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Since the calculation of a genomic relationship matrix needs a large number of
arithmetic operations, fast implementations are of interest. Our fastest algo-
rithm is more accurate and 25× faster than a AVX double precision floating-
point implementation.
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1 Background

The genomic relationship matrix (GRM) is the covariance matrix calculated from the SNP infor-
mation of the individuals, i.e., from the minor allele counts [1]. It is an important ingredient in
mixed models and generalized mixed models for analyses and predictions in genetics [2].
Let n be the number of individuals and s the number of SNPs per individual. Then, the calculation
of the GRM needs of order sn2 arithmetic operations. Most software packages use floating-point
arithmetics, for instance the R packages AGHmatrix [3], qgg [4], rrBLUP [5], snpReady [6], and
GENESIS [7]. The software GCTA [8] treats missings explicitly. The package SNPRelate [9] also
uses floating-point arithmetics for the covariance matrix, but uses bit manipulation algorithms for
other calculations (identity-by-descent estimates). PLINK [10] profits from bit manipulations for
calculating the uncentred covariance matrix.
In this paper we present a couple of ideas, how the GRM can be calculated efficiently from a SNP
matrix. We assume that no values are missing. The emphasis will be on algorithms that allow for
a vectorized implementation (SIMD) and that take into account that the entries of the SNP matrix
are most efficiently coded by 2 bits, namely for the values 0, 1 and 2, as they are present in diploid
organism under the common assumption of biallelic markers.

2 Results

The standard mathematical formula for the GRM requires floating point arithmetics. An algebraic
reformulation shows that the cost intensive part involves only integers. Since the most elementary
numbers need only a minimum of 2 bits, a diversity of approaches for the integer arithmetics is
thinkable. The investigated methods are in brief:

• Multiply : uses 16-bit arithmetics

• Hamming2 : uses pop counts (the number of bits that are 1)

• ThreeBit : uses a 3-bit representation and a single large hash table

• TwoBit : uses the 2-bit representation and two large hash tables
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• Shuffle : similar to TwoBit, but with two tiny hash tables

• Packed : uses 4-bit arithmetics

They are all available through crossprodx in the package miraculix [11]. Tables 1 and 2 show
that Shuffle is the fastest method, which is 35× faster than crossprod of R [12] in the SSSE3
implementation.

Table 1: Accelaration of the calculation of M>M by crossprodx.

Shuffle Packed Hamming2 Multiply ThreeBit TwoBit

acceleration 35× 28× 24× 17× 17× 15×
SIMD SSSE3 SSE2 SSE2 SSE2 SSE2 none

The reference point is crossprod in R.

Table 2: Accelaration of the calculation of M>M by AVX2 implementations in crossprodx.

Shuffle Packed Multiply AVX (double) AVX2 (32-bit integer)

acceleration 48 × 36× 29× 1.8× 4×
The reference point is crossprod in R.

The command relationshipMatrix in miraculix [11] for calculating the GRM is only negligibly
slower than crossprodx. The AVX2 variant of Shuffle is even 48× faster than crossprod [12]
and 48/1.8 ≈ 25× faster than a standard AVX double precision implementation for calculating the
crossproduct of an arbitrary matrix, cf. Table 2. Furthermore, our algorithms have not even any
cummulative rounding error.
Tables 1 and 2 also show that the AVX2 performance is hard to predict from the SSE performance.
AVX2 variants for TwoBit and ThreeBit are not given since full vectorization is not possible.
Hamming2 has not been persued because of its memory demand.
For the benchmarks, we used an s × n SNP matrix with n = 1000 individuals and s = 5 · 105

SNPS. The calculations were performed on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz with
R version 3.6.0 on Xubuntu. Although the code in miraculix is parallelized, we used only a single
core for the benchmarks. Nonetheless, the AVX2 variant of Shuffle takes not more than 7 seconds.
The code for the benchmarks is available from the man page of crossprodx in miraculix.

3 Discussion

First, with respect to the memory needs of the SNP matrix, algorithms that use the 2-bit represen-
tation of a SNP value should be preferred. Among them, we have a sequence of distinct algorithms
that differ in their speed-up and their SIMD requirements: TwoBit (15×; SIMD not used), Packed
(28×; SSE2); Shuffle (35×; SSSE3).
Second, the use of perfect hash tables to cut calculations short might be of general importance.
Third, since loading from non-aligned memory allocation is reported to be slower [13], the package
miraculix was designed to avoid non-aligned loadings. Tests on the implemented package however
show that the running time by non-aligned loadings is not reduced for SSE implementations. The
speed is reduced by 5 to 10 % in AVX2 implementations. As the compressed SNP matrix is made
available to the user as an R object and as the memory allocation by R is only 32-bit aligned,
additional memory is allocated and the SNP matrix is aligned to 128 or 256 bits. Furthermore,
additional zeros are appended so that the virtual number of SNPs is a multiple of the number of the
SNPs that can be treated in a single step. The storing formats of TwoBit, Multiply, Packed, and
Shuffle, including their AVX2 variants, were made compatible, i.e., the allocations are all based
on a 256-bit alignment. A check and a reallocation are implemented for the case that memory is
moved. This might happen when the garbage collector gc is called by R, for instance.
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4 Conclusion

The combination of algebraic reformulation, bit manipulations and hash tables can reduce largely
the computing time on SNP data. In the case of calculating the GRM, the computing time could
be reduced by factor 25 in comparison to a straightforward AVX double precision implementation.
As a spectrum of implementations exist, there is a chance of further improvement and of further
applications of the underlying ideas.

5 Methods

Let M be an s × n SNP matrix of n individuals and s SNPs. We need to consider only the fast
calculation of the crossproduct M>M , since the GRM A can be calculated from M>M at low costs.
This can be seen as follows.
Let 1k be the vector of length k whose components are all equal to 1. The centred and normalized
GRM A is calculated as

A = (M − P )>(M − P )/σ2

where

P = p1>s with p =
1

n
M1n.

and

σ2 =

s∑
i=1

pi(1− pi/2) with p = (p1, . . . , ps).

Note that replacing the value pi by the allele frequency p̃i = pi/2, we have the usual formula for σ2,

σ2 = 2
s∑

i=1

p̃i(1− p̃i).

Let B = M>M1n. Then

n2σ2A = n2M>M − n1sB> − nB1>s + 1s1
>
nB1>s .

Hence, the integer-valued matrix n2σ2A can easily be calculated from the matrix M>M without
any numerical error and at low computational costs of order n2. Now,

2n2σ2 = 2n2
s∑

i=1

pi − n2
s∑

i=1

p2i = 2n1>s M1n − 1>nB.

Again, 2n2σ2 can easily be calculated from M and M>M without any numerical error. The compu-
tational costs are of order n(n+p), hence still some magnitudes smaller than the costs of calculating
the crossproduct M>M .

5.1 Algorithms for scalar products

Instead of considering the crossproduct M>M , it suffices to consider the scalar product of two
vectors a = (a1, . . . , as) and b = (b1, . . . , bs) whose components ai and bi have the values 0, 1 or
2. For simplicity and clarity, we will primarily refer to SSE commands in the following, and not to
AVX.
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5.1.1 Simple Multiplication

An immediate way of calculating the scalar product from a compressed 2-bit representation is to
extract the first two bits of each of the two vectors a and b and to continue with integer arithmetics.
Then the next two bits are extracted using shifting, and so on. Clearly, this procedure can be
vectorized. Of particular advantage here is the SSE2 command _mm_madd_epi16, which multiplies
and adds two consecutive 16-bit integers so that only 7 shifts are necessary for a vector of 64 SNP
values, i.e., for 128 bits. We call this method Multiply.

5.1.2 Hamming Distance

The algorithm used in PLINK [14, 10] is based on the idea that a value is represented by the number
of bits that equal 1 in a 4-bit representation. The values of the vectors a and b must be coded
asymmetrically by two mappings fa and fb, say, as a coding by single mapping is not possible.
Then, the bitwise &-operator is applied before the number of 1’s is counted. Table 3 gives a
possible realisation.

Table 3: Table of values for the Hamming distance method.

fa(·) & fb(·) fb(0) = 0000b fb(1) = 0011b fb(2) = 1111b
fa(0) = 0000b 0000b 0000b 0000b
fa(1) = 0110b 0000b 0010b 0110b
fa(2) = 1111b 0000b 0011b 1111b

The number of bits that equal 1 can be calculated by SSE2 commands based on work by [15, 16].
We call the method Hamming2. (An SSSE3 implementation in miraculix [11] is called Hamming3.)
The method can be turned into a particularly fast implementation when novel AVX512 commands
are used for the pop counts, e.g. _mm512_popcnt_epi64. See also SNPRelate [9] for pop count
implementations. Still, the storing costs of the SNP matrix M remain high, namely 2× 4 = 8 bits
per SNP in a standard implementation.

5.1.3 Perfect Hash Table

Let us consider the product of the first elements a1 and b1 of the two SNP vectors a and b. Let us
code the SNP values 0, 1 and 2 by 3 bits, e.g. as 000b, 011b and 110b, respectively, and denote this
mapping by f . Then, a perfect hash table for f(a1) & f(b1) returns 0, 1, 2, 4 for 000b, 011b, 010b,
and 110b, respectively, cf. Table 4.

Table 4: Table of values for the ThreeBit method.
f(·) & f(·) f(0) = 000b f(1) = 011b f(2) = 110b
f(0) = 000b 000b 000b 000b
f(1) = 011b 000b 011b 010b
f(2) = 110b 000b 010b 110b

Subvectors of length k of a and b can be treated in the same way and the perfect hash table returns
then the scalar product of the subvectors. The hash table will be indexed by 3k-bit numbers, i.e.
by values between 0 and 23k−1. Since k should be as large as possible at a smallish size of the hash
table, and 3k bits should fit nicely into 1, 2 or 4 bytes, the only reasonable choice for k is k = 5, so
that 15 bits in a 16-bit representation of a vector with k = 5 components are used. The precise size
of the hash table is then 110 110 110 110 110b + 1 = 28087 bytes. We call this method ThreeBit.
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5.1.4 Two Perfect Hash Tables

Since we did not find a simple way to use a single hash table based on a 2-bit representation of the
SNP values, we consider here two hash tables and the two bitwise operators & and | . The first
hash table should return 1 and 4 for 01b and 10b, respectively, while the second hash table returns
2 for 11b. All other values in the hash tables are 0, cf. Table 5.

Table 5: Tables of values for the TwoBit method.
& 00b 01b 10b

00b 00b 00b 00b
01b 00b 01b 00b
10b 00b 00b 10b

| 00b 01b 10b
00b 00b 01b 10b
01b 01b 01b 11b
10b 10b 11b 10b

Then, the sum of the two table values yields the product a1b1. Scalar products of subvectors of
length k can also be treated by two hash tables. Since the size of both hash tables is of order 22k,
one possible choice is k = 8, so that the size of the second hash table is 65536 bytes. We call this
method TwoBit.
The disadvantage of TwoBit (and ThreeBit) is that the look-up in the hash table prohibits a full
vectorization. A much better choice is therefore k = 2: the SSSE3 command _mm_shuffle_epi8

looks 16 values up at once in a hash table of size 16. We call this variant Shuffle.

5.1.5 Packed arithmetics

A last idea is to emulate a multiplication by bitwise operations and partial sums. Let� denote the
bitwise shift operator and let

ci = ai & bi,

di = (ci � 1) & 01b,

ei = (ai � 1) & bi & 01b, and

fi = ai & (bi � 1) & 01b,

so that ci + 2di = aibi if ai = bi and 0 else. Furthermore 2(ei + fi) = aibi if aibi = 2 and 0 else.
In total, we have ci + 2di + 2(ei + fi) = aibi. Let gi = di + ei + fi. Since gi = di | ei | fi for the
bitwise operator |, only the values of gi and ci need to be summed up. An immediate extraction of
the values of g = (g1, . . . , gs) and c = (c1, . . . , cs) by shifting as in the Multiply algorithm would
be rather expensive. Instead, a 4-bit arithmetic can be introduced in an intermediate step for the
four vectors

. . . 00b c3 00b c1,

. . . 00b c4 00b c2,

. . . 00b g3 00b g1, and

. . . 00b g4 00b g2,

which can be obtained by two shifts and 4 bitwise &-operations in total, if the ordering in the
memory is . . . c4 c3 c2 c1. Since the value of ci is at most 2, a sevenfold summation of the first
two displayed vectors leaves each component within its 4 bits (using any unsigned integer SIMD
addition). Since the value of gi is either 0 or 1, even a fifteen-fold summation is possible for the last
two displayed vectors. Afterwards, the 4-bit values are extracted and further summed up. We call
this method Packed.
The novel AVX512 command _mm512_popcnt_epi64 might improve this approach, as it allows to
count the number of bits being 1 in ci, di and ei | fi, so that the number of products is counted
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that equal (i) 12 or 22, (ii) 22, and (iii) 1 · 2 or 1 · 2. This variant can be seen as a 2-bit analogue of
the Hamming2 algorithm, and will be implemented in future.

6 Abbreviations

AVX: Advanced vector extensions
SIMD: Single instruction, multiple data
SNP: Single nucleotide polymorphism
SSE: Streaming SIMD extensions
SSSE: Supplemental streaming SIMD extensions
GRM: Genomic relationship matrix
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