findings here on ratio measures are consistent with the practice advisory 674 
that using theta / beta ratio measures in the context of ADHD is not an appropriate measure (Gloss 675 
et al., 2016). Rather, the prediction based on these results for ADHD would be that the oft reported 676 
theta / beta correlate is likely a reflection of differences in aperiodic activity. In other work, we have 677 
found exactly this: that aperiodic properties are correlated with theta / beta measures in a 678 
population with ADHD, and that the aperiodic measures themselves better relate not only to 679 
disease state but also to medication status (Robertson et al., 2019). For other clinical disorders that 680 
have been investigated with band ratio measures, such as Alzheimer’s disease (Cassani et al., 2018), 681 
or psychotic disorders (Howells et al., 2018) we recommend that investigations should follow up on 682 
which underlying features best explain changes in ratio measures, and update interpretations and 683 
future work on biomarkers accordingly.  684 
 685 
 A notable exception, as we found in analyzed EEG data, to ratio measures reflecting 686 
aperiodic shifts is in cases in which ratio measures include the alpha band. When the alpha band is 687 
included in the ratio, band ratio measures tend to primarily reflect alpha power. This is likely due to 688 
the prominence of the alpha band, where alpha is typically present across participants, has very 689 
high power, and is dynamic. Thus, it is logical that ratio measures that include the alpha band largely 690 
reflect alpha dynamics, as we observed here. This effect may also be exaggerated in our analysis, 691 
as we are analyzing eyes closed data, in which alpha power is most prominent, though the pattern 692 
of results is consistent when re-run on eyes open data. Investigations in which ratio measures such 693 
as delta / alpha or theta / alpha are used should investigate to what extent the dominant effect they 694 
are capturing is alpha dynamics. Overall we recommend that reports from studies using band ratios 695 
including alpha should consider if the findings are likely to be largely explained by alpha dynamics.  696 
  697 
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Conclusion 698 
 699 
 Frequency band ratio measures are a common analysis approach applied to neural field 700 
data, including EEG, MEG, ECoG and LFP. Band ratio approaches have been applied across many 701 
domains, including basic research investigating executive functions, learning and memory, and 702 
sleep; in clinical investigations including investigating ADHD and dementia; and in applied work 703 
leveraging them for neurofeedback applications. Though typically interpreted as a normalized 704 
measure reflecting the relative power of distinct periodic components, here we show that band ratio 705 
measures can reflect not only multiple features of periodic neural activity, including the center 706 
frequency, power and bandwidth of periodic components, but can also be driven by variations in 707 
aperiodic activity. This is demonstrated in simulation, and also in empirical work applied to a large 708 
EEG dataset in which we show how multiple spectral features relate to measured band ratios, 709 
making them an imprecise metric. For example, the most dominant contributor to the theta / beta 710 
ratio is the aperiodic exponent, whereas the theta / alpha and alpha / beta ratio predominantly 711 
reflect alpha power. Overall, band ratio measures are found to be underdetermined, and so across 712 
participants, recording modalities, species, and contexts may reflect different components of the 713 
signal. This makes comparisons with band ratio measures difficult, if not impossible, and questions 714 
their typical interpretations as reflecting periodic activity. As an alternative, we recommend that 715 
parameterization of neural power spectra is able to better capture which components of neural 716 
signals vary and relate to features of interest, without conflating changes in periodic and aperiodic 717 
activity, as band ratio measures do. 718 
  719 
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Supplementary Materials 965 

 966 

Theta Alpha Beta

CF

Default 6 10 21.5

Range 4 - 8 8 - 13 13 - 30

Increment 0.25 0.25 1

PW

Default 0.5 0.5 0.5

Range 0 - 1.0 0 - 1.0 0 - 1.0

Increment 0.1 0.1 0.1

BW

Default 0.1 0.1 0.1

Range 0.2 - 0.4 0.2 - 0.4 0.2 - 0.4

Increment 0.2 0.2 0.2

Supplemental Table 1. Simulation Parameters for Periodic Components 

Default Range Increment
Offset 0 0 - 2.5 0.25

Exponent 1 0 - 3 0.2

Supplemental Table 2. Simulation Parameters for Aperiodic Components 
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