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Abstract 12 

Background 13 

Given the economic and environmental importance of allopolyploids and other species with 14 

highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate 15 

sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis.  16 

The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires 17 

genotyping to be performed first at a high computational cost, whereas counting the number of 18 

sequence tags detected per genotype is computationally quick but very ineffective in inbred or 19 

polyploid populations.  Therefore, new methods are needed for filtering paralogs. 20 
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Results 21 

We introduce a novel statistic, Hind/HE, that uses the probability that two reads sampled from a 22 

genotype will belong to different alleles, instead of observed heterozygosity.  The expected value 23 

of Hind/HE is the same across all loci in a dataset, regardless of read depth or allele frequency.  In 24 

contrast to methods based on observed heterozygosity, it can be estimated and used for filtering 25 

loci prior to genotype calling.  In addition to filtering paralogs, it can be used to filter loci with 26 

null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid 27 

status.  We demonstrate that the statistic is useful at read depths as low as five to 10, well below 28 

the depth needed for accurate genotype calling in polyploid and outcrossing species. 29 

Conclusions 30 

Our methodology for estimating Hind/HE across loci and individuals, as well as determining 31 

reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available at 32 

https://github.com/lvclark/polyRAD.  In large sequencing datasets, we anticipate that the ability 33 

to filter markers and identify problematic individuals prior to genotype calling will save 34 

researchers considerable computational time. 35 

Keywords 36 

Polyploidy, single nucleotide polymorphism (SNP), heterozygosity, next generation DNA-37 

sequencing (NGS), genome duplication 38 

Background 39 

Highly duplicated genome sequences are common throughout the plant kingdom.  These include 40 

recent allopolyploids such as wheat, cotton, canola, strawberry, and coffee, as well as species 41 

with evidence of ancient whole genome duplication such as maize and legumes [1].  This 42 
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phenomenon is also present in the animal kingdom, for example allopolyploidy in the model frog 43 

Xenopus, as well as an ancient tetraploidization event followed by diploidization in salmonid 44 

fishes [2, 3].  For species in which paralogous sequences no longer pair at meiosis, accurate 45 

separation of paralogs in DNA and RNA sequence analysis, including reference genome 46 

assembly, remains challenging [4].  This separation of paralogs is especially important in variant 47 

calling, because SNPs and indels will not behave in a Mendelian fashion if the reads originate 48 

from more than one locus yet are erroneously attributed to a single locus [5].  Accurate variant 49 

calling therefore impacts all downstream analysis that assumes Mendelian inheritance, including 50 

linkage and QTL mapping, association studies, genomic selection, population genetics, and 51 

parentage analysis.  For example, failure to remove paralogs from downstream analysis has been 52 

demonstrated to bias estimates of allele frequency and inbreeding as well as population structure 53 

[4, 6–8]. 54 

Due in part to the difficulty of assembling highly duplicated reference genomes, several methods 55 

have been published for filtering collapsed paralogous loci from genotyping-by-sequencing 56 

(GBS, including restriction-site associated DNA sequencing (RAD) approaches) datasets without 57 

the need for a reference genome.  The most straightforward approach is to call genotypes and 58 

then determine if observed heterozygosity exceeds expected heterozygosity [9–11].  However, 59 

sampling error at low read depth can confound this filtering step by causing heterozygotes to be 60 

miscalled as homozygotes, lowering the observed heterozygosity.  Moreover, estimating 61 

observed heterozygosity becomes complicated when polysomic inheritance is expected, due to 62 

the challenge of estimating allele copy number.  Bayesian genotype calling methods mitigate the 63 

underestimation of observed heterozygosity, but at substantial computational cost [12–14].  64 

Another approach is to filter loci that have read depth above an arbitrary threshold [15], although 65 
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due to differences in amplification efficiency based on fragment size and GC content, this 66 

method could fail to filter some paralogs while filtering other non-paralogous loci.  Peterson et 67 

al. [16] developed a method, extended by Willis et al. [17], that involved counting the number of 68 

unique haplotypes per individual for a putative locus, with the idea that in a collapsed paralog, 69 

the number of haplotypes would exceed the ploidy.  However, this method can be confounded by 70 

sequencing error and cross-contamination among samples, and its sensitivity depends on allele 71 

frequencies, inbreeding, and ploidy.  Other approaches have examined read depth ratios within 72 

individual genotypes [18] as well as read depth ratios in combination with observed 73 

heterozygosity [19].  Lastly, multiple methods identify putative paralogs based on networks of 74 

similarity among sequence tags [6, 20].   75 

We present a novel statistic, Hind/HE, for evaluating marker quality, in particular for assessing 76 

whether a marker represents one Mendelian locus or multiple collapsed paralogous loci, based 77 

upon read depth distribution in a population.  For a Mendelian locus, the statistic has the same 78 

expected value regardless of number of alleles, allele frequency, and total read depth.  As a 79 

result, the distribution of the statistic can be visualized across loci in order to identify threshold 80 

values for filtering.  The expected value can be calculated from ploidy (assuming disomic or 81 

polysomic inheritance) and the inbreeding coefficient, or the mode value of the statistic in a 82 

population can be used to estimate ploidy or inbreeding.  Notably, because genotype calls are not 83 

needed in order to estimate this statistic, it can be used for filtering loci before any genotype 84 

calling is performed, saving computation time.  Technical parameters such as sequencing error 85 

and overdispersion can influence estimates, but are explored here using simulated data so that 86 

they can be accounted for.  We extend our Bayesian genotype calling software polyRAD [12] to 87 

implement the novel statistic and determine appropriate cutoffs. 88 
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Results 89 

The Hind statistic 90 

Here we describe a novel statistic, Hind, that is based on sequence read depth across all alleles at 91 

a given locus and sample, and is agnostic of genotype calls, inheritance mode, and ploidy.  It is 92 

related to observed heterozygosity, HO, which in a diploid can be thought of as a matrix of ones 93 

and zeros indicating whether the genotype at each sample*locus is heterozygous.  Hind is instead 94 

a number ranging from zero to one, indicating the probability that if two sequencing reads were 95 

sampled without replacement at that sample*locus, they would represent different alleles.  The 96 

abbreviation “ind” stands for “individual”, as it is calculated for each individual before averaging 97 

across a population.  It can be calculated for SNP loci or for multiallelic haplotype- or tag-based 98 

loci, as long as allelic read depth is available. 99 

The expected value for Hind in a natural population of diploids or polysomic polyploids is: 100 

Eqn. 1: 𝐻 =  𝐻  (1 − 𝐹) 101 

where k is the ploidy, HE is the expected heterozygosity at the same locus, and F is the 102 

inbreeding coefficient.  HE is the probability that two alleles drawn at random from the 103 

population will be different, (1 – F) is the probability that two alleles randomly drawn from an 104 

individual will not be identical by descent, and (k – 1)/k is the probability that two sequencing 105 

reads originated from different chromosome copies.  Multiplied together, these three terms yield 106 

the probability that two sequence reads from one sample at one locus will be different from each 107 

other. 108 

If we divide Hind by HE: 109 
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Eqn. 2: 𝐻 𝐻⁄ =   (1 − 𝐹) 110 

we now have a statistic that is only dependent on ploidy and inbreeding, two parameters that we 111 

will assume to be consistent across samples and loci. 112 

In a mapping population, the term HE * (1 – F) must be replaced by the probability, for a given 113 

locus, that two locus copies in a progeny will be different alleles.  This requires knowledge of the 114 

ploidy, parental genotypes, and population design including number of generations of 115 

backcrossing and self-fertilization.  This probability, which we will call HE.map, can be estimated 116 

by simulation of the cross.  The expectation is then: 117 

Eqn. 3: 𝐻 𝐻 . =    118 

Common factors that influence Hind/HE are listed in Table 1, and explored in subsequent sections. 119 

  120 
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Table 1.  Biological and technical parameters that influence the expected value and 121 

variance of Hind/HE. 122 

Parameter Effect 

Ploidy Expected value increases with ploidy. 

Inbreeding (including 
population structure) Expected value decreases as inbreeding increases. 

Hybridization 
Value increases with increase in heterozygosity from 
hybridization across species or divergent populations. 

Paralogy Value increases if multiple loci are collapsed into one. 

Overdispersion 
Expected value decreases as read depth ratios deviate further 
from allelic dosage. 

Sequencing error 
Value is biased upward by sequencing error, especially at low 
minor allele frequencies. 

Null alleles (e.g. restriction 
site polymorphisms, 
deletions) 

Expected value decreases with increasing null allele 
frequency. 

Minor allele frequency 

Variance decreases at increased minor allele frequency.  
Overdispersion, sequencing error, or very low read depth in 
combination with low minor allele frequency bias the value 
upward. 

Sample size Variance decreases at increased sample size. 

Number of alleles Multiallelic loci have lower variance than biallelic SNPs. 

Read depth 

Low read depth loci tend to have low values due to the 
presence of null alleles.  High read depth loci tend to have 
high values due to paralogy.  Genome-wide increases in read 
depth (e.g. larger library size) reduce variance in the statistic, 
as well as reducing upward bias at low minor allele 
frequencies. 

Polyploid mapping 
populations 

Variance is lower at markers with higher heterozygosity in 
the progeny. 

 123 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2020.01.11.902890doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.11.902890
http://creativecommons.org/licenses/by/4.0/


8 
 

Empirical estimation of Hind/HE 124 

Say that we have sequence read depths, 𝑑 … 𝑑 , across a set of j alleles at a single locus in 125 

an individual m.  Total read depth in one individual is 126 

Eqn. 4: 𝐷 = ∑ 𝑑  127 

As long as there are two or more reads, we can estimate Hind within that individual using the 128 

Gini-Simpson index [21]: 129 

Eqn. 5: 𝐻 , = 1 − ∑  130 

For a population of n individuals with sequencing reads, allele frequencies are estimated from 131 

average within-individual read depth ratios: 132 

Eqn. 6: �̂� =
∑

 133 

And expected heterozygosity is estimated as 134 

Eqn. 7: 𝐻 = 1 −  ∑ �̂�  135 

Averaged across n individuals with two or more reads at a given locus in a natural population, 136 

the expectation is then: 137 

Eqn. 8:  𝐻 𝐻⁄ =
∑ , ⁄

≅  (1 − 𝐹) 138 
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In a mapping population, 𝐻 ,  is estimated in the same way.  HE.map is estimated from parental 139 

genotypes and population design, and the expected average ratio within a locus is given in Eqn. 140 

3. 141 

Utility of Hind/HE for detecting collapsed paralogs in a diversity panel 142 

To compare the distribution of Hind/HE values for Mendelian loci versus collapsed paralogs, we 143 

aligned M. sacchariflorus tag sequences to the M. sinensis reference genome, in which they 144 

should align to the correct paralog most of the time, and to the S. bicolor reference genome, in 145 

which two paralogs from Miscanthus correspond to one alignment location.  We found that loci 146 

with a mean read depth less than five had very low estimates of Hind/HE, likely due to restriction 147 

site polymorphisms or other technical issues (Fig. 1 and Additional File 1: Fig. S1).  As mean 148 

read depth increased above 100 in our dataset, however, loci tended to have Hind/HE values above 149 

the expectation for a Mendelian locus, suggesting that most loci at this depth and higher were in 150 

fact collapsed paralogs (Fig. 1, and Additional File 1: Figs. S1 and S2). 151 

When a mean depth of five was used as a cutoff and the M. sinensis genome was used as a 152 

reference, the peak Hind/HE value was slightly below the expected values of 0.5 for diploids and 153 

0.75 for tetraploids (Fig. 2), indicating some inbreeding, likely due to population structure [22].  154 

A second peak was observed at a higher value of Hind/HE (Fig. 2), likely representing sets of tags 155 

that belonged to different Mendelian loci despite aligning to the same location (i.e. 156 

misalignments).  When S. bicolor was used as the reference genome, the opposite trend was 157 

observed, where most loci had a Hind/HE above the expected value, indicating collapsed paralogs, 158 

but a second peak was observed closer to the expected value, indicating regions in the S. bicolor 159 

genome that may only have synteny with one region of the M. sinensis genome (Fig. 2).  160 
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Although the peaks overlapped somewhat, they were distinct enough that a reasonable threshold 161 

for identifying putative collapsed paralogs could be visually determined (Fig. 2).  Moreover, 162 

although the diploid and tetraploid datasets were processed separately, they were largely in 163 

agreement about which loci were Mendelian and which were collapsed paralogs (Additional File 164 

1: Fig. S2), suggesting that the filtering performed in one population can be applied to another 165 

population, which could be especially useful for populations that are too small for accurate 166 

estimation of Hind/HE. 167 

In both the diploid and tetraploid datasets, the distribution and peak values of Hind/HE were 168 

similar regardless of whether biallelic SNPs or multiallelic, haplotype-based markers were used 169 

(Additional File 1: Fig. S3).  However, the variance of Hind/HE was approximately 20% higher 170 

when SNPs were used, suggesting that the higher information content of multiallelic markers 171 

improves the precision of Hind/HE estimates.  172 
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 173 

Figure 1.  Relationship between Hind/HE statistic and mean sequence read depth per locus. 174 

Loci were called across 356 diploid and 268 tetraploid Miscanthus sacchariflorus based on 175 

alignments to the M. sinensis reference genome.  The number of loci in each depth category is 176 

indicated.  Fig. S1 in Additional File 1 provides justification for the depth thresholds for 177 

categories.  The expected value for a Mendelian locus in Hardy-Weinberg equilibrium is shown 178 

with a dashed line. 179 

  180 
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 181 

Figure 2.  Effect of reference genome and ploidy on Hind/HE per locus in Miscanthus 182 

sacchariflorus.  Loci with a mean read depth below five were omitted, leaving 11,516 loci 183 

aligned to the M. sinensis reference and 8,820 loci aligned to the Sorghum bicolor reference.  184 

Expected values for Mendelian loci under Hardy-Weinberg equilibrium are shown with dashed 185 

lines. 186 

  187 
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The ExpectedHindHe function in polyRAD was used to set thresholds for filtering the diploid 188 

and tetraploid datasets.  Based on results from the TestOverdispersion function, the 189 

overdispersion parameter was set to 11 for diploids and 10 for tetraploids.  Based on the 190 

observed distribution of Hind/HE in the dataset, the inbreeding coefficient was set to 0.35 for 191 

diploids and 0.25 for tetraploids.  Based on these parameters, as well as read depth and allele 192 

frequencies in the datasets, the ranges for retaining 95% of Mendelian loci were 0.175 to 0.584 193 

in diploids and 0.356 to 0.716 in tetraploids as estimated by ExpectedHindHe, resulting in 40.2% 194 

and 42.3% of loci being filtered, respectively (Table 2).  Markers within genes were 195 

underrepresented among markers that were filtered for having Hind/HE below the lower threshold, 196 

and overrepresented among markers that were filtered for having Hind/HE above the upper 197 

threshold, significant in Fisher’s Exact Test at P < 0.0005 (Table 2).  Markers that were filtered 198 

having Hind/HE above the upper threshold tended to have minor allele frequencies that were very 199 

low, consistent with the markers representing sequencing error rather than true alleles, or very 200 

high, consistent with the markers representing collapsed paralogs (Fig. 3). 201 

Table 2. Contingency tables of number of markers retained and filtered for being above or 202 

below Hind/HE thresholds in Miscanthus sacchariflorus, by whether or not the marker was 203 

within a gene. 204 

 Diploids Tetraploids 

 In a gene Not in a gene In a gene Not in a gene 

Filtered; too low 337 950 588 1727 

Retained 2201 3654 2419 3500 

Filtered; too high 1361 1287 1091 930 

 205 
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 206 

Figure 3. Filtering by Hind/HE vs. minor allele frequency in Miscanthus sacchariflorus.  A 207 

dataset of 10,458 SNP loci was tested across 356 diploid and 268 tetraploid individuals.  Blue 208 

dashed lines indicate filtering thresholds to retain 95% of Mendelian loci based on simulated 209 

distributions. 210 

By individual, Hind/HE reflects ploidy and hybrid status 211 

In addition to evaluating the mean Hind/HE within loci, we also obtained the mean statistic within 212 

individuals in order to assess the utility of the statistic for determining ploidy.  We found that 213 
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Hind/HE increased with ploidy, largely independent of read depth (Fig. 4).  Although the 214 

distributions overlapped too much for Hind/HE to be a conclusive indicator of ploidy, it could still 215 

potentially be used to identify outlier individuals whose ploidy should be confirmed by other 216 

means (e.g. flow cytometry).  Additionally, because our empirical dataset included many natural 217 

interspecific (M. sacchariflorus × M. sinensis) F1 hybrid and backcross individuals, we were 218 

also able to observe that Hind/HE values were considerably higher in hybrids than in non-hybrids, 219 

reflecting higher heterozygosity (Fig. 4). 220 

Variance and bias in the Hind/HE statistic using simulated data 221 

Using simulated data resembling a diversity panel or natural population, the mean Hind/HE 222 

estimate decreased as inbreeding increased, with diploid and tetraploid loci being 223 

indistinguishable at an inbreeding coefficient of 0.8 or higher (Fig. 5).  Sequencing error had 224 

little effect on the estimate at a minor allele frequency of 0.05, but caused an inflated estimate at 225 

a minor allele frequency of 0.01, particularly as inbreeding increased (Fig. 5).  Variance and bias 226 

in the statistic were minimized if there were at least 500 samples, minor allele frequency was 227 

0.05 or higher, and read depth was at least 5 (Fig. 6).  Ploidy had negligible impact on variance 228 

and bias (Fig. 6).  Read depth and minor allele frequency influenced the estimates for collapsed 229 

paralogs, but not enough to interfere with distinguishing them from Mendelian markers (Fig. 6).  230 

As expected, overdispersion (deviation of read depth ratios from allelic dosage ratios) reduced 231 

the mean Hind/HE estimate, with the effect of overdispersion being greater at higher minor allele 232 

frequencies (Additional File 1: Fig. S4).  The Hind/HE estimate also decreased linearly as null 233 

allele frequency increased (Additional File 1: Fig. S5). 234 

In simulated F1 mapping populations, the standard deviation of the Hind/HE ranged from 0.012 to 235 

0.076 depending on the marker type (Fig. 7).  In tetraploids, marker types with high expected 236 
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heterozygosity in the progeny, such as triplex x nulliplex and triplex x simplex, had lower 237 

variance in the estimate than marker types with lower expected heterozygosity in the progeny, 238 

such as simplex x nulliplex and simplex x simplex (Fig. 7).  A few rare markers had Hind/HE 239 

estimates that deviated very far from the expected value, indicating that the parents were 240 

incorrectly genotyped (Fig. 7). 241 

 242 

Figure 4.  Relationship between ploidy, sequence read depth, hybrid ancestry, and Hind/HE 243 

among 620 M. sacchariflorus individuals.  Ploidy and proportion of ancestry from M. sinensis 244 

(hybrid ancestry) were determined previously [22].  Read depth and Hind/HE were averaged 245 

across 10,000 loci.  The expected value for Hind/HE under Hardy-Weinberg equilibrium is shown 246 

with the dashed line. 247 

  248 
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 249 

Figure 5. Combined effects of inbreeding, ploidy, minor allele frequency (MAF), and 250 

sequencing error on mean estimates of Hind/HE using simulated data.  At each combination 251 

of parameters, 20,000 biallelic loci were simulated with a read depth of 20 and overdispersion 252 

parameter of 20.  The x-axis indicates the inbreeding coefficient (the probability that two alleles 253 

in an individual are identical by descent) while the y-axis indicates the Hind/HE estimate. 254 

  255 
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 256 

Figure 6.  Effect of sample size, read depth, and minor allele frequency on variance and 257 

bias of estimates of Hind/HE.  For each combination of ploidy, sample size (N), read depth, and 258 

minor allele frequency (MAF), 5000 biallelic Mendelian loci were simulated under Hardy-259 

Weinberg Equilibrium with an overdispersion parameter of 20 and sequencing error rate of 260 

0.001.  Additionally, 5000 collapsed paralogs, each consisting of two Mendelian loci, were 261 

simulated under each set of the same parameters. (A) Standard deviation of Hind/HE estimates.  262 
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(B) Mean Hind/HE estimates.  Expected values are 0.5 for diploids and 0.75 for tetraploids; 263 

deviations from these values indicate bias in estimation. 264 

 265 

 266 

 267 

Figure 7.  Distribution of Hind/HE estimates in simulated F1 mapping populations.  For each 268 

cross type, 5000 biallelic loci with a read depth of 20, overdispersion parameter of 20, and 269 

sequencing error rate of 0.001 were simulated across 500 individuals. 270 

  271 
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Comparison with other approaches 272 

To compare effectiveness at filtering paralogs between Hind/HE and other approaches, 1000 273 

Mendelian loci and 1000 collapsed paralogs were simulated in 200 diploid and 200 tetraploid 274 

individuals at three levels of inbreeding.  The median allele frequency was 0.026 and median 275 

read depth per Mendelian locus was 21.  For each statistic, the 95th percentile for Mendelian loci 276 

was determined, and the proportion of collapsed paralogs that would be filtered at that threshold 277 

was estimated.  The Hind/HE approach and observed over expected heterozygosity (HO/HE) 278 

performed best, with HO/HE having the disadvantage that genotyping must be performed before it 279 

can be estimated, thus increasing processing time two orders of magnitude over Hind/HE (Table 280 

3).  The Hind/HE thresholds used for filtering were 0.58, 0.41, and 0.17 in diploids and 0.76, 0.48, 281 

and 0.17 in tetraploids at inbreeding levels of 0.1, 0.5, and 0.9, respectively. The haplotype 282 

counting approach [17] and allelic depth ratio Z-score approach [19] both performed reasonably 283 

well in diploids but were much less effective in tetraploids, with haplotype counting being 284 

useless in tetraploids at high inbreeding, while the Z-score approach additionally suffered in 285 

terms of computational time due to the need for genotyping.  However, haplotype counting used 286 

2- to 3-fold less computational time than Hind/HE, and thus could be advantageous in diploids 287 

when millions of loci are being processed.  Lastly, filtering on read depth alone was not very 288 

effective given the variation in read depth among loci. 289 

  290 
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Table 3. Effectiveness of various statistics for identifying paralogs, using simulated data 291 

across three levels of inbreeding. Standard error is shown for proportion paralogs filtered. 292 

Statistic Ploidy 

Proportion paralogs filtered Median 
processing time 

(s / 1000 loci) F = 0.1 F = 0.5 F = 0.9 

Hind/HE 

Diploid 
0.988 ± 

0.003 
0.998 ± 

0.001 
1.000 ± 

0.000 0.17 

Tetraploid 
0.905 ± 

0.009 
0.994 ± 

0.002 
1.000 ± 

0.000 0.16 

HO/HE 

Diploid 
0.993 ± 

0.003 
0.989 ± 

0.003 
0.997 ± 

0.002 17.90 

Tetraploid 
0.976 ± 

0.005 
0.935 ± 

0.008 
0.897 ± 

0.010 50.42 

Proportion individuals with 
more haplotypes than 
expected 

Diploid 
0.985 ± 

0.004 
0.982 ± 

0.004 
0.948 ± 

0.007 0.07 

Tetraploid 
0.564 ± 

0.016 
0.163 ± 

0.012 
0.001 ± 

0.001 0.05 

Absolute value of Z-score for 
read depth ratio 

Diploid 
0.878 ± 

0.010 
0.888 ± 

0.010 
0.851 ± 

0.011 18.00 

Tetraploid 
0.642 ± 

0.015 
0.542 ± 

0.016 
0.511 ± 

0.016 52.15 
Mean read depth Both 0.396 ± 0.015 0.00 

 293 

Discussion 294 

Properties of the Hind/HE statistic 295 

While Hind/HE can be used, in combination with other metrics, to assess locus quality, this should 296 

be performed with an understanding of what biological and technical phenomena can cause it to 297 

deviate from the expected value.  Inbreeding from any source will lower the expected value 298 

below (k – 1)/k, where k is the ploidy; this includes not only self-fertilization and preferential 299 

mating with relatives, but also population structure, which is why we observed values below (k – 300 
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1)/k even in self-incompatible, wind-pollinated M. sacchariflorus (Figs. 1-4).  A benefit of this, 301 

however, is that as long as ploidy is known and overdispersion can be reasonably estimated (e.g. 302 

with the TestOverdispersion function in polyRAD), Hind/HE can be used to estimate inbreeding, 303 

either at the population or individual level, directly from sequence read depth.  Given that we 304 

observed Hind/HE to be inflated at low minor allele frequencies, we recommend using the mode 305 

Hind/HE at markers with minor allele frequency of at least 0.05 for estimating inbreeding.  306 

Additionally, individuals that are hybrids between species or between highly diverged 307 

populations, as well as DNA samples that are an accidental mix of two or more individuals, may 308 

have Hind/HE above the expected value (Fig. 4).  Strong selection for homozygotes or 309 

heterozygotes at particular loci would be expected to lower and raise Hind/HE, respectively. 310 

At the locus level, a Hind/HE that exceeds the expected value can be an indication that alleles are 311 

derived from paralogous loci rather than a true Mendelian locus.  More broadly, if all alleles 312 

truly belong to a single locus, then the expected value is (1 – F)(k – 1)/k.  However, if a set of 313 

random, independent alleles were assigned to one putative locus, the expected value of Hind/HE 314 

would be one, because the probability of sampling reads from two different alleles within one 315 

individual would be the same as the probability of sampling reads from two different alleles in 316 

the general population.  In the M. sacchariflorus dataset, markers within genes were 317 

overrepresented among markers that were filtered for having Hind/HE above the expected value, 318 

likely due to high sequence conservation between paralogs (Table 2).  A Hind/HE of zero could 319 

indicate a cytoplasmic marker, because while there may be variation in the population, each 320 

individual would only be expected to possess reads from one allele.  Loci with highly 321 

overdispersed read depth distributions due to technical issues such as differential fragment size 322 

or variation in library preparation would also be expected to have Hind/HE below expectations; it 323 
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may be advantageous to filter these from the dataset as they will tend to yield poor-quality 324 

genotype calls.  Lastly, loci with common null alleles have lower than expected Hind/HE 325 

(Additional File 1: Fig. S3), resulting in a tendency to filter loci that are not within genes as these 326 

regions are less conserved (Table 2).  Null alleles can be the result of restriction cut site 327 

polymorphism in RAD-based techniques, primer binding site mutations in amplicon sequencing, 328 

or deletion mutations using any genotyping method.  Because they are a common problem, 329 

Hind/HE can be used to identify and filter loci with null alleles.  330 

The expected value of Hind/HE is independent of read depth, number of individuals sampled, and 331 

the allele frequency.  However, all of these factors influence the variance of the estimate, and 332 

low minor allele frequency especially can bias it upwards (Fig. 5-6).  As there is no generalized 333 

formula to estimate the variance of a ratio, the variance of Hind/HE cannot be estimated 334 

mathematically.  Moreover, sequencing error inflates the estimate at low minor allele frequency 335 

(Fig. 5), and polyRAD cannot account for sequence quality scores or alignment quality scores 336 

since it only imports allelic read depth.  We therefore recommend simulating data for Mendelian 337 

loci given the ploidy, inbreeding, sample size, sequencing error rate, and distribution of read 338 

depth and allele frequency observed in the dataset of interest.  The distribution of Hind/HE across 339 

simulated loci then can be used to determine cutoff values for filtering loci in the empirical 340 

dataset.  The ExpectedHindHe and ExpecteHindHeMapping functions are available in polyRAD 341 

for this purpose, and suggest cutoffs for filtering loci in order to retain 95% of Mendelian loci.  342 

Depending on the downstream application, we recommend considering the number of markers 343 

needed versus the importance of marker quality when determining thresholds for read depth, 344 

allele frequency, and Hind/HE. 345 
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Hind/HE is more useful for detecting paralogs when haplotypes are treated as alleles (i.e. loci can 346 

be multiallelic), as opposed to when all loci are treated as biallelic SNPs, simply due to the fact 347 

that multiallelic markers are more information-rich than biallelic markers for the same 348 

distribution of minor allele frequencies.  We observed that, for the same set of SNPs in M. 349 

sacchariflorus, the median value of Hind/HE per locus was very similar regardless of whether they 350 

were phased into haplotypes within the span of a single RAD tag, but the variance in Hind/HE was 351 

about 20% higher for SNPs vs. haplotypes (Additional File 1: Fig. S3).  This improved power 352 

and information content is why polyRAD generally imports multiallelic, haplotype-based 353 

genotypes rather than SNPs as the default.  Other methods for marker calling in highly 354 

duplicated genomes have also benefitted from the use of haplotype information [11, 23], and 355 

multiallelic markers have been found to be advantageous over biallelic SNPs for linkage 356 

mapping in polyploids [24].  It should be noted that in this study we only phased SNPs that were 357 

certain to have originated from the same sequencing reads based on physical linkage and read 358 

depth.  The Hind/HE statistic cannot be estimated using haplotypes spanning longer distances, 359 

given that read depth will vary from locus to locus within haplotype. 360 

Uses of the Hind/HE statistic 361 

We anticipate locus-filtering to be the most common application of the Hind/HE statistic, with 362 

major advantages being that it is not biased by read depth or allele frequency and can be 363 

estimated prior to genotype calling.  We demonstrate that it is similar to HO/HE in effectiveness 364 

for filtering paralogs, with substantial savings on computational time (Table 2).  We should note 365 

that our HO/HE estimates used Bayesian genotype calls from polyRAD, which mitigate the 366 

underestimation of observed heterozygosity as compared to naïve genotype calls [12].  367 

Stringency of filtering should depend on the genotype quality needed for downstream analysis; 368 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2020.01.11.902890doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.11.902890
http://creativecommons.org/licenses/by/4.0/


25 
 

for example, parentage analysis and QTL mapping are sensitive to genotyping errors, whereas 369 

genome-wide association studies and estimations of population structure from principal 370 

components analysis are less sensitive.  Missing data rate, median read depth, and minor allele 371 

frequency are common criteria that should be used in combination with Hind/HE to determine 372 

which loci to retain for downstream analysis.  In our empirical dataset, we found the loci ranging 373 

in depth from five to 100 had the best distribution of Hind/HE (Fig. 1), but a higher minimum 374 

depth may be required for applications that require accurate genotype calling, and the optimal 375 

maximum depth used in filtering depends on the overall depth of the dataset.  The use of 376 

observed heterozygosity, read depth ratios within genotypes, and number of haplotypes per 377 

individual are redundant with Hind/HE and unnecessary if it has already been used for filtering.  In 378 

addition to its use for detecting paralogs in highly duplicated genomes, Hind/HE can be used for 379 

marker filtering in less duplicated genomes where occasional paralogs are still an issue.  380 

Additionally, in any species, markers with low values of Hind/HE (e.g. below the 95% confidence 381 

interval generated by simulated data) are likely to have null alleles, high overdispersion, or other 382 

technical issues and should generally be removed from the dataset.  We found that using Hind/HE 383 

to filter our M. sacchariflorus dataset impacted minor allele frequency and proportion of markers 384 

in genes in ways consistent with the removal of markers with null alleles, collapsed paralogs, or 385 

false alleles due to sequencing error (Table 2 and Fig. 3). 386 

Although less accurate for determining ploidy than techniques such as flow cytometry, when 387 

averaged within individuals, Hind/HE can be used to identify individuals whose ploidy might 388 

deviate from expectations and should be confirmed.  If flow cytometry is not an option, several 389 

other tools exist for the estimation of ploidy directly from next-generation sequencing data [25].  390 

Lastly, Hind/HE could be potentially useful for improving reference genome assemblies, 391 
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increasing the value of complementing a de novo assembly with a resequencing or genotyping-392 

by-sequencing effort in a large population or diversity panel.  Regions of the reference genome 393 

that contain collapsed paralogs are expected to have inflated Hind/HE values, which could be 394 

visualized in a smoothed plot of Hind/HE vs. alignment position. 395 

At a minor allele frequency of 0.05, a read depth of five or higher is sufficient to estimate 396 

Hind/HE with minimal variance (Fig. 6).  It is notable that a read depth of five is too low to call 397 

genotypes with confidence, to some extent in diploids but especially in polyploids.  However, 398 

using the Hind/HE statistic, such low depth data are useful for a variety of applications such as 399 

identification of outlier individuals in terms of ploidy and hybridity, estimation of inbreeding, 400 

identification of loci with technical issues, and assessment of reference genome quality.  This in 401 

turn can enable researchers to reduce sequencing costs by generating preliminary, low-depth 402 

datasets to evaluate these issues before (or instead of) sequencing more deeply.  403 

Conclusions 404 

Here we introduce the Hind/HE statistic, which can be used for evaluating marker and sample 405 

quality in genotyping-by-sequencing datasets for a variety of downstream applications.  We 406 

demonstrate that reads from paralogous loci cause the statistic to be above the expected value, 407 

whereas technical issues such as overdispersion and null alleles cause the statistic to be below 408 

the expected value.  In typical datasets (hundreds of individuals, read depth above five) the 409 

statistic has sufficiently low variance to be useful for filtering loci.  The polyRAD R package can 410 

estimate Hind/HE, suggest filtering cutoffs based on simulated data, and perform genotyping after 411 

filtering. 412 
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Materials and Methods 413 

Implementation in polyRAD 414 

Functions for estimating Hind/HE and Hind/HE.map are available in polyRAD v1.2 and later, and are 415 

named HindHe and HindHeMapping, respectively.  Both utilize an internal Rcpp function for 416 

fast calculation, take a RADdata object as input, and return a matrix of values, with samples in 417 

rows and loci in columns.  The mean value across rows can then be used to get a per-sample 418 

estimate, for identifying individuals that are interspecies hybrids or unexpected ploidies.  The 419 

mean value across columns can be used to get a per-locus estimate for filtering loci.  420 

Additionally, polyRAD v1.5 and later includes the ExpectedHindHe and 421 

ExpectedHindHeMapping functions, which simulate data to emulate the sample size, allele 422 

frequency distribution or parental genotypes, and read depth distribution of an empirical dataset, 423 

and return the distribution of Hind/HE as if all loci were Mendelian, giving the user reasonable 424 

thresholds to use for filtering loci. 425 

PolyRAD v1.6 is currently available on CRAN, and can be installed using 426 

install.packages("polyRAD"). 427 

Datasets for testing 428 

Two types of datasets were used to test Hind/HE: (1) empirical data from a diversity panel of 429 

Miscanthus sacchariflorus, and (2) simulated datasets of diversity panels and of biparental F1 430 

mapping populations.  Previously published RAD-seq data for an M. sacchariflorus diversity 431 

panel [22] were used for the empirical tests.  All species in the Miscanthus genus share an 432 

ancient genome duplication, increasing the chromosome number to 19 from the base of 10 in the 433 

Andropogoneae tribe [26–28].  Moreover, some populations of M. sacchariflorus display 434 
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autotetraploidy in addition to this genome duplication (4x = 76) [22, 29], allowing us to test our 435 

algorithm in situations where tetrasomic inheritance is expected, in addition to the more typical 436 

disomic inheritance.  Miscanthus is also highly heterozygous due to being wind-pollinated and 437 

self-incompatible [30], thus heterozygosity cannot be used to identify paralogs as easily as it 438 

could in an inbred crop species.  Together, these factors make M. sacchariflorus an ideal test 439 

case. 440 

To compare values of Hind/HE in putatively Mendelian markers versus collapsed paralogs, 441 

markers were called from the same dataset using either Miscanthus sinensis or Sorghum bicolor 442 

as a reference because M. sinensis has a whole genome duplication with respect to S. bicolor.  443 

Raw sequence reads from M. sacchariflorus were processed by the TASSEL-GBSv2 pipeline 444 

[31] to identify unique tag sequences and their depths in all individuals.  Tag sequences were 445 

then aligned to the Miscanthus sinensis v7.1 reference genome [32] and the Sorghum bicolor 446 

v3.1.1 reference genome [33] using Bowtie 2 [34].  The tag manager feature of TagDigger [35] 447 

was used to process the SAM files, recording the alignment location of each tag in both reference 448 

genomes.  Tag alignment locations within the S. bicolor reference were retained for further 449 

analysis if they corresponded to two alignment locations in the M. sinensis reference matching 450 

the known synteny between chromosomes.  Under this filtering, 239,501 tags were retained at 451 

18,402 S. bicolor alignment locations corresponding to 36,804 M. sinensis alignment locations, 452 

in a set of 356 diploid and 268 tetraploid individuals.  Hind/HE was then estimated per-locus in 453 

polyRAD for both the M. sinensis and S. bicolor alignments. 454 

To compare the variance of Hind/HE when biallelic SNPs were used versus multiallelic, 455 

haplotype-based markers, the TASSEL-GBSv2 pipeline was used to call SNP variants from M. 456 

sacchariflorus and export them to VCF.  Markers from chromosome 1 were imported to 457 
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polyRAD using VCF2RADdata, with and without the option to phase SNPs into haplotypes, 458 

yielding 3710 and 10,458 loci, respectively.  The phasing performed by VCF2RADdata only 459 

phases SNPs that are certain to have originated from the same reads based on allelic read depth 460 

and physical distance.  Hind/HE was then estimated by locus in polyRAD separately for diploids 461 

and tetraploids. 462 

Simulated diversity panel datasets were generated in order to assess the effect of minor allele 463 

frequency, sample size, read depth, sequencing error, overdispersion, inbreeding, ploidy, and null 464 

alleles on variance and bias of the Hind/HE statistic, using the SimGenotypes and SimAlleleDepth 465 

functions in polyRAD v1.6.  See Clark et al. [12] (Eqn. 2) for a definition of the overdispersion 466 

parameter; lower values result in allelic read depths that deviate further from the ratios expected 467 

based on allelic dosage. Three sets of data were simulated.  (1) Minor allele frequencies of 0.01, 468 

0.05, and 0.1; sample sizes of 100, 500, and 1000; and genotype read depths of 2, 5, 10, 20, 50, 469 

and 100 were simulated in all combinations under diploidy and tetraploidy, with no inbreeding, a 470 

sequencing error rate of 0.001, and an overdispersion parameter of 20.  For each combination, 471 

5000 biallelic loci were simulated, as well as 5000 collapsed paralogs that each consisted of two 472 

Mendelian loci combined.  (2) Minor allele frequencies of 0.01 and 0.05, overdispersion 473 

spanning all integers from 5 to 20, sequencing error rates of 0 and 0.001, and inbreeding (F; the 474 

probability that two locus copies in an individual are identical by descent) spanning all intervals 475 

of 0.1 from 0 to 1 were simulated in all combinations under diploidy and tetraploidy, with a 476 

sample size of 500 and a read depth of 20.  For each combination, 20,000 biallelic loci were 477 

simulated.  (3) Minor non-null allele frequencies of 0.01 and 0.05 and null allele frequencies of 478 

0.01, 0.05, 0.1, and 0.2 were simulated in all combinations under diploidy and tetraploidy, with a 479 

sample size of 500, a read depth of 20, a sequencing error rate of 0.001, overdispersion of 20, 480 
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and no inbreeding.  For each combination, 5000 triallelic (with one allele being null, i.e. having 481 

all of its reads discarded) loci were simulated. 482 

Simulated F1 mapping population datasets were generated in order to assess the effect of ploidy 483 

and marker type on variance of the Hind/HE statistic.  For diploids, testcross (homozygote x 484 

heterozygote) and F2 (heterozygote x heterozygote) markers were evaluated.  For tetraploids, 485 

simplex x nulliplex (AAAB x AAAA), duplex x nulliplex (AABB x AAAA), triplex x nulliplex 486 

(ABBB x AAAA), simplex x simplex (AAAB x AAAB), simplex x duplex (AAAB x AABB), 487 

simplex x triplex (AAAB x ABBB), and duplex x duplex (AABB x AABB) markers were 488 

evaluated.  For each marker type, 5000 biallelic markers were simulated in a population with 500 489 

offspring, with a read depth of 20, a sequencing error rate of 0.001, and overdispersion parameter 490 

of 20. 491 

To evaluate effectiveness of various approaches for filtering paralogs, 1000 Mendelian loci and 492 

1000 collapsed paralogs were simulated in 200 diploid and 200 tetraploid individuals each at 493 

three levels of inbreeding.  Number of alleles was evenly distributed from two to eight in 494 

Mendelian loci.  Allele frequency was sampled from a gamma distribution with shape of 0.3 and 495 

scale of 1, divided by 10 and added to 0.01 to ensure a minimum minor allele frequency, given 496 

that allele frequency filtering is typically performed during variant calling and/or data import.  497 

One allele frequency at each locus was generated as one minus the sum of all other allele 498 

frequencies, to emulate the typical situation of one common allele and one or more rare alleles.  499 

Genotypes were simulated from the allele frequencies assuming an inbreeding coefficient (F) of 500 

0.1, 0.5, or 0.9.  Mean read depth per locus was drawn from a gamma distribution with a shape 501 

of 3.2 and scale of 8.  Read depth at individual genotypes was then drawn from a gamma 502 

distribution with the locus depth / 10 as the shape, and a scale of 10.  Allelic read depth was 503 
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simulated assuming an overdispersion parameter of 20 and a sequencing error rate of 0.001.  504 

Collapsed paralogs were simulated in the same way, but with number of alleles per locus ranging 505 

from one to eight, and two random loci being combined to form a collapsed paralog. 506 

Comparison with other approaches 507 

To call genotypes for the HO/HE and Z-score [19] approaches, the IterateHWE function in 508 

polyRAD was used with default parameters to obtain genotype probabilities, and then 509 

GetProbableGenotypes was used to get discrete genotypes, with genotypes set to missing if 510 

allele copy numbers did not add up to the ploidy.  To extend its use to polyploids, HO was 511 

estimated as the probability that two alleles sampled from a genotype without replacement would 512 

be different from each other, averaged across individuals within a locus.  The Z-score approach 513 

[19] was originally only defined for biallelic markers in diploids.  To extend it for multiallelic 514 

markers and polyploid species, for each marker genotypes with ploidy – 1 copies of the most 515 

common allele (i.e. the heterozygous genotype class expected to be most common) were 516 

identified, and allelic read depth summed across those samples.  Deviation of read depth of the 517 

most common allele from the expected ratio was then estimated as a Z-score: 518 

Eqn 9: 𝑍 =  
∗

∗ ∗ 
 519 

Where N is the total read depth across all samples in the given heterozygous genotype class, and 520 

NA is the read depth of the common allele summed across those same samples.  The number of 521 

haplotypes per genotype was counted as the number of haplotypes with read depth of three or 522 

higher, following Willis et al. [17]. 523 
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