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How cells regulate the size of intracellular structures and organelles, despite continuous turnover in their com-
ponent parts, is a longstanding question. Recent experiments suggest that size control of many intracellular
assemblies is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting
pool model ensures organelle size scaling with cell size, it does not provide a mechanism for robust size control
of multiple co-existing structures. Here we propose a kinetic theory for size regulation of multiple structures that
are assembled from a shared pool of subunits. We demonstrate that a negative feedback between the growth rate
and the size of individual structures underlies size regulation of a wide variety of intracellular assemblies, from
cytoskeletal filaments to three-dimensional organelles such as centrosomes and the nucleus. We identify the
feedback motifs for size control in these structures, based on known molecular interactions, and quantitatively
compare our theory with available experimental data. Furthermore, we show that a positive feedback between
structure size and growth rate can lead to bistable size distributions arising from autocatalytic growth. In the
limit of high subunit concentration, autocatalytic growth of multiple structures leads to stochastic selection of a
single structure, elucidating a mechanism for polarity establishment.

I. INTRODUCTION

Eukaryotic cells are composed of a wide diversity of macro-
molecular assemblies, from linear protofilaments to networks
of cytoskeletal polymers and complex three-dimensional or-
ganelles such as the centrosomes and the nucleus. The cy-
toplasmic pool of proteins constitutes the building blocks for
intracellular organelles, whose sizes are often commensurate
with cell size. Despite continuous turnover in their compo-
nent parts, intracellular organelles are maintained at a precise
size through dynamic balance between subunit assembly and
disassembly [1]. An outstanding challenge is to identify the
design principles through which cells achieve robust size reg-
ulation of multiple co-existing structures that are assembled
from a limiting pool of molecular building blocks in the cyto-
plasm.

Studies in recent years have focused on understanding the
mechanisms for size control of individual cellular structures
such as the eukaryotic flagella [2, 3], actin cables [4], mitotic
spindles [5], centrosomes [6, 7], as well as the nuceloli [8]
and the nucleus [9]. A simple model that explains size control
of these dynamic structures is the ’limiting pool’ model [1],
where structures grow by depleting the pool of available sub-
units in the cytoplasm. As a result, growth rate of structures
decreases with increasing assembly size, and a steady-state
size is reached when the rate of assembly balances the rate of
disassembly of incorporated material. Since organelle size is
determined by the amount of available subunits in the cyto-
plasm, which in turn scales with cell size, the limiting pool
model naturally captures the scaling of organelle size with
cell size. However, the limiting pool fails to capture size
regulation of multiple competing structures [10, 11], due to
the absence of an underlying mechanism for sensing individ-
ual structure size. Failure of the limiting pool mechanism
in determining the size of multiple structures suggests addi-
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tional feedback design principles for organelle growth control.
In this work we uncover the feedback motifs necessary for
maintaining the size of multiple organelles, including the eu-
karyotic flagella, centrosomes, nuclei, as well as describe the
mechanisms for co-existence multiple cytoskeletal filaments
that assemble from a shared pool of monomers in the cellular
cytoplasm [12, 13].

We begin by considering a deterministic description for the
growth of M structures that incorporate material from Nav
available subunits in the cytoplasm. Dynamics of size of the
ith structure (i = 1..M ), ni (expressed in the number of sub-
units), is given by:

ṅi = k+i ρ− k
−
i (1)

where ρ = Nav/V is the concentration of subunits in the cy-
toplasm, V is the cell volume, and k+i (k−i ) is the rate of as-
sembly (disassembly) of the ith structure. If the cytoplasmic
concentration of subunits is maintained at a constant homeo-
static value (ρ̇ = 0) [14, 15], size control is not achieved ex-
cept when ρ is fine tuned to a critical value ρ = ρc = k−/k+.
Growth is unbounded for ρ > ρc and the assembly degrades
for ρ < ρc. By contrast, in the limiting pool mechanism, the
total amount of subunits N = Nav +

∑M
i=1 ni is constant. In

this case, the assembled structure reaches a well-defined size
n = N − (k−/k+)V , only for M = 1.

However, when multiple structures are assembled from a
shared subunit pool (M > 1), (1) yields a system of under-
determined rate equations with no unique solution for the
steady-state size of the individual assemblies (see SI: Sec-
tion 1 for details). This indeterminacy manifests as large
size fluctuations (Fig. S1) in a stochastic description [11],
where building blocks can transfer between individual struc-
tures with no free energy cost. The underlying reason is that
the limiting pool model does not provide a mechanism to
sense the individual size of the structures. Rather, the limiting
pool mechanism operates by sensing the size of the available
subunit pool in the cytoplasm.
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FIG. 1. Size regulation of multiple structures grown from a shared subunit pool. (a) Schematic of two filaments growing from a shared pool
of monomers where the assembly and disassembly rates depend on their individual size. (b) Time series for the size of two identical filaments
grown from a shared pool of subunits in two limits of the model: α + β = 1 (light and dark blue lines), and α + β = 0 (light and dark red
lines). (c) Size distribution of two competing structures with unequal growth rates (κ1 = 2κ2 = 1), for α + β = 1 (blue) and α + β = 0
(red). (d) Phase diagram showing co-existence of two competing structures over a broad range of parameter space, with κ2 = 2. For all results
in (a-d) V = 1 and N = 50. (e) Phase diagram of the general growth model in α-β plane, showing the different regimes of size control.
α + β > 0 defines the regime of negative autoregulation of growth which guarantees robust size control. Positive autoregulation of growth
(α + β < 0) gives rise to bistable size distribution. The phase boundary α + β = 0 corresponds to the limiting pool model with constant
assembly/disassembly rates, where there is no size regulation of individual structures. We map our model to size control mechanisms for a
variety of intracellular structures, from linear filaments to 3D organelles.

MODEL FOR SIZE REGULATION OF MULTIPLE
STRUCTURES GROWN FROM A SHARED SUBUNIT POOL

In the limiting pool model for M > 1, departure from size
control of individual structures is manifested either as large
anticorrelated size fluctuations (for identical growth rates),
or the faster growing structure ends up incorporating all the
subunits [11]. We therefore hypothesize that a negative feed-
back between size and the growth rate of individual structures
might ensure robust size control. This motif can be realized
when the net growth rate of individual structures decreases
with increasing size. In fact, size-dependent assembly and
disassembly rates have been reported in many cases of fila-
ment growth, including in Chlamydomonous flagella [3], mi-
crotubules [16, 17], as well as filamentous actin (F-actin) [18].

To elucidate the emergence of robust size control via size-
dependent negative feedback, we consider the case of two as-
semblies growing from a shared pool ofN subunits (Fig. 1A).
At time t, the size of the ith assembly (i = 1, 2) is given
by ni(t), the number of incorporated subunits. We propose
a minimal phenomenological model where the assembly rate
of the ith structure is k+i Nav(1 + ni)

−α, and the rate of
disassembly is given by k−i n

β
i . Here, k±i is the bare as-

sembly(+) and disassembly(-) rates for the ith structure, and
Nav = N − (n1 + n2) is the total amount of available sub-
units. The coefficients α and β represent the strength of the
autoregulatory feedback that can arise due to active molecu-
lar processes or the geometry of the structures grown. In this

model, negative autoregulation of growth is ensured for α > 0
(assembly rate decreases with size) and/or for β > 0 (disas-
sembly rate increases with size). We assume the subunit pool
is well mixed in the cytoplasm such that subunit diffusion is
much faster compared to the growth process. The stochastic
system described by the assembly and disassembly processes
yields the following steady-state probability distribution (see
SI: Section 2 for details),

P (n1, n2) = P (0, 0)
κn1
1 κn2

2 N !

((n1!)α+β(n2!)α+β)Nav!
, (2)

where κ1 = k+1 /k
−
1 , κ2 = k+2 /k

−
2 , and P (0, 0) is a normal-

ization constant.
The limit α+β = 0 corresponds to the limiting pool model

with constant assembly and disassembly rates [1]. Lack of
size regulation for α+β = 0 manifests as large anticorrelated
size fluctuations of the two competing but identical structures
(Fig. 1B). By contrast, for α+ β > 0, there is an overall neg-
ative autoregulation of growth that ensures robust size control
of multiple structures. To illustrate this, we numerically sim-
ulated (see Methods) the growth dynamics of two filaments
competing for the same subunit pool, for the specific case
α+ β = 1 (Fig. 1B). The individual structures assume a well
defined mean size (Fig. 1B), with the standard deviation in
size fluctuations smaller compared to the mean (Fig. 1C). Fur-
thermore, a negative autoregulation of growth rate ensures co-
existence of multiple competing structures over a broad range
of the parameter space (Fig. 1D).
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FIG. 2. Length regulation of multiple flagella in C. reinhardtii. (a) Flagellum assembly in C. reinhardtii is regulated by IFT particles that
incorporate tubulin dimers at the flagellum tip. This assembly process combined with the conservation of IFT amount in flagellum gives rise to
an assembly rate that decreases with flagellum length. This mechanism corresponds to (α, β) = (1, 0) in our model. (b) Decrease in flagellar
size with increasing number of flagella in mutant cells has been experimentally reported [10, 19]. Using stochastic simulations of our model,
we show that increasing flagellum number for a fixed building block pool, results in flagellar size reduction at steady-state. For parameter
values see SI: Table S1. (c) We model the flagellar re-growth experiment [20] where one of the two flagella is amputated and regrowth is
observed. The intact flagellum starts shrinking immediately after the amputation, indicating a shared pool of building blocks. Our model with
length-dependent assembly, (α, β) = (1, 0), quantitatively fits the experimental data for the length dynamics of the two flagella. For parameter
values see SI: Table S2.

To provide specific biological examples, the case (α, β) =
(0, 1) exactly maps to length regulation of Microtubules and
F-actin (see SI: Section 3 and Fig. S2 for details), where the
filament disassembly rate increases with increasing filament
length. In the antenna mechanism for microtubule length con-
trol, the kinesin Kip3 associates with microtubule monomers,
walks towards the plus end of the filament and detaches
from the end by removing microtubule monomers [21]. Over
time, Kip3 molecules accumulate near the plus-end, leading
to an effective length-dependence of disassembly rate [22].
In the case of F-actin, chemical changes in subunit states,
via nucleotide hydrolysis of bound monomers [23], can lead
to length-dependent disassembly [18]. In addition, length-
dependent F-actin disassembly could also arise through the
action of the severing protein ADF/cofilin [24]. In all these
cases, length-dependent disassembly via active molecular pro-
cesses can stabilise the length of multiple filaments competing
for the same monomer pool.

In the opposite scenario when α + β < 0, there is an over-
all positive feedback on growth (Fig. 1E), resulting in bistable
size distributions. Bistable length regulation has been reported
for microtubule-Kip3 systems [25], and we return to this inter-
esting case later. In the sections that follow, we show that by
tuning the model parameters α and β, we can quantitatively
capture size control of diverse intracellular organelles, from
the one-dimensional eukaryotic flagella to three-dimensional
organelles such as centrosomes and the nucleus (Fig. 1E).

LENGTH REGULATION OF MULTIPLE FLAGELLA
ASSEMBLED FROM A SHARED POOL OF BUILDING

BLOCKS

Flagellar growth in the biflagellate Chlamydomonas rein-
hardtii is a classic example of size regulation of multiple
organelles assembled from a common cytoplasmic pool of
building blocks [19, 20, 26]. Molecular mechanisms for flag-
ellar length control remain an active area of research, with

mathematical models suggesting that flagellum length dy-
namics is controlled by a length-dependent assembly pro-
cess [2, 3, 27], or by a length-dependent disassembly mecha-
nism [28].

C. reinhardtii flagella grow from a shared pool of tubulins,
which are carried and assembled via intraflagellar transport
(IFT) particles at the tip of the flagellum [3] (Fig. 2A). As the
total amount of IFT particles on the flagellum remain constant
over time [3], IFT density at the flagellar tip is a decreasing
function of length. This leads to a length-dependent assem-
bly rate for the flagellum, inversely proportional to the flag-
ellum length [2], corresponding to the limit (α, β) = (1, 0)
in our model (SI: Section 4.A, Fig. 1E). In addition, a length-
dependent disassembly mechanism [28] would correspond to
the limit (α, β) = (1, 1). Both these models fall within the
general motif for size control via negative autoregulation of
growth (Fig. 1E) that would guarantee robust length control
for multiple flagella.

We use the balance-point model suggested by Marshall et
al. [2, 3] to show that it is sufficient to regulate flagellar length
in the multi-flagellate system in C. reinhardtii. A determinis-
tic description of the system takes the form (i = 1, 2),

ṅi = k+i

(
N −

∑
j nj

V

)
(1 + ni)

−1 − k−i (3)

where ni is the length of the flagellum in tubulin numbers,
V is the cell volume, N is total tubulin amount in the cell.
We use Gillespie algorithm (Methods) to simulate the stochas-
tic system of multiple flagella grown from a shared pool of
tubulins. Our simulations (Fig. 2B) capture the experimen-
tally reported phenomena that mean flagellar size decreases
with increasing the number of flagella in a cell [10, 19, 29].
We further use our stochastic model to simulate the flagellar
regrowth experiment (Fig. 2C-left), where one of the two flag-
ella is cut and re-growth is observed due to the production of
new building blocks. We model this experiment (see SI: Sec-
tion 4.B for details) by removing building blocks from one of
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the flagella at t = 0, resulting in rapid shrinkage in length
of both the flagella. The timescale for fast shrinkage dynam-
ics is governed by the rate constants k±. The slower process
of length recovery is governed by the production rate of new
subunits, which we calibrated by fitting our model to experi-
mental data [19]. Our fitted model quantitatively captures the
experimentally measured flagellar length dynamics (Fig. 2C-
right).

CENTROSOME SIZE CONTROL VIA LOCALISED
ASSEMBLY AND DISTRIBUTED DISASSEMBLY

Having described how size-dependent negative feedback
on growth can stabilise the length of multiple filamentous
structures, we now turn to describing the mechanisms of size
maintenance in three-dimensional organelles. Specifically we
show that our proposed feedback motif for growth control
(Fig. 1E) can describe centrosome size regulation during mi-
tosis.

Centrosomes are membraneless spherical organelles con-
sisting of a pair of centrioles at the center (Fig. 3A), sur-
rounded by a porous scaffold-like structure [30] called the
pericentriolic matter (PCM). In cells preparing to enter mi-
tosis, the two centrosomes are spatially separated and grow
by recruiting PCM material around the centrioles [6, 31–34].
While the mechanics of PCM assembly is a subject of ongo-
ing debate [35], the molecular components for PCM growth
must ensure robust size control of centrosomes during mi-
tosis. Otherwise, small stochastic variations in the sizes of
maturing centrosomes could amplify through the process of
maturation, leading to errors in division ratio (Fig. 3A). Fur-
thermore, experimental data show that centrosome size scales
with cell size, through multiple rounds of cell divisions in the
early C. elegans embryo, suggesting that centrosome size is
determined by a limiting pool of building blocks [1, 6]. Since
the limiting pool model cannot maintain the size of two struc-
tures competing for the same subunit pool (Fig. 1), additional
feedback controls must be necessary for centrosome size reg-
ulation.

Based on prior experimental observations [7, 34, 36, 37],
we propose a kinetic model for the growth of spherical cen-
trosomes that assemble PCM building blocks from a limiting
cytoplasmic pool. PCM assembly is localized around the cen-
triole, and disassembly can occur throughout the volume of
the porous PCM matrix (Fig. 3A) [34, 36]. This design prin-
ciple for organelle growth results in disassembly rate increas-
ing with centrosome size, providing a size-dependent negative
feedback control of growth. A deterministic description for
this growth process is given by,

ṅ = k+
(N − n)

V
− k−n , (4)

where n is the number of PCM building blocks incorporated
in the centrosome, k± are the bare assembly and disassembly
rates, N is the total amount of the PCM building blocks, and
V is the volume of the cytoplasmic pool. This growth mech-
anism directly maps to our general model for size-dependent
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FIG. 3. Size regulation of centrosomes. (a-I) Schematic of centro-
some maturation in mitotic cells followed by cell division. Prior to
maturation, spontaneous asymmetry in centrosome sizes can arise
from stochastic variations. In the absence of size control, size asym-
metry can amplify, resulting in asymmetric cell division. (a-II) Lo-
calised assembly around the centriole and disassembly throughout
the pericentriolic matter generates a size-dependent disassembly rate
which ensures robust size control. (b) Size dynamics of a pair of
identical centrosomes that are initialised with unequal sizes. If as-
sembly and disassembly occur uniformly throughout the volume,
centrosome sizes will diverge (blue and red curves). By contrast, lo-
calised assembly and distributed disassembly can correct initial size
errors to restore equal sized centrosomes (yellow and purple curves).
For parameter values see SI: Table S3,S4. (c) Centrosome volume
decreases with increasing centrosome number, nc, during C. ele-
gans embryonic development, where the embryo rapidly divides into
many cells with decreasing cell size. Model: solid black line, Exper-
imental data: orange. Inset: Centrosome volume, Vc, scales linearly
with cell volume, Vcell. For parameter values see SI: Table S4. (d)
Since PCM assembly is controlled by the centriole, a centriole with
higher nucleation rate will assemble PCM faster, leading to asymme-
tries in mitotic centrosome size. For parameter values see SI: Table
S5.

growth with (α, β) = (0, 1) (Fig. 1E). Since α + β > 0, the
model in (4) ensures robust size control of two centrosomes
assembled from a shared resource pool.

We use the stochastic description of (4) to demonstrate size
control of a pair of identical centrosomes (Fig. 3B). If there is
an initial size difference between the two centrosomes, the
model with localised assembly and distributed disassembly
can correct the size error to restore equality of the size of cen-
trosomes. By contrast, if assembly and disassembly occur uni-
formly throughout the volume, size asymmetries will amplify
over time (Fig. 3B). Previous study [7] on centrosome growth
via liquid-liquid phase segregation has emphasized the neces-
sity of high centriole activity to form centrosomes. This model
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of centrosome as an active droplet with high centriole activ-
ity can be mathematically mapped to our kinetic model of lo-
calised assembly and distributed disassembly (see SI: Section
5.A and Fig. S3 for details). For small centriole activity, the
liquid-liquid phase segregation model fails to control centro-
some size (SI: Section 5.A and Fig. 3B). Aside from ensuring
size control, our model for centrosome assembly can quantita-
tively capture the scaling of centrosome size with centrosome
number (Fig. 3C) and cell volume (Fig. 3C-inset), as measured
during early C. elegans embryonic development [6].

An early sigmoidal nature in centrosome growth has been
identified as an essential feature of the regulatory growth
mechanism [6]. This can naturally emerge from the way the
different subunits are sequentially recruited in the PCM [34].
To this end, we consider a simple two-component growth
model, where one component forms the scaffold structure and
the other gets recruited to the scaffold. Thus the assembly rate
of the second component depends on the scaffold size. This
coupled assembly dynamics provides a positive feedback in
the growth mechanism (see SI: Section 5.B for details). This
results in an early sigmoidal growth of centrosome volume
(Fig. 3D), as observed in experiments [6]. Our model predicts
a positive correlation of the centrosome size with the centri-
ole nucleation activity (∝ k+), as a higher nucleation rate will
drive faster PCM assembly. This prediction can be related to
the known dependence of centrosome size on centriole enzy-
matic activity [37, 38]. As a result, a centriole with higher
k+ will assemble a larger centrosome (Fig. 3D), facilitating
asymmetric cell division [39].

NUCLEUS SIZE CONTROL BY SURFACE AND BULK
GROWTH

Nucleus is a highly complex organelle, composed of two
key components - the inner nucleoplasm (NP), surrounded by
the outer nuclear envelope (NE). During nucleus growth, both
the NP and NE components grow from their respective pool
of building blocks (see SI: Section 6 and Fig. S4). However,
which one of these two components controls nucleus size and
growth remains an open question [40]. Though there are many
studies reporting the scaling of nucleus size with cell size
[41–43], there are few to none theoretical models for nucleus
size control. To this end, we present a simple two-component
model for nucleus - an outer spherical shell representing NE,
and an interior solid sphere representing NP. We demonstrate
how the geometric design of NE and NP assembly lead to nu-
clear size regulation, and compare our model predictions with
available experimental data.

We first consider a model for nucleus growth by nuclear en-
velope (NE) assembly, taking inspiration from a recent in vitro
study in Xenopus levis egg extract [44], where nucleus growth
is coupled to the growth of microtubule asters surrounding the
nucleus [44–46]. Here, NE assembly occurs through active
incorporation of nuclear membrane vesicles/fragments (build-
ing blocks of NE) by dynein motors moving along astral mi-
crotubule tracks (Fig. 4A). The microtubule aster is a collec-
tion of many dynamic microtubules surrounding the nucleus,
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FIG. 4. Nucleus size control. (a) Modelling the growth of nucleus,
coupled to the dynamics of the astral microtubule structure. Building
blocks for nuclear envelope (NE) are actively transported by dynein
motors along the astral microtubules surrounding the nucleus. Fil-
aments in the aster grow by incorporating tubulins from the cyto-
plasmic pool. (b) Dynamics of nucleus size (normalised radius Rn)
and single microtubule length (normalised). (Inset) Nucleus size de-
creases with increasing nuclei number in a given volume, in agree-
ment with in vitro data [44]. (c) Effect of the size of confinement,
Rsys, on nucleus size Rn, where Rn increases with increasing Rsys,
eventually saturating for large Rsys. Solid line is model fit, and black
triangles represent experimental data [44]. The confinement radius
was increased while keeping the confinement volume constant, as
in experiments [44]. (d) Scaling of nucleus volume, Vn, with cell
volume Vcell. Theory predicts that size scaling is quadratic if Vn is
controlled by the growth of NE, but the scaling is linear if Vn is reg-
ulated by NP assembly. The linear scaling fits quantitatively with the
nucleus-to-cell size scaling measured in an eukaryotic cell [8]. For
parameter values of models of nucleus growth by surface assembly
(NE), volume assembly (NP) and microtubule growth see SI: Table
S6,S7,S8 respectively.

where each individual filament grows from a cytoplasmic pool
of tubulins (building blocks of microtubules) (Fig. 4A). The
rate of NE assembly is proportional the size of the micro-
tubule aster, as the number of available NE building blocks
scales with the volume spanned by the the aster. As the NE
grows in size maintaining a constant thickness, we assume
that the NP volume expands accordingly to accommodate the
increase in nuclear surface area (Fig. S4). The deterministic
rate equations for the growth of one nucleus is given by

ṅ = K+(L̄, Rn)

(
N − n
V

)
− k−n , (5)

L̇i = k+m

(
Nm −

∑
i Li

V

)
− k−mLi , (6)

where Rn is the nucleus radius, n and Li are the sizes of
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NE (in building block units) and the ith microtubule filament,
respectively. The total amount of tubulin and NE building
blocks are given by Nm and N , respectively, and V is the cell
(or system) volume. Here k± and k±m are the bare rates of
assembly and disassembly for NE and microtubules, respec-
tively.

Since assembly occurs at the surface, size of the nu-
cleus is determined by the relation 4πR2

n = nδA, as n
building blocks, each of area δA, make up the NE. The
size-dependent assembly rate is given by K+(L̄, Rn) =
k+(4π/3)

(
(L̄+Rn)3 −R3

n

)
, proportional to the volume ac-

cessible to the aster structure, and L̄ is the average length of
the microtubules. Initially, the assembly rate induces a pos-
itive feedback on NE growth as L̄ � Rn. As assembly
progresses, the filaments become longer to yield L̄ � Rn,
such that K+ becomes independent of Rn. Disassembly oc-
curs uniformly throughout the NE surface, yielding a size-
dependent disassembly rate, k−n, which provides a negative
feedback on NE growth. The later stages of NE growth can
thus be mapped to our general growth model with (α, β) =
(0, 1) (Fig. 1E), ensuring robust size control. Length dynam-
ics of microtubules is implemented using the antenna model
[21, 22], where the filament disassembly rate increases lin-
early with filament length (SI: Section 3.A).

We simulated the stochastic dynamics of nucleus growth
using the model in (5) and (6), with the model parameters
calibrated from in vitro data [44]. Both the filaments and
the nuclear envelope reach a well-defined steady-state mean
size (Fig. 4B). Initially, NE size increases rapidly due to size-
dependent assembly rate (K+), whereas growth slows down
at later times when K+ balances the rate of NE disassembly
(Fig. 4B). Our model quantitatively captures the experimen-
tally observed scaling between nucleus size and nuclei num-
ber, when multiple nuclei are assembled from a limiting pool
of subunits (Fig. 4B, inset). The nuclear size, Rn, decreases
with increasing nuclei number, as expected from a limiting
pool of building blocks. This coupled growth model of NE
and microtubules can also explain the nucleus size depen-
dence on the size of confinement as reported in in-vitro ex-
periments [44]. Here, the microtubule growth is hindered by
the confinement wall, and hence a smaller system size will
generate a smaller aster structure. As a result, the assem-
bly rate will be smaller giving rise to a smaller nuclear size
(Fig. 4C). However, the maximum nucleus size is set by the
steady-state length (L̄) of the microtubule filaments (when all
other conditions remain unchanged). Therefore, increasing
the confinement size larger than L̄ does not generate a larger
nucleus (Fig. 4C). This can explain why an isolated nucleus
grows to be larger in size than a group of closely packed nu-
clei in multinucleated cells. This is because the presence of
neighbouring nuclei hinder microtubule growth [46], result-
ing in reduced nuclear size.

During nuclear growth in Xenopus levis egg extract, many
NP proteins such as lamin-A, importin-α [9] are transported
inside the nucleus and contribute to NP growth [47, 48]. To
model growth of nucleus by NP assembly, we use the rate
equations in (5) and (6), with the important difference that the
size of nucleus is determined by the relation: Vn = 4π

3 R
3
n =

nδV , where Vn is the nucleus volume and δV is volume of in-
dividual NP subunits. Thus, when NP regulates nucleus size,
Vn is proportional to the number of NP subunits incorporated,
n. This model for nucleus growth by NP assembly does not
alter the effect of confinement, but predicts the scaling rela-
tion, Rn ∼ n

1
3 . This scaling is different when nucleus size is

regulated by NE assembly, where, Rn ∼ n
1
2 (Fig. 4D). This

difference can be understood by relating NE-growth and NP-
growth with growth of a spherical shell of constant thickness
and the growth of a solid sphere, respectively. By compar-
ing our simulation results with experimental data [8, 42], we
find that the experimentally observed linear scaling of nuclear
size with cell size cannot be achieved when nucleus size is
purely regulated by NE assembly (Fig. 4D), but NP-growth
model leads to Vn ∝ Vcell. While our simplified description
can capture experimentally reported nuclear size scaling and
the effect of confinement on nuclear growth, the question of
whether NP or NE set nucleus size cannot be answered with-
out further experimentation. Our model predictions provide a
possible way to test the underlying growth mechanism.

BISTABLE SIZE REGULATION FROM AUTOCATALYTIC
GROWTH

So far we discussed various examples of robust size con-
trol of multiple organelles via size-dependent negative feed-
back on growth (i.e., α + β > 0). In the opposite case of
size-dependent positive feedback, α + β < 0, the dynam-
ics are qualitatively different. For a single structure, posi-
tive feedback on growth implies an assembly (disassembly)
rate that increases (decreases) with increasing structure size.
This results in autocatalytic growth, where the structure ini-
tially grows at a faster rate due to the positive feedback, while
eventually slowing down as the pool of building blocks is ex-
hausted (Fig. 5A, inset).

The result becomes less intuitive when there are two iden-
tical structures (with equal assembly/disassembly rates) com-
peting for a shared subunit pool. When the pool consists of
very few building blocks, the structures do not grow (Fig. 5A,
blue). With sufficient building blocks, the structures initially
grow at equal rates, but due to transient size differences aris-
ing from stochastic fluctuations, the bigger structure starts
assembling faster than the smaller structure and ends up in-
corporating most of the building blocks. However, at this
stage, stochastic fluctuations can make the larger structure
lose enough building blocks to make a sudden transition to a
smaller structure, while the other structure grows to be larger
(Fig. 5B). Thus, at an intermediate concentration of building
blocks, we get a bistable size distribution for two structures
competing for a shared pool (Fig. 5A, yellow). There is an
intermediate regime where the structures show large size fluc-
tuations without bistable dynamics, and the size distribution
exhibits a ”shoulder” and a longer tail (Fig. 5A, red). Bistable
size distribution has been reported in microtubule/kinesin-8
in-vitro systems [25], where kinesin-8 motors bind to the mi-
crotubules, walk towards the plus end and disassociate from
the filament by removing a tubulin dimer [16, 21, 22]. This
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FIG. 5. Bistable size distribution emerges from autocatalytic growth.
(a) Probability distribution for the size of two identical structures
assembled via autocatalytic growth. The structures do not grow at
very low growth rates (κ = k+/k−), leading to an exponential dis-
tribution peaked at 0. At high κ, the size distribution is bistable.
Inset: Single structure growth with size-dependent positive feedback
exhibits sigmoidal growth, with the size eventually saturating when
the subunit pool is completely exhausted. Parameters: α = −0.2,
β = 0. (b) Dynamics of the size of the two structures in the bistable
regime. Parameters: κ = 0.0025, α = −1.0, β = 0. (c) Stochastic
selection of a single structure when multiple structures compete for
a limiting subunit pool, in the limit α+ β > 0 and high subunit con-
centration. Here, the residence time of a single structure becomes
seemingly infinite, so the stochastically chosen large structure can
remain stable for long timescales. Inset: Residence time (τR) of a
single structure increases exponentially with increasing concentra-
tion of subunits. Dashed line – exponential fit, solid circles – simu-
lation data. Parameters: N = 2000, κ = 0.0125, α = −1, β = 0,
and number of structures=20. (d) State diagram of the system, show-
ing different growth regimes as a function of κ and the strength of
positive feedback, −α (with β = 0). Change in κ induces a simi-
lar effect on the size dynamics as changing the overall concentration
of subunits. By increasing κ at any non-zero value of −α, the sys-
tem transitions from a ”no-growth” state (black dots), to a ”shoulder”
state (purple dots) at intermediate κ, and finally a bistable state (red
dots) for high κ. At very high κ, τR can be very large to effectively
give rise to a single-structure. Increasing the strength of positive
feedback promotes a bistable state at smaller κ. Parameters: β = 0,
V = 1 and N = 50.

active disassembly depends on the motor concentration pro-
file, which in turn depends on the filament length [17]. This
can lead to a reduced concentration of motors at the tip of
a longer filament, generating an effective positive feedback
(with α = −2 and β = 1) and bistable length distribution
(see SI: Section 7 for details).

In the limit of high subunit concentration, a stochastically
selected larger structure will consume all the building blocks

to increase in size, but stochastic fluctuations may take a very
long time to make the structures switch states. Depending on
the strength of the positive feedback, growth rates and build-
ing block concentration, residence time of the bigger structure
can be so large that the transition to a smaller structure may
not occur within a realistic timescale. Thus an autocatalytic
growth process (α + β < 0) can be used to direct the forma-
tion of a single structure. This phenomenon can be related to
the process of polarity establishment in budding yeast, where
the budding mechanism requires the formation of one single
concentrated patch of the polarity protein Cdc42 that marks
the budding location to initiate the subsequent process of bud-
ding [49]. Many studies have linked positive feedback in the
process of Cdc42 patch formation via various physical mech-
anisms [50, 51] but the mechanism of polarity formation is
not fully understood. Our model for autocatalytic growth of
structures from size-dependent positive feedback is in good
agreement with the previously stated mechanism of polarity
establishment. In our case if we start with many structures
only a few can survive to gain considerable size, but finally
the stochastically chosen largest structure will win to form a
single large structure while the other structures eventually die
out (Fig. 5C).

Interestingly, Cdc42 proteins also exhibit size oscillations
during polarity establishment in budding and fission yeasts
[52, 53]. Our study shows that at an intermediate concen-
tration of building blocks, multiple growing structures en-
ter a bistable state (Fig. 5D and Fig.S5), where the resi-
dence time is small enough to promote transitions between
large and small sized structure within experimentally relevant
timescales. This is in good qualitative agreement with a recent
study of Cdc42 oscillations where a decrease in overall pro-
tein amount promotes oscillations, generating many transient
structures instead of one single large structure [53]. The nega-
tive feedback needed for these oscillations stems from subunit
exchange with the limiting subunit pool.

DISCUSSION

In this study, we uncovered the design principles for sta-
ble size regulation of intracellular structures and organelles in
the noisy environment of the cell, where stochastic fluctua-
tions may be significant. Our study reveals that a negative au-
toregulation of growth rate (α + β > 0) underlies robust size
control of individual organelles and structures, when multiple
of them compete for the same subunit pool. We demonstrate
that our proposed feedback motif for size control is utilised
by diverse subcellular structures, from one-dimensional fila-
ments to three-dimensional organelles, by connecting our ki-
netic theory with known molecular processes in the cell. We
show that our growth control model can also be utilised to
assemble non-identical stable structures that may be impor-
tant for cellular processes involving anisotropy and asymme-
try. It is important to contrast our model with the limiting pool
model for organelle growth control [1]. The latter provides a
mechanism for organelle size scaling with cell size by sensing
the subunit pool size, but fails to maintain the individual size
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of multiple competing organelles. The limiting pool model,
however, succeeds in regulating the size of single structures
because sensing the pool size is complementary to sensing the
individual structure size.

It is natural to ask how cells regulate the size of intracel-
lular structures when the subunit pool is not limited, but is
maintained a constant homeostatic concentration. Our gen-
eral growth model can also ensure size regulation of multiple
structures in the case of subunit homeostasis when α+ β > 0
(see SI: Section 8 and Fig. S6 for details). Interestingly, sub-
unit homeostasis does not lead to organelle size scaling with
cell size and number of organelles (Fig. S6H), emphasizing
the need for a limiting subunit pool to preserve organelle-to-
cell size scaling. Subunit homeostasis can be important when
structures are required to be maintained at a specific size re-
gardless of cell size. In our proposed size-dependent growth
model, it is possible to modulate the structure size to scale
with cell size or be independent of cell size, by combining the
features of subunit homeostasis and limiting pool model. In-
dividual structure size would scale with the cell size when the
cell volume V is smaller than Ṽ = Mκ (Fig. S7 A-D), and
saturates at V � Ṽ (Fig. S7 E-H), where M is the number
of structures assembled. This result explains the experimen-
tally observed independence of organelle size at larger cell
sizes [8, 54] (see SI: Section 9 and Fig. S7).

Subunit amount can increase during cell growth, as the
abundance of many regulatory proteins increases with increas-
ing cell size. It is therefore relevant to investigate the effect of
cell growth (increasing cell size and subunit pool size) on or-
ganelle size control. If cell growth rate is faster compared to
the assembly rate of the structures, the limiting pool mecha-
nism can maintain transiently stable sizes for multiple struc-
tures grown from a shared subunit pool (Fig. S8A). But when
cell growth is much slower than structure growth, then the
limiting pool model fails to regulate the size of individual
structures, exhibiting large size fluctuations (Fig. S8B). In
this case, a negative feedback autoregulation of growth rate is
required to achieve robust size control (Fig. S8 C-D) (see SI:
Section 10).

Our proposed model for organelle growth control is general
enough to capture size regulation for diverse subcellular struc-
tures and organelles that employ distinct molecular mecha-
nisms to achieve size-dependent negative feedback control of
growth rates. We map various existing size control mech-
anisms to our model by changing only two parameters, in-
cluding in three-dimensional organelles such as centrosomes
and nucleus. Specifically, we show how a membrane-less or-
ganelle like centrosome can self-assemble in multiple num-
bers while maintaining stable sizes, where a passive liquid-
liquid phase separation model for centrosome assembly fails
to achieve robust size control. We also demonstrate how cen-
trosomes can maintain stable size differences under compe-
tition, which could serve as a precursor to asymmetric cell
division. In the case of nuclear size regulation, our model
is able to capture the experimentally reported nuclear-to-cell
size scaling, and the effect of confinement where nucleus
grows smaller in size when the local nucleus density is higher.
In both cases of centrosomes and nuclear growth control, we

provide quantitative comparisons of our model with available
experimental data.

In the presence of positive feedback between structure
size and growth rate, we uncover novel phenomena such as
bistable size distribution where structures dynamically fluc-
tuate between a larger and a smaller assembly. Interestingly,
the transition rate from the larger to the smaller structure be-
comes vanishingly small when the subunit pool is large, giv-
ing rise to a single stochastically chosen large structure that is
maintained for very long timescales. This elucidates a mech-
anism of spontaneous symmetry-breaking and polarity estab-
lishment, which is relevant for understanding the mechanism
of bud formation in S. cerevisiae from the autocatalytic growth
of Cdc42 clusters.

METHODS

Stochastic growth simulations

We use the Gillespie algorithm [55] to simulate the stochas-
tic growth of one or multiple structures from a common
pool of subunits. At any time t the Gillespie algorithm uses
two random variables drawn from an uniform distribution
(r1, r2 ∈ U(0, 1)), and the instantaneous propensities for all
of the possible reactions to update the system in time accord-
ing to the defined growth law. The propensities of the rele-
vant reactions, i.e., the assembly and disassembly rates of the
ith structure are given by Kon

i and Koff
i respectively. For our

growth model these propensities are functions of subunit pool
size (N ) and structure size (ni),

Kon
i = k+

(
N −

∑M
i=1 ni

V

)
(1 + ni)

−α ,

Koff
i = k−nβi , (7)

where we are considering growth of M structures from a
shared pool. The Gillespie algorithm computes the time for
the next reaction at t + τ given the current state of the sys-
tem (i.e., the propensities for all reactions) at time t where τ
is given by-

τ =
1∑C

i=1Ri
log

(
1

r1

)
, (8)

where Ri is the propensity of ith reaction and C is the total
number of all possible reactions which is equal to 2M in our
case. The second random variable r2 is used to select the par-
ticular reaction (jth reaction) that will occur at t+τ time such
that ∑j−1

i=1 Ri∑C
i=1Ri

≤ r2 <
∑j
i=1Ri∑C
i=1Ri

. (9)

The condition for the first reaction (j = 1) is 0 ≤ r2 <
R1∑C
i=1Ri

. The two steps defined by Eq. 8 and Eq. 9 are used
recursively to compute the growth dynamics in time.
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