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Abstract 

Many enzymes that catalyze protein post-translational modifications (PTM) can specifically 

modify multiple target proteins. However, little is known regarding the molecular basis and 

evolution of multi-specificity in these enzymes. Here, we used bioinformatics and experimental 

approaches to investigate the molecular basis and evolution of multi-specificity in the sirtuin-

1 (SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologues and substrates, 

we identified and examined key mutations that have occurred during the evolution of human 

SIRT1. We found that while these mutants maintain high activity toward conserved histone 

substrates they exhibit a dramatic loss of activity toward acetylated p53 protein that appeared 

only in Metazoa. These results demonstrate that active site substitutions in SIRT1 are essential 

to enable the inclusion of p53 substrate. Our results are consistent with a model in which 

promiscuous ancestral activity can provide an evolutionary starting point from which 

multispecificity toward a number of cellular substrates can develop. 

 

 

 

  

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903153
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

The evolution of protein-protein interaction (PPI) networks from simple mono-cellular 

eukaryotes (e.g. yeast) to a multicellular organism (e.g. human) is often characterized by a 

dramatic increase in the number of cellular proteins and PPI complexity (Evlampiev and 

Isambert, 2008; Jancura et al., 2012; Jin et al., 2013; Liang et al., 2014). Conserved hub 

proteins, located at the heart of these PPI networks, must maintain or expand their multi-

specificity to allow the recognition of a growing number of partners. Currently, little is known 

regarding the molecular basis for multi-specificity in PPI networks and how hub proteins (Han 

et al., 2004) evolve to recognize a large and diverse set of protein partners. In some PPIs, hub-

partner interactions occur through a defined consensus recognition sequence found in different 

partners. Network expansion in these cases can take place by the appearance of a recognition 

sequence or structural motif in nascent partners during evolution (Cino et al., 2013; Kim et al., 

2009; Moldovan et al., 2007). However, in many PPI networks, shared recognition 

sequence/motifs are not found in partners and the molecular basis for hub-partner interactions 

is unknown. In these PPIs our understanding of the molecular basis and evolution of hub-

partner interactions is very limited. 

  

Many enzymes that catalyze the post-translational modification (PTM) of proteins are located 

at the heart of complex PPI networks that expand through natural evolution (Beltrao et al., 

2013). These enzymes catalyze the specific attachment or removal of different functional 

groups including phosphate, acetyl, methyl and ubiquitin. A substantial number of PTM-

catalyzing enzymes found in human cells exhibit remarkable ability to recognize many protein 

substrates and catalyze the modification of specific target residues. Such specificity allows the 

regulation of a variety of essential cellular processes including DNA replication, transcription 

or signal transduction (Beltrao et al., 2013; Deribe et al., 2010).  

One of these enzymes is the human SIRT1 (hSIRT1) that belongs to the large family of sirtuin 

enzymes (Finkel et al., 2009). The sirtuins are NAD+-dependent deacetylases (Blander and 

Guarente, 2004; Haigis and Guarente, 2006) and the founding member of this family, yeast 

Sir2 (ySir2), was initially identified in S. cerevisiae (Greiss and Gartner, 2009; Imai et al., 

2000). These enzymes are conserved from bacteria to humans and their overexpression in 

several eukaryotes was shown to increase organism’s life span (Cohen et al., 2004; Howitz et 

al., 2003; Kanfi et al., 2012). The hSIRT1 is the mammalian ortholog of ySir2 and is the best 

studied of the human sirtuins (Lavu et al., 2008). The number of SIRT1 substrates expanded 

dramatically during evolution from several acetylated lysine positions on histones for ySir2 to 
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hundreds of acetylated sites in different substrates of hSIRT1 (Chen et al., 2012; Gil et al., 

2017; Rauh et al., 2013). The involvement of hSIRT1 in central biological processes like DNA 

repair, stress resistance, apoptosis and aging, occurs through the deacetylation of central 

regulatory substrates including p53, histones, FOXO, HSF1 and NFkB leading to modulation 

of their biological activities (Daitoku et al., 2004; Westerheide et al., 2009; Yeung et al., 2004). 

Despite extensive efforts, little is known regarding how hSIRT1 recognizes the target acetyl-

lysine in a variety of different substrates and no consensus sequence in hSIRT1 substrates was 

identified (Blander et al., 2005; Garske and Denu, 2006; Rauh et al., 2013). Moreover, it is 

unknown how multi-specificity is enabled in hSIRT1 and whether specific substitutions took 

place during SIRT1 evolution enabling the expansion of its substrate repertoire. Thus, SIRT1 

provides an excellent model system for the study of the molecular basis and evolution of multi-

specificity in enzymes with a diverse set of substrates and cellular functions. 

  

Here, we developed and applied a bioinformatics-experimental workflow to identify 

substitutions in hSIRT1 enabling its high degree of multi-specificity. Our bioinformatics 

approach exploits natural variation in hSIRT1 homologs, ancestral sequence reconstruction and 

the expansion of SIRT1 substrate repertoire to identify changes in key residues that may enable 

hSIRT1 multi-specificity. Guided by this bioinformatics analysis, we generated different 

hSIRT1 mutants containing substitutions that are located at the vicinity of hSIRT1’s active site. 

Examination of these mutants revealed high activity with the highly conserved acetylated 

histones but a dramatic reduction in activity toward p53, which only appeared after divergence 

of fungi and animalia, relative to the WT protein. Our data suggest that active site substitutions 

that occurred during natural SIRT1 evolution are essential for the high degree of hSIRT1 multi-

specificity.  

 

 

Results 

A bioinformatics workflow for identifying candidate positions important for SIRT1 

multi-specificity  

To identify a limited number of candidate positions that may be important for hSIRT1 multi-

specificity, we combined sequence similarity networks (SSN), which are graphical summaries 

of sequence similarities shared between homologous proteins (Akiva et al., 2017; Atkinson et 

al., 2009), multiple sequence alignments (MSA), phylogenetic trees and phylogenetic profiles 

focusing on the deacetylase (DAC) domain of SIRT1. The construction of a reliable MSA of 
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SIRT1 homologs requires homogenous sampling of SIRT1 sequence space. Thus, we first 

delineated the sequence-similarity boundary that differentiates SIRT1 family members from 

the large sirtuin superfamily. We constructed an SSN of the entire sirtuin superfamily including 

9521 sequences and then mapped specific sirtuins, documented in the literature, to identify the 

different sirtuin classes (SIRT1 to 7). This representation enabled the delineation of SIRT1 

subgroup containing 1107 sequences that can be clearly separated from other sirtuin groups 

(Fig. S1). Next, we constructed an MSA of the SIRT1 family, including 103 unique sequences, 

by sampling it using criteria like homogenous taxonomic sampling, fully sequenced genomes 

and manual inspection (Fig. S2). 

 

To follow the evolution of substrate recognition in SIRT1 by identifying semi-conserved 

amino-acids, we constructed a Bayesian inference phylogenetic tree based on the SIRT1 

multiple sequence alignment (Fig. S3). Using the combination of the protein tree, taxonomy 

and the alignment, we identified positions that vary in their conservation levels – from 

universally conserved positions to ones that are conserved only in specific branches (partially 

conserved residues) and may be associated with SIRT1 adaptation to multi-specificity (Fig. 1 

and Fig. S2). Overall, this analysis allowed us to focus on 8 different positions (Fig. 1). 

Interestingly, four of these positions are located at the vicinity of hSIRT1’s active site, two 

positions are located at the Rossman fold domain and two positions at the zinc-binding domain 

(Fig. 2).  

 

Evolutionary dynamics of SIRT1 substrate expansion  

The identification of evolutionary branches in which the orthologs of hSIRT1 substrates have 

emerged can be used for correlating between natural substitutions in SIRT1 and substrate 

expansion (Fig. 1). To this end, we first collected 25 experimentally validated substrates of 

hSIRT1 for which their acetylated lysine is partially known (Chen et al., 2012; Rauh et al., 

2013) (Table S1). Next, we performed phylogenetic profiling for these substrates, i.e. assessing 

the presence or absence of orthologs for all 103 organisms from which SIRT1 alignment was 

constructed (Fig. S2). To assign a confidence score for their presence or absence, we combined 

data from several established methods (e.g. EggNOG (Huerta-Cepas et al., 2016), 

InParanoid(Sonnhammer and Östlund, 2015)), as well as manual inspection and literature 

search (see Methods). In addition, we generated MSA of these orthologs, aimed at evaluating 

the conservation level of the target acetyl-lysine in SIRT1 substrates (for examples see Fig. 

S4). As expected, we found that histones are completely conserved SIRT1 substrates while p53 
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and RelA are examples of substrates that appeared later in evolution in complex eukaryotes 

associated with SIRT1 substrate expansion (Fig. 1). In almost all cases, we identified the 

appearance of the substrate, followed by fixation of a lysine residue in a location that agrees 

with the acetyl lysine in the human substrate (Fig. 1). This classification of modern and 

primitive substrates, as well as lysine conservation, allowed us to select specific substrates for 

our experimental analysis (see below) and correlate between the substitutions identified in 

hSIRT1 and substrate analysis (Fig. 1).  

 

Experimental analysis of hSIRT1 mutants indicates intramolecular coevolution  

Based on the bioinformatics and structural analysis described above, we generated, expressed 

and purified 13 hSIRT1 mutants (V1-V13) containing 1 to 4 substitutions in different regions 

of the DAC domain (Figs. 2-3). The deacetylation activity of the purified mutants was 

measured with generic acetylated lysine using the fluor de-lys (FDL) assay(Wegener et al., 

2003) and compared to the WT hSIRT1. This analysis allowed us to reveal intramolecular 

coevolution between different hSIRT1 residues. Examination of V1-V3 mutants, containing 

mutations in the vicinity of hSIRT1 active site (Fig. 2), showed that the deleterious effect of 

L450E (V2) is compensated by R446A (V1) in the double mutant (V3) indicating significant 

coevolution between these two positions (Fig. 3). We found that the N417A and R424E 

mutations (V4) located at the vicinity of the active site does not dramatically affect hSIRT1 

activity. However, the combination of N417A/R424E and R446A/L450E (V5) leads to a 

significant increase in SIRT1 deacetylase activity by ~3 fold relative to the WT (Figs. 3 and 

S5). Thus, V5 containing 4 active site vicinity mutations that mainly originates from fungi 

SIRT1 orthologues (Fig. 1) exhibits significantly enhanced activity toward acetyl-lysine. 

  

Further analysis of other regions in the DAC domain including the Rossmann fold and the 

Zinc-binding domain (Fig. 2) indicates additional intramolecular coevolution in hSIRT1. In the 

Zinc-binding domain, we assessed the majority of single and double mutants containing the 

L372T/V and/or C380G/A mutations (V6-V11, Fig. 3) to identify a combination of mutations 

that will not abrogate hSIRT1 deacetylation activity. We found that the L372T and C380G 

substitutions (V11) that originates from worms SIRT1 orthologs (e.g. C. elegans), allows 

maintaining of deacetylase activity (Fig. 3) indicating the coevolution between these residues 

(Fig. S6A). Similarly, only the V484D and D481N double mutant (V13) in the Rossmann fold 

domain exhibits high deacetylase activity (Fig. 3). Structural analysis of positions D481 and 
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V484 shows their spatial proximity suggesting that local excess of a negative charge in the 

V484D must be compensated by D481N for maintaining hSIRT1 activity (Fig. S6B).  

  

Active site substitutions maintain hSIRT1 activity toward conserved histone substrates 

As described above, hSIRT1 V3-V5 mutants contain substitutions for residues found in fungi 

or fly SIRT1 orthologs and exhibit WT or higher level of activity toward acetylated lysine (Fig. 

3). To examine V3-V5 activity toward acetylated lysines in universally conserved histones, we 

first utilized peptides containing H3K9Ac, H3K56Ac and H4K16Ac derived from human 

histones H3 or H4. The activity of WT hSIRT1 and V3-V5 mutants toward these peptides was 

measured using ammonia-coupled assay as previously described (Meledin et al., 2013; Smith 

et al., 2009). This continuous spectroscopic assay, allows the Michaelis Menten (MM) analysis 

of WT and V3-V5 activity with acetylated peptides to derive the KM and kcat parameters. 

Analysis of these variants with the different peptides revealed similar or in some cases even 

lower KM values for V3-V5 relative to the WT (Fig. 4A-B and Figs. S7-8). Overall, this 

analysis indicates that the mutations in V3-V5 do not compromise its ability to recognize and 

catalyze the deacetylation of peptide derived from H3 and H4 histones (for full MM parameters 

see Table S2). 

 

To further measure the activity of V3-V5 toward full-length native acetylated histones, we first 

purified the chromatin fraction from HEK293T mammalian cells. Next, we incubated these 

variants with the purified chromatin fraction produced from the HEK293T cells for limited 

time durations. We then utilized western blot analysis to monitor the activity of hSIRT1 

variants toward  H4K16Ac by following the time dependent decrease in H4K16Ac acetylation 

signal. In accordance with these results, we found that V3-V5 activity toward H4K16Ac in the 

chromatin fraction is similar to the WT activity (Fig. 4 and Fig. S9). Overall, these results show 

that V3-V5 maintain full activity with the conserved acetylated histones. 

  

Multiple active site substitutions lead to reduced activity toward acetylated p53 and RelA  

Our bioinformatics analysis of SIRT1 substrates indicates that while histones are fully 

conserved, p53 is less conserved and appears only in multicellular organisms (see Fig. 1 for 

p53 evolutionary dynamics). We hypothesized that the possibly recent substitutions at positions 

N417, R424, R446 or L450 (Fig. 1-2) may be important for efficient recognition of p53 by 

hSIRT1. In this case, the V3-V5 mutants, containing two or four active site vicinity mutations 

originating mainly from Fungal SIRT1 orthologs (Figs. 1-3), may exhibit decreased 
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deacetylation activity toward p53. To examine this hypothesis, we first examined V3-V5 

deacetylation activity with a K382Ac peptide derived from human p53. We found that the KM 

of  V5, containing 4 mutations, toward this peptide is increased by ~2.5 fold, relative to the 

WT, indicating a minor decrease in affinity for the V5-p53 peptide (Fig. 5A, Fig. S8 and Table 

S2).  

 

To further examine V3-V5 activity toward acetylated p53 protein, we used the genetic code 

expansion approach in E. coli to site specifically incorporated N-()-acetyl-L-lysine (AcK) 

(Avrahami et al., 2018; Neumann et al., 2009) into K382 position of p53 during protein 

expression. The p53 K382Ac was then expressed, purified and utilized as a substrate for the 

WT and V3-V5 mutants. We used western blot to monitor the time dependent deacetylation 

activity of hSIRT1 variants with the acetylated p53 protein substrate. Using this assay, we 

observed a dramatic decrease in V3 and V5 activity toward acetylated p53 protein, relative to 

the WT, while the activity of V4 was unaffected by the mutations (Fig. 5B-D and Fig. S10). 

These results indicate that while V3 and V5 maintain full activity toward histones (Fig. 4), 

their activity toward p53 protein substrate is significantly reduced. In addition, these results 

indicate that the R446A and L450E mutations are sufficient to dramatically decrease hSIRT1 

activity toward p53 protein while the N417A and R424E mutations do not affect hSIRT1 

activity toward K382Ac p53. It is also notable that while the activity with the p53 peptide is 

only marginally affected, the activity with the full protein is considerably more susceptible to 

the effects of these mutations.  

   

Next, we examined whether natural variations in sequence adjacent to p53 K382 can affect the 

deacetylation activity of hSIRT1 variants. To explore this possibility, we first performed 

bioinformatics analysis of p53 orthologs and found that the sequence around K382 contains 

two conserved substitutions, found in fish and Aves species, at positions -2 and -5 to K382, 

relative to human p53 (Fig. 5E). V3 and V5 contain substitutions that are based on SIRT1 

orthologs found in distantly related eukaryotes including yeast (Fig. 1) and exhibit lower 

activity toward human p53. Next, we measured the activity of WT and V3-V5 mutants with 

p53 acetylated peptide derived from fish or Aves p53 orthologues (Fig. 5E). Interestingly, 

kinetic analysis of V3 and V5 activity with this peptide shows a minor increased KM values, 

relative to the wild-type and V4 proteins (Fig. 5F and Table S2). These differences in KM may 
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indicate that substitutions in the vicinity of p53 acetylation site can contribute to efficient 

SIRT1-substrate recognition in higher eukaryotes. 

 

Finally, to examine whether V3-V5 variants exhibit altered activity with an additional substrate 

that appeared later in evolution, we chose to examine SIRT1 activity with RelA/p65 (Fig. 1). 

RelA/p65, belonging to the NFkB complex, was previously shown to be acetylaed at position 

K310 and is specifically deacetylation by hSIRT1 (Yeung et al., 2004). To examine WT and 

V3-V5 mutant deacetylation activity with K310Ac peptide derived from RelA/p65, we used 

the continuous ammonia assay (Smith et al., 2009). We found that all variants exhibit higher 

KM than the WT. V5, containing all 4 active site substitutions, exhibits a significant increase of 

10 fold in KM, relative to the WT (Table S2 and Fig. S8). 

 

Ancestral sequence reconstruction (ASR) of hSIRT1 

Our analysis of V3 and V5 indicates that substitutions of residues near the active site lead to 

loss of deacetylation activity against p53 protein with no effect on activity with the conserved 

acetylated histones. To gain more detailed insight into the evolution of this substrate binding 

region from a common ancestor for the Fungal and Metazoa, we performed ASR analysis of 

SIRT1 DAC focusing on active site vicinity residues. Given that the co-evolution of amino 

acid residues is frequently indicative of functional evolution, we first performed residue co-

evolution analysis of active site vicinity residues. To perform this analysis, we used more than 

6000 sequences of the SIRT1 DAC using the Generative REgularised ModeLs of ProteiNs 

(GREMLIN) (Balakrishnan et al., 2011) online server. The pairwise coevolution matrix output 

by GREMLIN was arranged into a network representation using Cytoscape (Shannon et al., 

2003). The results were examined to identify any residue networks in SIRT1 that were in close 

proximity to the substrate binding site. One particular network, consisting of amino acids 

mutated in V5 (positions 417, 424, 446 and 450) and position 449 was identified with high 

confidence and was examined in more detail (Fig. 6). 

 

To examine the evolutionary history of SIRT1, we then used ASR to reconstruct SIRT1 

sequences along the evolutionary trajectories of Fungal and Metazoan orthologs. Phylogenetic 

inference based on an expanded 142-taxon alignment of Metazoan and Fungal SIRT1 

sequences was performed using the ML method (see Materials and methods for details, Fig. 

6). Ancestral sequence reconstruction was performed using the Empirical Bayes (EB) method 

of Yang in PAML (Yang, 2007), with the LG evolutionary model (Le and Gascuel, 2008) (see 
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Methods). Focusing on the conserved DAC domain of SIRT1 allowed us to obtain high 

posterior average probabilities for maximum likelihood ancestral sequences.  

We expressed and purified an additional series of hSIRT1 variants (M1-3, representing three 

ancestors on the metazoan branch; F1-3, representing ancestors on the fungal branch; and A1-

3, representing common ancestors) containing active site substitutions (at positions 446, 450, 

417, 424 and 449) to residue identities that may have been found in ancestral SIRT1 sequences. 

The ambiguity in the reconstruction at these positions meant that a number of combinations 

were possible at each ancestral node; we expressed all possible combinations at each node 

except where analysis of extant sequences indicated that the combination does not exist in 

extant sequences and is therefore unlikely to have existed in ancestors (owing to coevolution 

and epistasis) (Fig. 6A and Fig. S11). 

 

Experimental analysis of ASR based hSIRT1 mutants  

According to the ASR analysis, we generated, expressed and purified seven different hSIRT1 

variants with mutations to ancestral states at the key residue positions at the selected ancestral 

nodes (Fig. 6). Previous studies indicated that a shorter version of hSIRT1 containing residues 

236-684 (Knyphausen et al., 2016), including the SIRT1 C-terminal regulatory region (CTR), 

leads to reduced aggregation with complete maintenance of SIRT1 enzymatic activity. Thus, 

we expressed this N-terminal truncated version of the different ASR based variants and WT 

for obtaining higher expression level and decreased aggregation relative to the full length 

hSIRT1. To verify that N-terminal truncation doesn’t affect the specificity toward acetylated 

p53, we examined the truncated versions of WT and V5 with comparison to the respective full 

length proteins. We found that the truncations don’t change the activity toward p53 acetylated 

protein, verifying that the N-terminal region is not associated with p53 recognition (Fig. S12).  

  

To examine the activity of the different variants, we first used the FDL assay using the Boc-

AcK-AMC substrate, as described above, verifying that all variants were active (Fig. 6 and 

Fig. S13). Next, we used western blotting as described above, to examine the activity of the 

different variants against H4K16Ac and p53 K382Ac using native histones extracted from cells 

and purified acetylated p53, respectively. Interestingly, we found that the A1-A3 variants, 

corresponding to possible residue configuration of the Metazoa-Fungi common ancestor, 

exhibited similar activity with these substrates as WT hSIRT1 (Fig. 7 and Fig. S14). In contrast 

we found that the F1 and F3 variants, corresponding to possible residue configurations of the 

common ancestor of all Fungi and the common ancestor of Dikarya (yeasts and mushrooms), 
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respectively, maintained activity with the conserved H4K16Ac substrate but exhibit dramatic 

loss of activity with the p53 K382Ac substrate (Fig. 7 and Fig. S14). This result indicates that 

while the residue configurations of the Metazoa-Fungi common ancestor were able to catalyse 

p53 deacetylation, this ability was lost during the Fungal SIRT1 evolution. Finally, the analysis 

of M1 and M3 variants, generated based on the ancestral sequences from the Metazoa, show 

that these variants exhibit similar activity as WT hSIRT1 with p53. Overall, these results 

suggest that the active site configuration of the Metazoa-Fungi common ancestor exhibits 

multi-specificity towards both histone and p53 substrates, and that this trait was maintained 

during Metazoan SIRT1 evolution but lost during Fungal SIRT1 evolution. 

  

The lack of activity of V3 with p53, containing R446A and L450E mutations (Fig. 3), reveals 

that the identity of these residues plays a critical role in p53 K382Ac recognition. Similarly, F1 

and F3 exhibit complete loss of activity toward p53. Analysis of the substitutions of 446 and 

450 in these variants reveals that both variants contains the L450E mutation while R446S and 

R446A mutations are present in F1 and F3 variant, respectively. These results are in good 

agreement with the mutations in V3 and reveal L450E as the key specificity determining 

residue that must coevolve with R446 substitution to maintain high deacetylation activity with 

acetyl-lysine but reduced activity with p53 (Figs. 4-7). Finally, A446 and E450 are conserved 

in most fungi species (Fig. 1 and Fig. S2) suggesting that Fungal SIRT1 orthologs lost p53 

recognition during evolution.  

  

Discussion 

Many enzymes that catalyze the addition or removal of diverse types of PTMs on different 

protein targets are multi-specific. This phenomenon is extremely hard to decipher and remains 

enigmatic for many such enzymes (Beltrao et al., 2013). Our study on hSIRT1, as a prominent 

example, addresses fundamental questions regarding the molecular basis and evolution of 

multi-specificity in these enzymes. In eukaryotes, enzyme-substrate networks can dramatically 

expand through evolution upon transition from primitive eukaryotes such as fungi to complex 

eukaryotes such as humans. Thus, natural changes in enzyme sequences can be related to their 

growing ability to recognize multiple substrates. Here, we examined this hypothesis by using 

a bioinformatics-experimental approach to identify and test natural substitutions in SIRT1 

taking place during the evolution of eukaryotes. We mainly focused on substitutions of active-

site vicinity residues in hSIRT1 and examined the activity of different hSIRT1 mutants with 

conserved and non-conserved substrates. 
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hSIRT1 is an excellent model system due to its deacetylation activity toward a large number 

of acetylated residues in proteins and its involvement in the regulation of a variety of cellular 

processes in health and disease (Lavu et al., 2008). A recent study that examined the 

deacetylation profile of all human SIRT1-7 enzyme with 6802 different acetylated peptides, 

representing the human acetylome, revealed that thousands of acetyl-lysine sites are targeted 

by these enzymes (Rauh et al., 2013). In addition, other studies revealed that the substrate 

preference of sirtuins is not limited to acetyl-lysine residues but these enzymes, primarily 

SIRT6, can recognize different fatty-acid acyl-lysine modified substrates (Feldman et al., 2013; 

Jiang et al., 2013). However, despite extensive studies, little is known regarding the molecular 

basis for the high degree of sirtuins multi-specificity. Several studies on the specificity of 

hSIRT1, using different types of peptide arrays (Blander et al., 2005; Garske and Denu, 2006), 

revealed no clear consensus sequence for acetyl-lysine recognition. In contrast to the multi-

specificity of hSIRT1, the substrate repertoire analysis of the ySir2 ortholog from S. cerevisiae 

revealed its narrow specificity toward conserved histone acetyl-lysine residues (Bheda et al., 

2012). This observation suggests that multi-specificity in SIRT1 can be acquired or lost through 

evolution, nevertheless, its molecular basis is still unknown. 

  

Our bioinformatics approaches for the analysis of SIRT1 sequences, first allowed the 

identification of partially conserved residues in SIRT1 that coevolve (Fig. 1-3). Previously,  

intramolecular co-evolution was shown to be an extremely powerful tool for revealing contact 

constrains within proteins allowing the elucidation of the three dimensional structure of many 

proteins (Marks et al., 2012; Ovchinnikov et al., 2017, 2015). Indeed, experimental analysis of 

several hSIRT1 mutations to residues, found in SIRT1 orthologs, showed that combination of 

mutations is needed for maintaining hSIRT1 deacetylation activity (Fig. 3). These results 

suggest that intramolecular coevolution in SIRT1 plays an important role in maintaining its 

catalytic activity. Our findings further support the notion that co-evolving residues are highly 

important for maintaining protein function through evolution.    

 

The identification of partially conserved residues at the vicinity of the hSIRT1 active site 

allowed us to generate and focus on the V3-V5 variants, containing 2 and 4 substitutions at the 

vicinity of hSIRT1’s active site that originate from SIRT1 orthologs (Fig. 1 and Fig. S2). Our 

findings that V3 and V5 exhibit high activity toward conserved histone substrates but a 

dramatic loss of activity toward acetylated p53 (Figs. 4-5) suggest that the identity of residues 
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in positions 446 and 450 plays a key role in dictating p53 deacetylation by SIRT1 (Fig. 1). 

ASR followed by experimental examination of SIRT1 variants containing ancestral 

substitutions at active-site vicinity residues reveal the dynamics of p53 recognition through 

evolution. These results indicate that the Fungal-Metazoa SIRT1 common ancestor had some 

activity with multiple substrates, and that evolution of true multi-specificity requires continual 

selective pressure via the presence of certain substrates. For example, the absence of p53 in 

Fungi alleviates selective pressure to maintain activity against p53 and this function is lost due 

to neutral drift or mutations; in Metazoa there has been selective pressure to maintain activity 

on p53 and this is primarily driven by the coevolving regions we identified in this study. 

 

Previously, the function and evolution of promiscuous enzymes that catalyse the chemical 

transformation of native and non-native substrates were extensively studied (Babtie et al., 

2010; Tawfik and Tawfik, 2010). Directed evolution of these enzymes revealed the robustness 

of the native enzyme activity to mutations that dramatically affect the promiscuous non-native 

enzyme activities (Aharoni et al., 2005). In analogy with these studies, it is tempting to 

speculate that the activity of multispecific enzymes such as SIRT1 toward conserved substrates 

(e.g. histones) is robust to natural substitutions leading to reduced activity with modern 

substrates (e.g. p53). However, additional studies with other multi-specific enzymes are 

required to thoroughly examine this hypothesis. 

 

Overall, our study reveals residues that are critical for SIRT1 multi-specificity and sets the 

stage for additional analysis of SIRT1 substrates to map in details the evolutionary dynamics 

of SIRT1 multi-specificity. In addition, future work should reveal the structural basis for multi-

specificity and SIRT1 by careful analysis of the effect of mutations identified in this study on 

SIRT1 structure and substrate recognition. Finally, our approach can be further utilized for the 

examination of a variety of other multi-specific PTM catalyzing enzymes including 

kinases/phosphatases, methyl-transferases/demethylases and ubiquitin-ligases/deubiquitinases 

to study their molecular basis for multi-specificity and shed new light on the evolution of 

enzyme-substrate recognition in these diverse and important systems.  
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Material and Methods 

 

Collecting sirtuin sequences and generating a sirtuin-superfamily wide sequence 

similarity network 

The UniProtKB(UniProt Consortium, 2013) and NCBI(NCBI Resource Coordinators et al., 

2018) sequence databases were searched for hits of sequence patterns associated with sirtuin 

proteins. Signatures from InterPro (Finn et al., 2017) (IPR026590, IPR026591, IPR003000, 

IPR017328, IPR026587, IPR027546 and IPR028628) and Pfam (Punta et al., 2012) (PF02146, 

PF13289) yielded 10,273 unique sequences with pattern matches. The Structure-Function 

Linkage database tools (Akiva et al., 2014; Barber and Babbitt, 2012) were then used to 

generate a representative SSN, as described before (Akiva et al., 2017; Atkinson et al., 2009). 

In this network, nodes represent sets of proteins that share >60% sequence identity as measured 

by Cd-hit (Li and Godzik, 2006), and edges represent a mean E-value more significant than 

1×10-18 between all pairwise E-value scores calculated between the sequences represented in 

each node. Identifying this cutoff was obtained by manual sampling of several edge inclusion 

thresholds until a reasonable reconciliation was achieved between distinct similarity clusters 

and representation of remote similarities between them. Networks in this paper are visualized 

by Cytoscape (Shannon et al., 2003) (organic layout). 

 

Phylogenetic profiles of hSIRT1 Substrates 

We complied a set of organism that sample the phylogenetic tree of eukaryotes and have fully-

sequenced genomes. For each organism, we combined EggNog (Huerta-Cepas et al., 2016) and 

Inparanoid (Sonnhammer and Östlund, 2015) to find orthologs of hSIRT1 substrates. These 

auto-generated lists of orthologs were further validated by finding best BLAST (Altschul et al., 

1990) reciprocal hits between the human proteome and any of the eukaryotic proteomes 

(downloaded from UniProtKB (UniProt Consortium, 2013) and EnsEMBL (Zerbino et al., 

2018)). These results were manually examined and then cross-validated with literature-

documented phylogenetic models for each substrate, whenever available. Fig. 1 includes a 

color-coded summary of the results: From white (no ortholog was detected) to dark red (highly 

conserved ortholog). Color intensity is proportional to the bit-score (as computed by BLAST), 

divided by the alignment length. To evaluate the conservation of putative acetyl-Lysine 

residues in the substrates, we aligned orthologs of each substrate using MAFFT (Katoh, 2002) 

and focused on the segments that align with the human acetyl-Lysine. Fig. 1 summarizes the 

results of these analysis by the letter “K” for each substrate and organism. Absence of the letter 
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means that no Lysine was found in the relevant aligned segment.  

    

Generation of SIRT1 mutant plasmids 

The p38 plasmid containing hSIRT1 (UniProt Q96EB6) gene fused N-terminal 6xHis tag was 

obtained as a kind gift from Haim Cohen lab, the Bar-Ilan University, Israel. The p38 was 

modified by deleting one of the two KpnI restriction sites to generate the p38d plasmid. All 

further genetic manipulations were based on the p38d plasmid. For generating hSIRT1 mutants 

in the DAC domain, the mutants were cloned into p38d using KpnI and HindIII. The DAC 

domain mutants were obtained by a PCR reaction in several steps. The First step was performed 

to amplify the DAC domain in two fragments with a primer that includes the relevant mutation. 

The two fragments were purified using the GeneJET PCR extraction kit (Thermo), followed 

by assembly PCR and further amplification of the whole mutant DAC domain. The KOD 

polymerase (Merck) was used for all PCR amplifications. The resulting mutated DAC PCR 

fragments were incubated with DpnI (Thermo) for 30 min at 37°C followed by 10 min of heat 

inactivation at 80°C. The DAC mutants were further purified and cloned to the digested p38d 

vector using NEB builder Gibson mix (NEB). The V5 mutant was ordered as a synthetic gene, 

amplified by PCR and cloned as described above. The final product was transformed to NEB 

competent bacterial cells and plated on LB agar containing 100 µg/ml Ampicillin. Positive 

colonies were verified by PCR with dreamtaq polymerase (Thermo), followed by purification 

using NucleoSpin Plasmid EasyPure kit (Macherey-Nagel) and sequenced to verify the correct 

mutations. 

 

Expression and purification of SIRT1 mutants and PNC1 in E. coli 

Plasmids containing the WT and mutant hSIRT1 genes were transformed into Rosseta 2 E. coli 

competent cells, grown in TB medium containing ampicillin and chloramphenicol at 37°C to 

an OD600 of 0.6 and induced with 0.8 mM IPTG followed by 16 hours of incubation at 16°C. 

Cells were lysed by sonication in lysis buffer containing 40 mM Tris-HCl pH 8, 200 mM NaCl, 

10 mM MgCl2, 1:2000 EDTA free-protease inhibitor cocktail (Calbiochem) and Benzonaze 

(Mercury). Cell debris were removed by centrifugation at 10,000g at 4°C for 30 min. The 

supernatant was loaded onto pre-equilibrated nickel beads, washed with wash buffer containing 

40 mM Tris-HCl pH 8, 200 mM NaCl, 10 mM MgCl2 and 20 mM imidazole and eluted with 

elution buffer (similar to wash buffer but containing 500 mM imidazole). The eluted protein 

was dialyzed with activity buffer containing 25 mM Tris-HCl pH 8, 200 mM NaCl, 1mM 

MgCl2 and 2.5mM DTT, for imidazole removal. The purity of the proteins was assessed by 
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SDS-PAGE on 10% gel and protein concentration was measured by the Bradford method using 

bovine serum albumin as the standard. The PNC1 plasmid was obtained as a kind gift from 

Jessica L will and Jorge C. Escalante-Semerena from the University of Georgia and the protein 

was purified as previously described(Garrity et al., 2007). 

 

Fluor de lys (FDL) activity assay for WT and SIRT1 mutants 

The activities of the mutants were measured by FDL assay using protected acetylated lysine 

substrate conjugated to a 4-amino-7-methylcoumarin group (AMC) at the carboxyl terminus. 

The assay was performed using the following protocol: 30 µl of the hSIRT1 WT or mutants at 

1.5 µM were added to 20 µl of the reaction mix containing 12.5 mM NAD+, 1.25 mM AcLys-

AMC in 50 mM Tris-HCl pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2 and Bovine 

Serum Albumin (BSA) 1 mg/ml (FDL buffer). The mixture was incubated in black 96 well 

plates (Greiner) covered with aluminum foil on ice. The reaction was stopped at different time 

points by adding 50 µl developer solutions (3 mg/ml Trypsin, 0.05 mM HCl in FDL buffer 

with BSA). After adding the developer, the plate was incubated in 37°C for 40 min and 

fluorescence intensities were measured using Infinite M200 plate reader (Tecan).  

 

Ammonia coupled assay with acetylated peptides 

The ammonia coupled assay was performed as previously described(Smith et al., 2009) with 

minor modifications. The ammonia assay kit (Sigma) and relevant acetylated peptides 

(Peptron) were used for preparing the reaction mix. The sequences of all peptides used in this 

study are shown in Table S3. This mix contained 75 µl activity buffer, 1 µl of L-Glutamate 

Dehydrogenase (Ammonia kit, Sigma), 2 µl of 150 mM NAD+, 2 µl of 1 µM purified PNC1, 

and 16 µl of 1.5 µM hSIRT1. Acetylated peptides were added at different concentration and 

the volume was completed to 100 µl with DDW. The reactions were measured at 320 nm for 

30 min at 30°C using Infinite M200 plate reader. 

  

Chromatin fractionation and histone deacetylation assay 

Chromatin fractionation and deacetylation assay on histones was performed as previously 

described (Gertman et al., 2018). The deacetylation assay was performed using 70 µl of 

chromatin fraction, 20 µl 125 mM NAD+, 30 µl of activity buffer (30 mM Tris-HCl pH 8, 4 

Mm MgCl2 and 1 mM DTT) in the presence of 40 µl of 1.5µM purified hSIRT1. The reaction 

was stopped at different time point of 0, 15 sec, 30 sec, 45 sec, 1 min, 1.5 min, 2 min and 2.5 

min. To detect the decrease in acetylation of H4K16Ac, the samples were resolved on 15% 
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SDS-PAGE gel and transferred with Tran-Blot Turbo Transfer Pack (Bio Rad) using Trans 

Blot Turbo Transfer System. The membrane was then probed with several antibodies: Rabbit 

α-H4 (ab10158), Rabbit α-H4K16 (ab109463) (abcam) followed by a secondary antibody goat 

α-rabbit. For the analysis of hSIRT1 levels, α-his tag conjugated to HRP was used. Western 

blot bands were quantified using Image J program. 

  

Purification and deacetylation assay on native p53  

The full length proteins were expressed in bacteria that incorporated the non-natural amino acid 

(acK) by expending the codon usage. The p53 plasmid with the stop codon in the position 382 

was cloned to the pCDF Duet plasmid and purified as previously described (Arbely et al., 

2011). In the deacetylation assay we used 140µl of 4µM of the full length substrate, 80µl of 

0.8µM of purified hSIRT1 or mutants and 100µl deacetylation buffer (25 mM Tris, pH 8.0, 

137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1 mM NAD+) (Knyphausen et al., 2016). The 

reaction was the incubated at room temperature and samples were removed at different time 

points of 0 min, 15 min, 30 min, 45 min, 60 min, 75 min, 90 min and 120 min. All the samples 

were analysed by western blot with several antibodies: Rabbit α-p53 (#9282), Rabbit α-p53 ac-

K382 (#2525) (Cell Signaling) followed by goat α-rabbit or α-mouse antibody conjugated to 

HRP. Analysis of hSIRT1 levels and band quantification were performed as described above. 

 

Coevolution analysis, maximum-likelihood phylogenetic inference and ancestral sequence 

reconstruction 

Coevolution analysis was performed on an automatically compiled >6000 sequence MSA of the 

SIRT1 DAC (using the hSIRT-1 DAC sequence as the initial search sequence) using the Generative 

REgularised ModeLs of ProteiNs (GREMLIN) (Balakrishnan et al., 2011) online server 

(http://gremlin.bakerlab.org/). The pairwise coevolution matrix output by GREMLIN was arranged 

into a more informative network representation using Cytoscape(Shannon et al., 2003), with an edge 

cut-off at a GREMLIN raw co-evolution score of ~1.28 to obtain well-delineated and mutationally 

viable modules of co-evolving residues.  

 

For construction of a maximum likelihood tree, an EFI-EST enzyme similarity network (Gerlt et al., 

2015) were used to collect sequences orthologous to hSIRT1, using the Xenopus laevis SIRT1 

sequence as seed. Using incremental percent identity edge cutoffs in Cytoscape (Shannon et al., 

2003), clusters delineated by sirtuin subfamily were obtained. The SIRT1 cluster was identified by 
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locating the human SIRT1 sequence (Q96EB6). We explored this cluster to ensure that the 

sequences found were orthologous to SIRT1. 

Thus, ~ 400 sequences of hSIRT1 likely orthologues were collected from a number of Eukaryotic 

kingdoms. Incomplete fragment sequences were purged by manual inspection. Sequences with 

greater than 90% sequence homology were clustered and represented by a single sequence with CD-

HIT (Li and Godzik, 2006) thereby removing redundant sequences from the sequence set. The 

PROMALS3D alignment program (Pei et al., 2008) was used to align these sequences. The 

alignment was extensively inspected and the highly divergent N- and C- terminal domains removed. 

Another round of CD-HIT was followed by PROMALS3D alignment on the truncated sequences. 

Gaps and alignment errors were corrected through careful manual inspection of the resultant 

alignment. In particular, highly divergent and un-alignable insertions were observed in most non-

Chordate phyla in the zinc-binding domain; these were removed except in the Chordates, where 

they were deemed to be truly homologous under parsimony criteria. The sequence set was manually 

enriched with chordate sequences using profile alignment with HMMer (Johnson et al., 2010). 

Alignments were benchmarked via structural alignment of the orthologs ScSIR2 (PDB:4IAO) and 

hSIRT1 (PDB:4KXQ;4IG9).  

 

Phylogenies were calculated using IQ-TREE (Nguyen et al., 2015) a final alignment of 142 

sequences, using ModelFinder (Kalyaanamoorthy et al., 2017) to find the best-fit evolutionary 

model and the UltraFast (Minh et al., 2013) bootstrap method to evaluate non-parametric bootstrap 

branch supports using 1000 pseudoreplicate trees. For inference of constrained-topology 

phylogenies, the constraint tree topology was manually constructed in accord with the prevailing 

species trees for the relevant taxa (dos Reis et al., 2015; Spatafora et al., 2016). All statistical 

topology tests were performed in IQ-TREE using 10,000 pseudoreplicate trees. Ancestral sequence 

reconstruction was performed using the CodeML program in PAML (Yang, 2007), using the LG 

evolutionary model (Le and Gascuel, 2008). 
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Fig. 1: SIRT1 evolution is correlated with substrate repertoire expansion. (A) A 

phylogenetic tree of SIRT1 orthologs is shown on the left, representing major evolutionary 

branches of eukaryotic taxa: vertebrates (red), invertebrates I (green, mainly mullusca and 

nematodes), invertebrates II (cyan, mainly Ecdysozoa [insects]) and fungi (blue). A tree with 

organism names and branching probabilities is shown in Fig. S3. The positions selected for 
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substitutions (see text and Figs. 2-3) demonstrate conservation that is associated with the major 

evolutionary transitions. Right, a matrix depicting the conservation of 25 hSIRT1 substrates in 

eukaryotes. The substrates tested in this study are shown in black headings. The conservation 

level of the orthologs, measured by Bit score divided by alignment length is color-coded from 

white (low conservation) to red (high conservation). The appearance of orthologs in the 

different organisms is cross-validated by the inParanoid (Sonnhammer and Östlund, 2015) and 

EggNOG (Huerta-Cepas et al., 2016) databases, as well as literature review and manual 

examination. In cases where the acetylated lysine is known for the hSIRT-1 human substrate, 

a “K” is given in the relevant matrix cell. Underlined “K” represent the substrate column tested 

in this study. (B) A sequence similarity network of 103 likely orthologs of hSIRT-1. Each node 

represents proteins that share 90% sequence identity and above. The BLAST E-value cutoff 

for edge inclusion is 1*10-80. The organic layout in Cytoscape (Shannon et al., 2003) is used to 

layout the network. Node colors represent the residues that correspond with hSIRT1’s position 

380, and the taxonomy is shown as semi- transparent shapes, color-coded as in the tree in panel 

A.  
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Figure 2: Representation of the DAC of hSIRT1. Three major structural regions in hSIRT-

1 are shown (PDB 4KXQ), along with the specific positions that were substituted (red) 

Rossmann (yellow, positions 481 and 484), the active site region (green, positions 417, 424, 

446 and 450, also tilted and enlarged on the left) and the Zinc binding domain (cyan, positions 

372 and 380, the zinc ion is in blue). The peptide with the acetylated lysine is shown in purple, 

its approximate position is based on Sir2-p53 complex (PDB code 2H4F) (Davenport et al., 

2014). This position highlights the proximity between positions located at the active site region 

and substrate specificity. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903153doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903153
http://creativecommons.org/licenses/by/4.0/


22 
 

 

 

 

 Figure 3: The analysis of 13 hSIRT1 mutants revealing the intramolecular coevolution 

in hSIRT1. (A) A list of the 13 hSIRT1 mutants generated (V1-V13) classified according to 

three structural regions in hSIRT1: The active site vicinity (green), Zinc-binding domain (blue) 

and Rossmann fold (orange) (see also Fig. 2). (B) Activity analysis of V1-V13 using the FDL 

assay performed at 0.9 M of purified SIRT1 variants. The slopes derived from the FDL 

experiments were normalized relative to the WT hSIRT1 and results are presented as fold 

change over the WT (for representative kinetic curves see Fig. S5), HY is the inactive hSIRT1 

mutant containing the H363Y mutation. Values shown are the mean of three independent 

repeats while the error bars represent the standard deviation from the mean (C) Amino acid 

identities of position 446 and 450 in different SIRT1 orthologs highlighting the concerted 

change from A and E in fungi to R and L in vast majority of all other species shown in the 

panel (D) An SSN of 103 SIRT1 sequences, as shown in Fig. 1, showing the co-evolution 

between positions 446 and 450 in hSIRT-1 orthologs. Node colors represent hSIRT1 positions 

446 and 450 showing the correspondence between the concerted changes in amino acid type of 

the two positions. The proximity between these positions in hSIRT1 is shown in Fig. 2. 
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Figure 4: The activity of V3-V5 toward acetylated histones is maintained. (A-B) The KM 

values of the WT and V3-V5 for H4K16Ac and H3K9Ac, respectively, obtained from the MM 

curves (see Fig. S7). (C-D) Western blot kinetic analysis of WT and V5 activity toward 

H4K16Ac in the context of native histones shows that V5 is fully active toward this substrate. 

SIRT1 deacetylation activity is detected by the time dependent decrease in H4K16Ac signal. 

Western blots of WT (C) and V5 (D) H4K16Ac, H4 and hSIRT1 levels were detected using 

anti-H4K16Ac antibody, anti-H4 antibody and anti-6xHis antibody, respectively. 
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Figure 5: The activity of WT and V3-V5 with acetylated p53. (A) The KM values of the WT 

and V3-V5 with p53-K382Ac peptide obtained from the MM analysis are shown in Table S2. 

(B). Western blot kinetic analysis of WT and V3-V5 activity toward p53-K382Ac in the context 

of native p53 containing AcK at position 382 shows that V3 and V5 exhibit dramatically 

reduced activity. The time dependent decrease in K382Ac signal was normalized to time 0 and 

shown as the percentage of p53-K382Ac/p53 bands. Bands intensity were quantified by Image 

J. Analysis of p53-K382Ac, p53 and hSIRT1 levels were performed using anti-K382Ac 

antibody, anti-p53 antibody and anti-6xHis antibody, respectively. (C-D) Representative blots 

for WT (C) and V5 (D). (E) A multiple sequence alignment of p53 orthologs around K382 (in 

human, red arrow). T377 and H380 residues (human p53) are strongly conserved in mammals, 

but a proline and glycine are present at the same position in other vertebrates. (F) The KM 

values of the WT and V3-V5 mutants with p53-K382Ac primitive peptide obtained from the 

MM analysis shown in Fig. S7.  
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Fig. 6: (A) Putative specificity-determining positions (SDPs) from the GREMLIN pairwise co-

evolution network. Residue positions and identities are labelled according to the hSIRT1 

sequence Q96EB6. Edge labels show GREMLIN co-evolution score. (B) SDPs shown as 

spheres on the crystal structure of hSIRT1, 4KXQ. Putative substrate binding/recognition loops 

are coloured in blue. (C) The constrained maximum-likelihood phylogeny of the SIRT1 DAC 

domain inferred from an alignment of 142 sequences. Key ancestral nodes are indicated. Sub-

trees are collapsed and labelled according to taxonomic kingdom (e.g. Amoebozoa), phylum 

(e.g. Ascomycota), or class (e.g. Insecta). Human SIRT1 is found in the Chordata sub-tree; 

ySIR2 is found in the Ascomycota sub-tree. (D) The posterior probability distribution at the 

putative specificity determining positions (446, 450, 449, 417 and 424, respectively in the 
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sequence logos) for key ancestral nodes, along with possible combinatorial configurations. 

Names of hSIRT1 mutants arising from the combinations are shown in brackets. ‘*’ denotes 

combinations that are not found in the extant sequence set. Sequence logos constructed using 

WebLogo 3(Crooks et al., 2004).  
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Fig. 7: Quantification of western-blot activity assay for the different hSIRT1 ASR based 

variants with native p53 K382Ac and native H4K16Ac. (A) Data for p53 K382Ac was 

quantified by the band intensity following membrane exposure to anti-p53Ac antibody at 120 

minute time point as a percentage of the intensity of the same time point probed with anti-p53, 

normalized to the percentage of p53 K382Ac/p53 band intensities at t = 0. (B) Data for 

H4K16Ac is quantified by the band intensity following membrane exposure to anti-H4K16Ac 

antibody at 180 second time point as a percentage of the intensity of the same time point probed 

with anti-H4, normalized to the percentage of H4K16Ac/H4 band intensities at t = 0. The 

hSIRT1 HY mutant, containing the catalytic H363Y mutations, served as the negative control. 

Error bars show the standard error from the mean (SEM) for a minimum of 2 experimental 

repeats. Representative western blots for all variants are shown in Fig. S12.  
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Fig. S1: A representative sequence similarity network of the Sirtuin superfamily. Nodes 

represent proteins that share 80% sequence identity, and edges represent average E-Value score 

below 1*10-35. Colored, large nodes represent sequence sets that include at least one 

experimentally-verified member of the Sirtuin superfamily. In the specific E-value used here, very 

clear separation between large cluster (that represent sequences that are more similar to each other 

to any other sequences) is observed. The non-colored nodes represent uncharacterized sirtuins, 

hinting at yet unexplored sequence space of the superfamily. A red arrow points at hSIRT-1. Note 

that Sirt1/2 are colored the same, to clearly resolve the confusing, yet widely used naming 

conventions for these proteins. The upper cluster include “Sirtuin-1” superfamily members that 

belong to plants; this exemplifies, again, the confusing naming standards for sirtuins. 
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Fig. S2: Multiple sequence alignment of SIRT1 likely orthologs. The segments containing the 

studied substitutions are shown, where the positions are in red boxes. The overall high level 

conservation of the DAC domain is evident. Organisms’ background colors are grouped into 

vertebrates (red), invertebrates I (green, mainly mullusca and nematodes), invertebrates II (cyan, 

mainly Ecdysozoa [insects]) and fungi (blue). 
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Fig. S3: Representative tree of eukaryotic orthologs of SIRT1. The phylogenetic tree, generated 

using MrBayes, includes 72 of the 103 sequences of SIRT1 orthologs. In bold are organism names 

that appear in Fig. 1. 
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Fig. S4: Sequence alignment of RelA/p65 and p300 orthologs emphasizing the conservation 

of position 310 and 1020 in human RelA and human p300, respectively. Orthologs are based 

on consensus between diverse databases (OrthoDB, InParanoid, EggNog and EnsEMBL) and1,2. 

Protein identifiers are UniProtKB accession numbers or OrthoDB numbers. 
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Fig. S5: Representative Fluor De lyse (FDL) analysis of hSIRT1 mutants with protected 

acetyl-lysine-AMC substrate. Fluorescent signal was measured at different time points after 

stopping the catalytic deacetylation reaction. Initial rates were calculated by fitting the data to 

linear equation and comparing to the slope obtained for the WT (Fig. 3B). The inactive HY hSIRT1 

mutant containing the H363Y mutation serves as a control. All measurements were performed in 

triplicates and the standard deviation from the mean is shown. 
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Fig. S6: Coevolution analysis of specific positions in SIRT1. (A) Analysis of positions 372 and 

380 located at the Zinc-binding domain. Left: Surface representation of hSIRT1 structure with 

positions 372 and 380 highlighted. Right: Sequence alignment of SIRT1 orthologs showing amino-

acid identities at these positions.  (B) Analysis of positions 481 and 484 located at the Rossmann 

fold domain. Left: Surface representation of hSIRT1 structure with positions 481 and 484 

highlighted. Right: Sequence alignment SIRT1 orthologues showing amino-acid identities at these 

positions. 
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Fig. S7: The activity of V3-V5 toward H5K56Ac is maintained. The KM values of the WT and 

V3-V5 for H3K56Ac measured by the continuous assay3 following incubation of the hSIRT1 

variants with different concentrations of H3K56Ac peptide. Full MM curves are shown in Fig. S8. 
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Fig. S8: Michaelis Menten (MM) analysis of the WT and V5 hSIRT1 variants. Initial rates 

were measured by the continuous assay following incubation of the hSIRT1 variants with different 

concentrations of acetylated peptides, (A) H3K9Ac, (B) H3K56Ac, (C) H4K16Ac, (D) p53 

containing K382Ac, (E) Primitive p53 containing 2 mutations in human p53 peptide and (F) 

RelA/p65 containing K310Ac. The initial rates were plotted against substrate concentration and 

fitted to the MM equation to derive the kcat and KM parameters reported in Table S2. Each 

experiment was performed in triplicate and representative experiment is shown. All peptide 

sequences are shown in Table S3. 
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Fig. S9: High V3 and V4 deacetylation activity toward native H4K16Ac. Western blot kinetic 

analysis of V3 (A) and V4 (B) activity toward H4K16Ac in the context of native histones. The 

H4K16Ac, H4 and hSIRT1 were detected using anti-H4K16Ac antibody, anti-H4 antibody and 

anti-6xHis antibody, respectively, as described in Methods section. 
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Fig. S10: The activity of V3 and V4 with native acetylated p53. Representative western blot 

blots for the analysis of V3 (A) and V4 (B) activity with native p53 K382Ac. Detection of p53-

K382Ac, p53 and hSIRT1 levels was performed using anti-K382Ac antibody, anti-p53 antibody 

and anti-6xHis antibody, respectively. Western blot kinetic analysis of V3 and V4 activity toward 

p53-K382Ac in the context of native p53 are shown in Fig. 5. 
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Fig. S11: The constrained phylogeny based on a 151 sequence alignment of SIRT1 family inferred 

with IQ-TREE using the LG+I+G4 evolutionary model. Reconstructed nodes are labelled in red. 

The hSIRT1 and Saccharomyces cerevisiae Sir2 (ScSIR2) are labeled in green. 
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Fig. S12: The activity of short truncated versions of WT and V5  with native acetylated p53. 

Western blot blots for the analysis of short WT (A) and short V5 variant (B) activity with native 

p53 K382Ac. Detection of p53-K382Ac, p53 and hSIRT1 levels was performed using anti-p53 

K382Ac antibody and anti-6xHis antibody for p53 and Sirt1. (C) Western blot kinetic analysis of 

short WT and short V5 variant activity toward p53-K382Ac in the context of native p53. The time 

dependent decrease in K382Ac signal was normalized to time 0 and shown as the percentage of 

p53-K382Ac/p53 bands. Bands intensity were quantified by Image J. 
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Fig. S13: Fluor De lyse (FDL) analysis of hSIRT1 ASR mutants with protected acetyl-lysine-

AMC substrate.  Representative curves of fluorescent signal (PFU) at 460 nm for deacetylation 

of Boc-AcK-AMC. Shaded regions around curves show the standard error of the mean (SEM) for 

2 technical replicates. WT served as the positive control; H363Y (HY; a mutation to the 

catalytically essential histidine at position 363) served as the the negative control, alongside DW 

(deionised water).   
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Fig. S14: Representative western-blot analysis of SIRT1 ASR variants activities with native 

H4K16Ac and p53 K382Ac. Activity with histones (H4K16Ac) was measured up to 3 min (180 

sec) of incubation while activity with p53 K382Ac was measured up to 120 min of incubation. All 

assays were performed as described in Methods and in experiments shown in Figs. 4-5.   
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Table S1: Documented hSIRT1 substrates and acetylation sites (analyzed in Fig. 1). 

  

 Substrate Deacetylated lysinea Reference (PMID) 

1 Histone H4 K16 10693811 

2 Histone H3 K9, K56 19879981, 19411844 

3 Tip60 ND 20100829 

4 PCAF ND 19188449 

5 ATG7 ND 25316028 

6 XPA/XPC K67 20670893 

7 STK11(LKB11) ND 18687677 

8 MEF2 K424 16166628 

9 Apex1 K7 20699270 

10 Ku70 K539/K542 15023334 

11 WRN ND 20428248 

12 MyoD ND 22771996 

13 p300/CBP K1020 15632193 

14 HIF-1α K647 20620956 

15 FOXO3 ND 21841822 

16 FOXO1 ND 15220471 

17 PPARγ K268 22863012 

18 p53 K382 11672523 

19 c-Myc ND 22190494 

20 RelA K310 18419308 

21 IRS2 ND 18590691 

22 HIC1 K314 17283066 

23 NBN(NBS1) ND 17612497 

24 CIITA ND 21890893 

25 PML K487 22274616 

 

aND- non determined 
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Table S2: Kinetic parameters of WT and V3-5 with different acetylated peptides. Parameters 

were derived from fitting the kinetic measurements of the different hSIRT1 variants to the MM 

equation (for representatives kinetics for V5 see Fig. S8). 
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Table S3: Peptide sequences of SIRT1 substrates used in this study 

 

SIRT1 substrates AcLys in sequence Peptide Sequence 

H4 K16 KGGAK(Ac)RHRKVLRD 

H3 K9 TKQTARK(Ac)STGGKAP 

H3 K56 REIRRYQK(Ac)STELLIR 

p53 K382 QSTSRHKK(Ac)LMFKTEG 

Primitive p53 K382 QSPSRGKK(Ac)LMFKTEG 

RelA/p65 K310 RKRTYETFK(Ac)SIMKKSPF 

p300 K1020 TEERSTELK(Ac)TEIKEEED 
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