




















Figure 6: The reduced HCP-MMP atlas. (A-C) The original atlas (Glasser et al., 2016), consisting of 180 ROIs per hemisphere split
into 22 larger ‘clusters’. (A) The norm of the leadfield, summed over all voxels in an ROI ! , quantifying the strength with which ! influences
the MEG. Clusters are marked by different colours, whilst each bar is an individual ROI. (B) Each ROI’s anatomical location, plotted on the
inflated Freesurfer average brain. Top shows the lateral surface, whilst the bottom is angled to show the medial and ventral surfaces. (C) As
in B, but plotting only ROIs which are modified in the reduced atlas to highlight changes. (D-F) The reduced atlas, consisting of 125 ROIs
per hemisphere, plotted similarly as in A-C respectively. We reduce the atlas by stating that each cluster should have a number of ROIs
proportional to its influence on the MEG (A and D). For example, cluster 12 (the insula, the pink cluster marked in A and D by a black
bar) has very many weak ROIs, so we combine these ROIs into fewer, larger, more influential ROIs. The result of this is a more uniform
distribution of ROI strengths. Whilst the calculation of numbers of ROIs per cluster was automated, the choice of which specific ROIs to be
combined was made by hand from studying anatomical and functional closeness, based on the study of Glasser et al. (2016).

level data (given by the MEG leadfield matrix, see Equa-
tion 10), while maintaining all the clusters in the original
HCP-MMP atlas with similar microstructural, functional
and connectivity profiles (Glasser et al., 2016). As such,
the reduced HCP-MMP atlas is optimized for MEG source
reconstruction.

The reduced atlas is shown in Figure 6, and a detailed
description of all ROI reductions to the HCP-MMP atlas
is given in Supplementary Text S1. Merged ROIs were
found mostly in the less superficial areas such as medial
temporal regions (including the ventral visual stream and
medial temporal cortex), the lateral sulcus (including early
auditory, insular and opercular cortices), and medial re-
gions (including the cingulate, medial prefrontal, and or-
bitofrontal cortices) (Figure 6C and F). By merging ROIs
in these regions that have small influences over the MEG,
the distributions of influence of ROIs became more ho-

mogeneous (Figure 6A and D). For example, the insular
cortex in the original atlas consisted of thirteen small and
deep ROIs per hemisphere which had little influence on
the MEG (Figure 6A-C). Our algorithm determined the
optimum number of regions was four, so by merging insu-
lar ROIs which were anatomical neighbours and had sim-
ilar resting-state functional connectivity as reported by
Glasser et al. (2016), we achieved four larger ROIs with
comparable influence over the MEG to ROIs in more su-
perficial regions (Figure 6D-F). These merges can be justi-
fied by our resolution analysis (Figure 4B), which demon-
strates that the insular had much lower resolution (i.e.,
higher SECT) than superficial regions for all source recon-
struction algorithms.
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Figure 7: Parcellation based statistics. (A) Variance explained in sensor space by the parcellated dynamics. (B) Fractional localization
error (fLE). (C) Mean neighbour correlation (mNC) of ROI time series. For all figures, group-wise analyses demonstrated a significant effect
of algorithms. Pairwise analyses identified significant differences for all pairs except those marked as non-significant (n.s.), following false
discovery rate correction. Values for whiskers, boxes, etc. are described in Figure 3.

3.4. Comparing source reconstruction algorithms using
parcellated data

Based on the reduced HCP-MMP atlas Figure 6E, we
parcellated all voxelwise solutions of source reconstruction
algorithms into 250 ROIs. For each ROI, its representa-
tive time course was obtained from the first principal com-
ponent across all voxels within that ROI. We then com-
pared the source reconstruction algorithms using the par-
cellated, representative time courses of ROIs. The variance
explained analysis and resolution metrics were adapted ac-
cordingly for parcellated data (see section 2.2.3).

The values of cross-validated variance explained r2
CV

are shown for each algorithm in Figure 7A. There was a sig-
nificant effect of algorithm on r2

CV (χ2 = 49.4, p = 1.84×
10−9, Friedman test), with significant pairwise differences
between all pairs of algorithms (p = 0.0056 for wLCMV vs
sLORETA, p = 0.0012 otherwise) except LCMV vs wL-
CMV (p = 0.7646) and LCMV vs sLORETA (p = 0.7646).
Compared with results from voxelwise data (Figure 3A),
atlas-based parcellation resulted in lower r2

CV values. This
is expected, because the PCA-based representative time
course do not contain all the information in an ROI. Nev-
ertheless, eLORETA still had the largest r2

CV , explaining
77.0±1.1% of the data, followed by wLCMV (48.4±0.8%),
sLORETA (48.4 ± 0.8%) and LCMV (48.3 ± 0.7%). The
MNE and wMNE solutions performed poorly when par-
cellation was applied to the data, explaining 0.14± 0.04%
and 4.55 ± 0.48% of the data, respectively. Whilst MNE
was previously reported to perform poorly for unparcel-
lated data (section 3.1), this result highlighted that neither
MNE or wMNE provide reliable solutions for parcellated
data.

Fractional localization error (fLE) was calculated as a
parcellation based counterpart to LE. By definition, zero
LE results in zero fLE, so consistent with unparcellated
results we found zero fLE for sLORETA, wLCMV, and

eLORETA. There was a significant effect of algorithm on
fLE (χ2 = 55, p = 1.31 × 10−10), with significant differ-
ences in all tests (p = 0.0012 for all comparisons) except
those between algorithms with zero fLE (p = 1). Con-
sistent with the LE in unparcellated results (Figure 3D),
MNE had the lowest non-zero fLE (0.608 ± 0.004), fol-
lowed by wMNE (0.639 ± 0.004). LCMV had very high
fLE (0.989±0.003), suggesting that the majority of source
reconstructed signal is attributed to a wrong ROI.

Finally, mean neighbour correlation (mNC) was
used as a measure of resolution/leakage of the par-
cellated data, a counterpart of the SECT resolution
measure for voxelwise analyses. Low mNC is sugges-
tive of low leakage, since resolution is high enough to
distinguish activity at neighbouring ROIs. There was
a significant effect of algorithm on mNC (χ2 = 47,
p = 5.68 × 10−9), with significant differences between all
algorithms (p = 0.0450 for LCMV vs MNE, p ≤ 0.0056
otherwise), except wLCMV vs sLORETA (p = 0.7002).
wMNE had the lowest mNC (0.273 ± 0.003), followed by
eLORETA (0.4622± 0.011), MNE (0.599± 0.035), LCMV
(0.710 ± 0.009), sLORETA/wLCMV (0.786 ± 0.008,
differences of the order ±10−5 to ±10−4). Although there
is no direct dependency between mNC and SECT, our
results suggested that ranking of the algorithms based
on mNC is largely in line with the SECT results for
unparcellated data.

4. Discussion

The current study consisted of two main aims, uni-
fied by the goal of developing a methodology to guide fu-
ture source reconstruction analyses of resting-state MEG.
First, we systemically assessed which of the many inverse
algorithms for source reconstructing MEG data was most
suitable for use with empirical resting-state data. This was
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achieved through the measures of variance explained and
resolution metrics. Second, we presented a reduced atlas
that is based on the high resolution, multi-modal parcel-
lation of the Human Connectome Project (Glasser et al.,
2016), which is optimized for use with resting-state MEG
data. Main contributions and implications of our results
are discussed in the following sections.

4.1. Comparison of source localization algorithms

Our comparisons and recommendations of source local-
ization algorithms are summarized in Table 1. Generally
speaking, we recommend eLORETA as a first choice of
algorithm for distributed cortical source reconstruction of
resting-state MEG. In a wide range of conditions (broad-
band/narrow band data, anatomical/eigendecomposition
orientation constraints, unparcellated/parcellated),
eLORETA (Pascual-Marqui, 2007, 2009) was the algo-
rithm which could most accurately predict the MEG
at the sensor level, explaining approximately 90% of
variance in a cross-validation procedure. This suggests
that the cortical dynamics estimated by eLORETA
are representative of the macroscopic neural dynamics
generating the measured MEG. Furthermore, in line with
theoretical results (Pascual-Marqui, 2007) and simulated
point dipoles (Pascual-Marqui et al., 2018), we found that
eLORETA had zero LE and relatively lower leakage than
LCMV, wLCMV and sLORETA. The fact these results
were consistent across a number of conditions indicates
that eLORETA is appropriate as a general tool for source
reconstruction of resting-state MEG data. Using different
methodologies to the one presented here, recent studies
have also demonstrated that eLORETA outperformed
other algorithms such as MNE and LCMV in resting-state
EEG data (Liu et al., 2018; Finger et al., 2016), further
supporting the use of this algorithm for resting-state
source reconstruction.

However, eLORETA is not a perfect solution. Whilst
leakage is relatively low in eLORETA compared to LCMV,
wLCMV, or sLORETA, other algorithms achieved bet-
ter SECT (i.e., MNE and wMNE, Figure 3E) and mNC
(i.e., wMNE, Figure 7B), two metrics for leakage in un-
parcellated/parcellated data respectively. However, choos-
ing MNE/wMNE comes at the cost of localization errors
(i.e., non-zero LE and fLE), a reduced robustness to sen-
sor noise compared to eLORETA, and reduced ability to
explain sensor-level data. These results are in line with
those of dipole simulations, in which eLORETA largely
outperformed MNE with the exception of a measure of
leakage (‘focal width’) (Halder et al., 2019). It should ad-
ditionally be noted that MNE/wMNE performed poorly
on parcellated data (i.e., low r2

CV , Figure 7). Therefore,
although wMNE might be a useful tool if high spatial reso-
lution is a priority, we recommend in this case that the use
of eLORETA with alternative methods to reduce the ef-
fects of leakage such as orthogonalization (Colclough et al.,
2015) is a more desirable approach.

Furthermore, source reconstructions from sLORETA
(Pascual-Marqui, 2002) and the LCMV/wLCMV beam-
formers (Van Veen et al., 1997; Hillebrand et al., 2012)
were less altered by the addition of Gaussian noise than
eLORETA (Figure 5A), and explained less sensor-level
data in low SNR (i.e., 100+ Hz) or zero SNR (i.e., pure
white noise, Figure 5C) conditions. Therefore, sLORETA
and beamformers may be appropriate if signal contami-
nation from measurement noise or muscle artifacts is of
concern. These results are in line with theory: sLORETA
is unbiased in the presence of arbitrarily structured mea-
surement or biological noise (Pascual-Marqui, 2007), and
LCMV limits the influence of noise by minimizing variance
from sources outside of the dipole of interest (Van Veen
et al., 1997). Point dipole simulations have also verified
that beamformers are insensitive to changes in SNR
whilst minimum norm type estimates are not (Hincapié
et al., 2017). However, the use of sLORETA/wLCMV
comes at the cost of a significant drop in resolution
compared to eLORETA (Figure 3E). This is particularly
of concern in parcellated data (Figure 7B), as on average
neighbouring ROIs had an instantaneous correlation
of 78% (compared to eLORETA’s 46%), suggesting
that sLORETA/wLCMV solutions lose finer functional
details in anatomically adjacent regions, and hence these
algorithms should be used with a more coarse grained
atlas than the one in the current study. Whilst applying
multivariate orthogonalization (Colclough et al., 2015)
may address this issue, with such a large correlation
between neighbouring regions there is a risk that much
information will be lost when doing so.

Crucially, our findings highlighted that (unweighted)
MNE (Hämäläinen and Ilmoniemi, 1994) and (unweighted)
LCMV (Van Veen et al., 1997) are not appropriate for
distributed, whole brain cortical reconstruction of resting-
state MEG. MNE invariably explained 100% of the input
data, but was unable to predict data from a left-out sen-
sor in the cross validation procedure, suggesting an over-
fitting to the data that is not necessarily representative of
true underlying source dynamics. LCMV exhibited high
LE in line with studies using simulated dipoles (Pascual-
Marqui et al., 2018; Halder et al., 2019), and was consis-
tently outperformed by its weighted counterpart. There-
fore for resting-state MEG source reconstruction, wLCMV
is preferred over LCMV. Hillebrand et al. (2012) suggested
that wLCMV should be used for resting-state data over
LCMV due to the depth bias of the latter resulting in
a non-uniform projection of sensor noise, potentially ex-
plaining our findings. Recently, an empirical Bayesian ver-
sion of the LCMV beamformer (Belardinelli et al., 2012)
has been shown to explain approximately 80% of cross-
validated variance in resting-state data (Little et al., 2018),
which is still lower than that of eLORETA, but notably
higher than either the classical LCMV or wLCMV, and
hence could be a promising choice of beamformer-based
solution.

One interesting finding of the current study was
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Algorithm Strengths Weaknesses Recommended use

LCMV Uninfluenced by sensor noise. High LE and SECT.
Nearly always misplaces sources
during parcellation.

Never: High LE makes estimates
unreliable.

wLCMV Near-zero localization error.
Uninfluenced by sensor noise.

Poor ability to explain the data.
High cross talk, particularly after
parcellation.

If low SNR/high sensor noise.

MNE Highly non-robust to cross valida-
tion.
Highly overfits sensor noise.

Never: overfits data/noise.

wMNE Reasonable ability to explain the
data.
Low cross talk, including after par-
cellation.

Has small localization errors.
Strongly influenced by sensor
noise.
Unreliable for narrow band data.
Misplaces sources after parcella-
tion.
Poorly explains the data after
parcellation.

If high resolution is a priority.

sLORETA Zero localization error.
Uninfluenced by sensor noise.

Poor ability to explain the data.
High cross talk, particularly after
parcellation.

If low SNR/high sensor noise.

eLORETA Good ability to explain the data.
Zero localization error.
Reasonably low cross talk.
All of these properties maintained
following parcellation.

Small amount of cross talk.
Reasonably influenced by sensor
noise.

First choice, especially if data is
to be parcellated.

Table 1: Summary of results and recommended usage of algorithms.

that, analytically, sLORETA and wLCMV produce
non-identical, but similar solutions (Appendix C). Nu-
merically, the differences in the performance of the two
algorithms, whilst sometimes significant, were small
in magnitude: wLCMV explained slightly more of the
data (< 0.1% difference in r2

CV ), whilst sLORETA had
marginally lower SECT (of the order 10−3mm difference).
Therefore, under the conditions presented here, the two
algorithms have negligible difference in practice. However,
there may be cases where one solution is preferred over
the other. One such case is when only a portion of the
source space is to be reconstructed, for example placing a
small number of ‘virtual electrodes’ at regions of interest
(Engels et al., 2016; Hillebrand et al., 2016). wLCMV
would be preferred in this case, as the beamformer
solution at one dipole is not dependent on the rest of the
source space (Van Veen et al., 1997). Conversely, when
source reconstructing to a very high spatial resolution,
sLORETA may be preferred over wLCMV due to two
reasons. First, sLORETA had marginally better reso-
lution statistics. Second, we proved analytically that,
unlike sLORETA (Pascual-Marqui, 2002, 2007), wLCMV
had small but non-zero LE, although such small LE from
wLCMV could not be detected under the spatial grid used
here. In fact, in the current study, wLCMV produced
zero LE from empirical MEG data, consistent under
eigendecomposition orientation constraints and after data
parcellation. Future work could examine at what spatial
resolution wLCMV produces non-zero LEs, and whether

such high resolution is necessary or beneficial to inferences
in the source space.

4.2. The reduced HCP-MMP atlas optimized for MEG

The original HCP-MMP atlas consists of 360 cortical
ROIs delineated by their distinct structural, functional
and connectivity profiles (Glasser et al., 2016), which offers
good neuroanatomical precision essential for understand-
ing macroscopic brain network dynamics. As such, the
HCP-MMP atlas has been widely used for parcellation of
resting-state fMRI data (Ito et al., 2017; Dubois et al.,
2018; Dermitaş et al., 2019; Preti and Van De Ville, 2019;
Watanabe et al., 2019). Nevertheless, the fine spatial reso-
lution of this atlas becomes a key limiting factor for apply
it to MEG, because MEG data acquired in a typical scan-
ner with 200-300 sensors would lead to rank deficiency if
parcellated into 360 regions.

Here, we presented a reduction of the original HCP-
MMP atlas with 250 cortical ROIs, in which deep regions
with lower spatial resolution (chosen using a data-driven
approach based upon the leadfield matrix, see Appendix B
for details) were more coarse grained than in the original
atlas. The target of reduction to 250 ROIs was deter-
mined because our MEG data consisted of 274 gradiome-
ters, and after preprocessing (including noise projection
and artifact rejection through ICA decomposition) had a
rank of ≥250, although our method can be extended to
reduce the original atlas further. Our approach posited
that deeper regions of the brain or those with more radial
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orientation, which have low SNR (Cho et al., 2015) and
low spatial resolution (Liu et al., 2002) for MEG, should
contain fewer ROIs than superficial regions. This logic
was supported by our spatial analysis of resolution metrics
for all source reconstruction algorithms (Figure 4), where
voxels with the low resolution (i.e. highest SECT) largely
corresponded to those with low leadfield norm, quantified
by a significant negative correlation between SECT and
leadfield norm (Appendix B).

After determining the optimal number of ROIs per
cluster, merging of the regions was done manually within
each cluster, based on factors such as whether they
were anatomical neighbours (required) and exhibited
neuroanatomical and functional similarities (preferred)
as reported by Glasser et al. (2016). Particularly, sim-
ilarities in resting-state fMRI functional connectivity
were prioritised, whilst properties such as myelination,
cortical thickness, and activation during tasks were given
low priority in the choice of ROIs to merge. Therefore,
while the reduced atlas presented here is appropriate for
parcellation of resting-state activity, one should use it
with caution for task evoked MEG.

Alternative approaches exist for parcellating resting-
state MEG data. First, one can opt for functionally de-
rived ROIs, e.g. clustering voxels on the basis of functional
connectivity profiles (for its application in fMRI data see
Yeo et al., 2011). However, this approach is challenging
for MEG data, due to the necessity of deciding between
a large number of source reconstruction algorithms (sec-
tion 2.1), functional connectivity metrics (Wendling et al.,
2009; Dauwels et al., 2010; Wang et al., 2014) and fre-
quency bands (Buzsáki, 2006), each combination of which
likely results in a different functional connectivity profile
(Hassan et al., 2014, 2017).

Second, one may use atlases for cortical parcellation
with various levels of granularity, such as the Destrieux
(74 cortical ROIs; Destrieux et al., 2010), AAL (90 corti-
cal ROIs; Tzourio-Mazoyer et al., 2002), Desikan-Killiany
(168 cortical ROIs; Desikan et al., 2006) and Brainnetome
(210 cortical ROIs; Fan et al., 2016) atlases. The reduced
HCP-MMP atlas presented here is advantageous for MEG
research in two aspects: (1) it maintains all macroscopic-
level clusters allowing for multi-modal comparisons with
fMRI data; and (2) it maintains the fine grained resolu-
tion of the original HCP-MMP atlas for regions with high
SNR in MEG data, whilst reducing the resolution only in
deeper or more radial regions with low SNR in MEG data
(Cho et al., 2015; Liu et al., 2002). Therefore, in superficial
cortical regions where the MEG estimate is more reliable,
the reduced HCP-MMP atlas has higher resolution than
the above coarse grained atlases.

Finally, if MEG resting-state functional connectivity
is the aim of the study, an additional alternative is to use
the full HCP-MMP atlas with connectivity metrics insensi-
tive to leakage, such as imaginary part of coherence (Nolte
et al., 2004) or (weighted) phase lag index (Stam et al.,
2007; Vinck et al., 2011). For standard connectivity met-

rics, orthogonalization between pairs of ROIs (Hipp et al.,
2012) could be used, which does not require full rank data.
However, multivariate leakage correction is preferred due
to higher reliability of connectivity estimates than pairwise
leakage correction (Colclough et al., 2015, 2016), and un-
like pairwise correction does not exhibit spurious ‘ghost’
connections (Palva et al., 2018). Therefore, we suggest
that the combination of our reduced HCP-MMP atlas and
multivariate leakage correction is a more robust method
to estimate resting-state MEG functional connectomes, as
the reduced atlas also takes into account different signal-
to-noise ratios in MEG data between brain regions. It
is worth noting that multivariate leakage correction risks
removing zero lag connectivity that is not an artifact of
leakage. Recently, Farahibozorg et al. (2018) presented a
split-and-merge algorithm to downsample anatomical at-
lases which alleviates the problem of leakage by merging
ROIs based on CTFs derived from the resolution matrix
(as opposed to norms of the leadfield presented here). This
is potentially an advantage of the adaptive parcellations
of Farahibozorg et al. (2018) over the method presented
here. Nevertheless, since the CTF depends on the inverse
solution, the resulting parcellation from that procedure is
likely to also depend on the choice of source reconstruc-
tion algorithm. Since the current study suggested the use
of eLORETA for parcellation based analyses, it would be
of interest for future work to compare the reduced atlas
presented here and an atlas derived following Farahibo-
zorg et al. (2018) using the HCP-MMP atlas as a start
point and eLORETA to construct CTFs.

4.3. Methodological considerations

A crucial choice that needed to be made for this study
was the selection of source reconstruction algorithms to
be compared. The list of algorithms studied here is by
no means exhaustive, but instead focused on algorithms
that may be useful for resting-state MEG data. Algo-
rithms aimed towards localizing the spatial origin of a
small number of active sources (i.e. source localization)
were excluded, because this is likely to be an unrealistic
assumption for resting-state. Examples of such source lo-
calization algorithms include dipole fitting (Scherg, 1990),
multiple signal classification (Mosher and Leahy, 1998),
and minimum norm estimation using multiple sparse pri-
ors (MSP, Friston et al., 2008; Little et al., 2018). Further-
more, we did not include algorithms that may perform
well for source reconstructing resting-state data but are
not compatible with our variance explained or resolution
analyses, because comparison with the linear inverse algo-
rithms presented here was not possible. These include al-
gorithms which directly estimate resting-state source space
functional networks from the sensor space data without
first inverting the data, e.g. partial canonical coherence
(Schoffelen and Gross, 2009; Popov et al., 2018), cortical
partial coherence (Barzegaran and Knyazeva, 2017), and
estimation of MVAR coefficients (Gómez-Herrero et al.,
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2008), as well as linear algorithms estimated in the fre-
quency domain, e.g. dynamic imaging of coherent sources
(Gross et al., 2001) and frequency domain minimum norm
estimates (Yuan et al., 2008).

Of the source reconstruction algorithms most com-
monly used for resting-state analysis, the majority are
covered in the current study. Notable exceptions include
dynamic statistical parameter mapping (dSPM) (Dale
et al., 2000), LORETA (Pascual Marqui et al., 1994), and
the empirical Bayesian beamformer (EBB) (Belardinelli
et al., 2012). Comparisons between dSPM and sLORETA
have been studied using resolution metrics (Hauk et al.,
2011; Hedrich et al., 2017; Hauk et al., 2019) and sim-
ulated dipoles (Pascual-Marqui et al., 2018), generally
finding that sLORETA outperforms dSPM in terms of
localization error, leakage, and false positive activity.
Similarly, in a variance explained analysis of resting-state
MEG, LORETA performed similarly to the MNE solution
(Little et al., 2018). The EBB solution is derived from
the LCMV beamformer, but is placed in a Bayesian
framework in which hyperparameters of the inversion
are optimized to increase model fit to the data (Wipf
and Nagarajan, 2009; Belardinelli et al., 2012), meaning
the variance explained analysis of EBB is not directly
comparable with the other algorithms presented here. For
these reasons, and to reduce the number of comparisons,
dSPM/LORETA/EBB were excluded due to the inclusion
of sLORETA/MNE/LCMV (respectively) in this study.

Another crucial methodological decision was choice of
methods used to compare different algorithms. Previous
studies have compared algorithms for source localization
- identifying the origin of a small number of sources (Bai
et al., 2007; Hassan et al., 2014; Bradley et al., 2016; Fin-
ger et al., 2016; Barzegaran and Knyazeva, 2017; Hassan
et al., 2017; Hincapié et al., 2017; Bonaiuto et al., 2018;
Pascual-Marqui et al., 2018; Seeland et al., 2018; Anzolin
et al., 2019; Halder et al., 2019), such as known networks
during task or simulated dipoles. These methods are not
directly generalizable to resting-state data, where activity
is not a point source but is distributed widely across the
cortex. Instead, for resting-state data, one can ask to what
extent true activity at a certain source location is mislocal-
ized to another point on the cortex. Here, we approached
the question of source (mis-)localization in resting-state
data by considering resolution matrices (Hauk et al., 2011;
Hedrich et al., 2017; Hauk et al., 2019). These matrices
are the theoretical linear transformation between the true
source activity and the estimated activity, and because of
the linearity of this transformation results do not depend
on number of active sources. For this reason, resolution
metrics are equally as applicable to resting-state data as
they are to evoked data.

There exists a large number of resolution metrics
each of which can be applied to either the PSF or CTF
(Hauk et al., 2019). The current study focused on two
metrics (i.e., LE and SECT) to address crucial questions
of interest. Firstly, given true (possibly distributed)

activity on the cortex, how accurate is the placement of
this activity in the source estimate? This question can
be addressed quantitatively by ‘localization accuracy’
metrics applied to the PSF (Hauk et al., 2019), for which
dipole localization error (LE) was measured in this study
(Hauk et al., 2011; Hedrich et al., 2017; Hauk et al.,
2019). Care must be taken when interpreting the LE in
the resting-state paradigm. We are not attempting to
quantify the difference in peak activation of the estimate
given a single ‘true’ active dipole as in simulation or
theoretical studies (Pascual-Marqui, 2007; Barzegaran
and Knyazeva, 2017; Pascual-Marqui et al., 2018; Halder
et al., 2019), because of the expected cross talk from
distributed sources in resting-state data. As a result,
‘true’ activity at a certain location does not necessarily
imply a peak of estimated activity at that location - for
example, localization statistics based on peak activation
for sLORETA are accurate for single dipole localization,
but are imperfect for localizing multiple dipoles (Bradley
et al., 2016). The LE statistic used in this study is
therefore more properly interpreted as follows: given
true activity at a dipole, that activity will most strongly
influence dipoles approximately LE mm from the true
source on average, regardless of activity at other locations.

The second key question we chose to address with res-
olution metrics was: given an estimate of activity at a
given location, how strongly is this estimate influenced by
leakage from other locations? This issue is important for
resting-state functional connectivity analysis (Colclough
et al., 2016), where spurious functional connections may
arise due to leakage (Colclough et al., 2015). The latter
can be addressed by ‘spatial extent’ metrics applied to the
CTF (Hauk et al., 2019). Here, we chose a metric which
has been called ‘spatial dispersion’ (SD) in past studies
(Hauk et al., 2011; Hedrich et al., 2017; Hauk et al., 2019).
When applied to the PSF this metric describes how activ-
ity at a given location ‘disperses’ due to leakage (hence
the name SD), but when applied to the CTF this metric
describes the spatial extent to which other locations in-
fluence the seed vertex through leakage. Hence, the name
‘spatial extent of cross talk’ (SECT) was used here to avoid
confusion in interpretation, since in this study we do not
quantify how activity at the seed disperses.

The aim of the resolution analysis is to compare the
estimated source activity with the true source activity,
based on the linear transformation that theoretically re-
lates them. A complementary method of comparing the
solutions would be to test the variance of source data ex-
plained by the estimate. This is usually not possible for
empirical MEG data since the true source dynamics is un-
known in the absence of simultaneous intracranial record-
ings. However, because the forward mapping has a unique
solution for given source dynamics, (cross-validated) vari-
ance explained r2

CV between the forward mapped source
solution and the measured MEG data can be viewed as a
proxy for accuracy of the source space solution. Indeed,
Bonaiuto et al. (2018) found high correlations (0.98-1) be-
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tween cross-validated sensor space errors and source space
free energy for simulated dipoles. Sensor space variance
explained is particularly useful for quantifying the qual-
ity of source reconstruction of resting-state data, since it
makes no assumptions on the number or locations of active
sources (i.e. can be applied to distributed cortical activ-
ity), is a whole brain measure as opposed to studying an
individual ROI (Bonaiuto et al., 2018), and considers not
only localization but also accuracy of the reconstructed
time courses.

Finally, some settings in the source reconstruction
pipeline may affect our results. Examples include the
method used (including level of detail) for constructing the
forward model (Hallez et al., 2007), the use of template
models instead of subject specific models (Fuchs et al.,
2002; Henson et al., 2009), and the density of the source
space (Henson et al., 2009). In particular, the resolution
metrics are likely to be dependent on these factors, due to
the dependence of the resolution matrix on the leadfield
matrix. Errors in the forward model are additionally
known to affect the cross-validated variance explained
(Little et al., 2018). By extension, since MEG and EEG
give complementary information (Ding and Yuan, 2013)
and the forward model is constructed differently between
these modalities (Mosher et al., 1999), it should not be
taken for granted that the results presented here apply to
EEG resting-state data. Hence, the generalizability of our
results to different acquisition modalities and robustness
to differences in the forward model is an open question.
Importantly, in this study the methodology was consis-
tent across participants, and all statistics were performed
within participants. Therefore, our comparisons between
algorithms are unlikely to be biased or influenced by such
confounding factors.

4.4. Conclusions

In conclusion, at both the voxel level and the ROI
level, we recommend eLORETA (Pascual-Marqui, 2007,
2009) in combination with our new MEG-optimized re-
duction of the high resolution HCP-MMP atlas (Glasser
et al., 2016) as an appropriate methodology for cortical
source reconstruction of resting-state MEG. These con-
clusions are supported by quantitative evaluation demon-
strating eLORETA has high capacity to explain the data
even following parcellation, zero error in peak localization
of cortical activity, and low leakage between ROIs com-
pared to other algorithms.
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Appendix

A. Mathematical formulation of source reconstruction algorithms

In this appendix, we provide the mathematical framework for the source reconstruction algorithms used in the
manuscript. All algorithms involve estimating the spatial filter K in Equation 2, which is an inverse of the leadfield
matrix Φ in the forward model (Equation 1).

A.1. Beamformers

Beamformers calculate the filter for each dipole individually. Let us denote the column of the leadfield matrix
corresponding to a dipole i as Φi ∈ RNx×1. Then we define the beamformer weights for this dipole as Ki ∈ R1×Nx ,
which can be used to construct a spatial filter K with rows Ki.

A.1.1. LCMV beamformer

The linearly constrained minimum-variance (LCMV) beamformer (Van Veen et al., 1997) makes two constraints.
Firstly, to ensure that K is the inverse of Φ and has unit output, we require KiΦi = 1. Secondly, to ensure zero response
at other locations in the source space, we wish to attain KiΦj = 0 for i 6= j. In practice this second constraint cannot
be met exactly, but instead an optimal spatial filter can be designed which minimizes the variance of the output of the
filter whilst still satisfying the first constraint. Mathematically, this problem is to minimize tr(KiCKT

i ), where C is the
data covariance, subject to KiΦi = 1, and has the solution

KLCMV,i = (ΦT
i C−1Φi)

−1ΦT
i C−1. (A.1)

A.1.2. wLCMV beamformer

The LCMV filter is known to mislocalize superficial sources to deep locations due to non-uniform projections of
sensor noise (Hillebrand et al., 2012). To account for this, the beamformer weights can be normalized to unit vector
norm (Hillebrand et al., 2012). Here, we call this solution the weighted LCMV (wLCMV), given by

KwLCMV,i =
KLCMV,i

‖KLCMV,i‖
. (A.2)

A.2. Minimum norm type estimates

Whilst beamformers consider each source point individually, regularized minimum norm type solutions reconstruct all
sources within the source space simultaneously. An unregularized minimum norm estimate aims to minimize ‖x−Φŝ‖2,
which has the Moore-Penrose psuedo-inverse K = ΦT (ΦΦT ) as a solution. However, since the problem is typically
ill-posed, with Ns � Nx, often this matrix K is singular. Regularization is often used to alleviate this issue, instead
minimizing ‖x −Φŝ‖2 + λxTWx. Here, λ = 0.05 is a regularization parameter which controls the extent to which the
solution is regularized, and W is a weight matrix corresponding to a prior estimate of source variance-covariance (Dale
et al., 2000; Hassan et al., 2014). The solution to this minimization is

K = WΦT (ΦWΦT + λI)−1. (A.3)

The MNE, wMNE, and eLORETA solutions all take this form, differing only in the prior estimate of source covariance
W.

A.2.1. MNE

The solution often known simply as the minimum norm estimate (MNE; Hämäläinen and Ilmoniemi (1994)) makes
a uniform estimate of source covariance, and is given by

KMNE = K, W = I. (A.4)
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A.2.2. wMNE

The MNE solution suffers from depth bias, so the weighted minimum norm estimate sets the diagonals of W inversely
proportional to the norm of the leadfield (Fuchs et al., 1999; Lin et al., 2006), i.e.

KwMNE = K, Wij =

{
(ΦT

i Φi)
−1/2 if i = j

0 if i 6= j
. (A.5)

This solution essentially assumes as a prior that sources which only weakly influence the M/EEG must have a higher
variance to be picked up by the sensors.

A.2.3. eLORETA

The exact low resolution electromagnetic tomography (eLORETA) solution (Pascual-Marqui, 2007, 2009) optimizes
the weights such that not only is depth bias accounted for, the solution attains theoretically exact localization (Pascual-
Marqui, 2007). The eLORETA solution is given by

KeLORETA = K, Wij =

{
(Φi

T (ΦW−1ΦT + λI)+Φi)
−1/2 if i = j

0 if i 6= j
. (A.6)

An iterative algorithm, described by Pascual-Marqui (2007), can be used to find these weights numerically.

A.2.4. sLORETA

Finally, an alternative approach to account for depth bias in the source localization is to estimate standardized distri-
butions of current density, normalized by expected variance of each source. Standardized low resolution electromagnetic
tomography (sLORETA; Pascual-Marqui (2002)) first calculates ŝ = KMNEx and then normalizes each time point to
standardized variance. The sLORETA solution is therefore

KsLORETA = (diag(KMNEΦ))−1/2KMNE. (A.7)

Whilst this standardization reduces the depth bias, the resulting solution can no longer be interpreted as a measure of
the intensity of current density, and is more appropriately interpreted as probability of source activation.

B. The reduced HCP-MMP atlas

B.1. Algorithm to identify the optimum number of ROIs per cluster

Below, we show a MATLAB code demonstrating the algorithm to identify the optimum number of ROIs per cluster.
The strength of each of the 22 clusters Ω (i.e. ‖ΦΩ‖ in Equation 10 and normphiW in the code below; a 22× 1 vector),
the target number of regions (targetN in the code below; a scalar, here 125), and the number of ROIs per cluster in the
original atlas (n_orig; a 22× 1 vector) should be taken as input.

function n_new = determine_nROIs_per_cluster(normphiW,n_orig,targetN)

% Normalize the strengths of the regions to unit sum

normphiW = normphiW/sum(normphiW) ;

% Ideally, the number of ROIs per region is proportional to the strength

n_new = round(targetN*normphiW) ;

% We don’t wish to split regions, only merge. Therefore we don’t want any

% regions to have a larger value in n_new than in n_orig

i_more = find(n_new > n_orig) ; % List of regions with larger value in

% n_new than in n_orig

while ~isempty(i_more) % While there are regions with too many ROIs

% Reset those regions to have the original number of ROIs

n_new(i_more) = n_orig(i_more) ;
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% Recalculate target number of ROIs, ignoring those we are fixing

% to the original value

targetN = targetN - sum(n_orig(i_more)) ;

% Re-normalize strengths of ROIs to unity, ignoring those we are

% fixing to the original value

normphiW(i_more) = nan ;

normphiW = normphiW/nansum(normphiW) ;

% Recalculate number of ROIs in regions we are not setting to the

% original value

n_new = round(targetN*normphiW) ;

n_new(i_more) = n_orig ;

% Now we have a new n_new, once again calculate list of regions

% with larger n_new than n_orig

i_more = find(n_new./n_orig > 1) ;

end

B.2. Reducing the atlas

The algorithm above gives a target number of ROIs per cluster. To attain this target, we then examined each cluster
and manually merged ROIs until the target number was achieved. To do so, the following criteria were used (in order of
priority):

1. Merged ROIs must be in the same cluster.

2. Merged ROIs must be anatomical neighbours.

3. The resulting strengths of the merged ROIs should be approximately uniform. For example, consider a cluster
with three ROIs, each of which neighbour both other ROIs (i.e. criteria 1 and 2 are satisfied). The ROIs have
strengths 0.8, 0.4, and 0.3, and the target number of ROIs is two. We prefer to merge the ROIs with strengh
0.4 and 0.3 (resulting in ROIs with strengths 0.8 and 0.7) than, for example, the ROIs with strength 0.8 and 0.4
(resulting in ROIs with strengths 1.2 and 0.3). This result is justified, since we found from our resolution analysis
that all algorithms demonstrated significant negative correlations between leakage (SECT) and the leadfield norm
(LCMV/wLCMV/sLORETA r = −0.29; MNE r = −0.66, wMNE r = −0.69, eLORETA r = −0.68), suggesting
that weaker sources have lower resolution, and therefore weaker ROIs should be merged to form larger but stronger
ROIs.

4. Merged ROIs should display neuroanatomical and functional similarities, particularly having a low gradient in
resting-state functional connectivity on the boundaries between the ROIs. These decisions were based on the
detailed neuroanatomical descriptions given in Supplementary Material 3 of Glasser et al. (2016), in which a wide
range of structural and functional imaging modalities were described for each cluster.

Supplementary Text S1 contains a list of all regions in the reduced atlas, and the choice of which ROIs were merged.

C. Theoretical results relating sLORETA and wLCMV

In section 3.1, we found that the sLORETA and wLCMV results were similar, varying only by r2
CV values of the

order 10−4 to 10−3. In this section, we explore the theoretical relationship between the two methods. Interestingly, our
numerical results suggested that wLCMV has zero localization error. Here, we explore this result further and demonstrate
that, theoretically, wLCMV has non-zero localization error, and that our numerical results are potentially due to an
insufficently coarse grid to identify these errors.
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C.1. sLORETA and wLCMV have similar, but non-identical solutions

We begin with the sLORETA solution, given in Equation A.7. For dipole i, this can be written as

KsLORETA,i = (ΦT
i [ΦΦT + λI]Φi)

−1/2ΦT
i [ΦΦT + λI]−1 (C.1)

= (ΦT
i CΦi)

−1/2ΦT
i C−1 (C.2)

=
ΦT
i C−1

√
αi

, (C.3)

where

αi = (ΦT
i C−1Φi) ∈ R, (C.4)

C = ΦΦT + λI ∈ RNx×Nx . (C.5)

Here, Φi ∈ RNx×1 is the ith column of the leadfield.
Now consider the wLCMV solution, given by Equation A.1-A.2. We can write Equation A.1 as

KLCMV,i =
ΦT
i C−1

βi
, (C.6)

where here C ∈ RNx×Nx is the data covariance matrix and

βi = (ΦT
i C−1Φi) ∈ R. (C.7)

Therefore we can write Equation A.2 as

KwLCMV,i =
βiΦ

T
i C−1

βi‖ΦT
i C−1‖

(C.8)

=
ΦT
i C−1

√
αi

, (C.9)

where

αi = ‖ΦT
i C−1‖2 = (ΦT

i C−1C−1Φi) ∈ R, (C.10)

C = cov(xT ) ∈ RNx×Nx . (C.11)

Here x ∈ RNx×T is the sensor space data.
By comparing Equation C.3 to Equation C.9, we can see that both solutions can be written in an identical form, where

the differences lie in the scaling factor αi and the matrix C, given by Equation C.4-C.5 for sLORETA and Equation C.10-
C.11 for wLCMV. Namely, αi contains an addition factor of (C−1)T in the wLCMV solution vs the sLORETA solution.
In both cases the matrix C is a covariance matrix in sensor space. wLCMV uses the empirical M/EEG covariance
matrix for C. sLORETA uses for C the theoretical M/EEG covariance matrix under the assumption of identity source
covariance (including, if present, biological noise) ssT = I, which maps to sensor space as ΦssTΦT = ΦΦT , and IID
sensor noise with covariance λI.

C.2. wLCMV has a theoretically non-zero localization error

Our derivation of exact localization is based around the resolution matrix defined in Equation 6 and follows that
given to demonstrate exact localization of sLORETA and eLORETA by Pascual-Marqui (2007). Here, the equations are
given in the case of known dipole orientations and in the absence of measurement noise, but the more general case of
unconstrained dipoles and measurement/biological noise are given in Pascual-Marqui (2007). Consider an active dipole
j. Then from Equation 6, the estimate at dipole i due to this dipole j is given by

ŝi = Rijsj ≡ KiΦjsj . (C.12)
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Here, Ki ∈ R1×Nx corresponds to the filter for the dipole i. Substituting the general form of the sLORETA and wLCMV
solutions derived in Appendix C into this equation, we obtain

ŝi =
ΦT
i B
√
αi

Φjsj , (C.13)

where for brevity we write B = C−1. The amplitude of the estimate at dipole i, qi, is therefore given by

qi = ‖ŝi‖2 =
‖sj‖2

αi
(ΦT

i BΦi)
2. (C.14)

Our source localization methods attain zero localization error if the maximum of qi is at the original active dipole j.
Therefore, following (Pascual-Marqui, 2007), we can write zero localization error is attained if

∂qi
∂Φi

∣∣∣∣
i=j

= 0. (C.15)

This derivative can be expressed as

∂qi
∂Φi

=
‖sj‖2

αi

∂

∂Φi
(ΦT

i BΦj)
2 + ‖sj‖2

∂

∂Φi

(
1

αi

)
(ΦT

i BΦj)
2

=
2‖sj‖2

αi
(ΦT

i BΦj)Φ
T
i B− ‖sj‖

2

α2
i

∂αi
∂Φi

(ΦT
i BΦj)

2. (C.16)

By writing Equation C.4 and C.10 in the same form, i.e.

αi = ΦT
i MΦi, M =

{
B for sLORETA

B2 for wLCMV
, (C.17)

we can write
∂αi
∂Φi

= 2ΦT
i M, (C.18)

allowing us to explicitly write Equation C.16 as

∂qi
∂Φi

=
2‖sj‖2

αi
(ΦT

i BΦj)

[
ΦT
i B− (ΦT

i BΦj)

αi
ΦT
i M

]
. (C.19)

This derivative is zero at i = j iff

B =
βi
αi

M, (C.20)

where βi is given in Equation C.7. For sLORETA, αi = βi (from Equation C.4 and Equation C.7), and M = B
(Equation C.17), so it is clear that non-zero localization error is attained. For wLCMV, this is only true in the case
where B = B2, which is true if C−1 = I. Therefore wLCMV only attains true zero localization error in the case where
the data is IID.

To explain our numerical results that wLCMV solution showed zero localization error (Figure 3D), we studied
Equation C.19 using our head model derived leadfields and empirical data covariance matrices. For each participant,
200 ‘active dipoles’ were randomly chosen without repetition (i.e. 200 unique values of j were chosen). For each value of
j, we set sj = 1, and calculated the magnitude of ∂qi/∂Φi for i = j using Equation C.19. To gain a normalized value to
account for any global scaling, we additionally (for each value of j), drew 20 ‘incorrect’ dipoles with i 6= j, recalculated
the magnitude of ∂qi/∂Φi, and divided our raw ‘correct’ score by our average ‘incorrect’ score. Finally, we took the
median over the 200 dipoles to obtain a single value per participant. We found ∂qi/∂Φi had a normalized magnitude of
(2.19± 0.28)× 10−14. These results suggest that whilst ∂qi/∂Φi|i=j is non-zero for the wLCMV solution, it is close to
zero (i.e. i = j is very close to a peak) and therefore the localization error is very small. Therefore, the zero localization
error in numerical results of the wLCMV solution is likely due to the use of a discrete grid of spatial locations with
spacing 4mm, making any localization errors undetectable. Such a grid spacing is common in the literature, so under
these conditions wLCMV can be viewed in a practical sense as having zero localization error.
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