
The fate of standing variation and new mutation under climate change 1 

Cheng-Yueh Lu1, Cheng-Ruei Lee1,2,3* 2 

 3 
1Institute of Plant Biology, National Taiwan University 4 
2Institute of Ecology and Evolutionary Biology, National Taiwan University 5 
3Genome and Systems Biology Degree Program, National Taiwan University 6 
*Correspondence to: chengrueilee@ntu.edu.tw 7 

Abstract: 8 
Many species face existence threat under anthropogenic climate change, and standing genetic 9 
variation was proposed as a way for sessile species to adapt to novel environments. However, 10 
it is still unknown whether standing genetic variants, being adaptive to current environmental 11 
variability, are sufficient to guarantee future survival. Here we investigate the relative 12 
importance of standing variation versus new mutations and their relative effect sizes from the 13 
past to infer the future. While theoretical and experimental evolution studies provided valuable 14 
insights, examples in nature are scarce. In the wild banana Musa itinerans in Taiwan, we found 15 
enrichment of standing variation with environmental associations. New mutations exert larger 16 
effect size per variant in precipitation-related climatic variables, where Taiwan contains 17 
extreme environments beyond the ancestral climatic range, and novel alleles have stronger 18 
association with novel environments. This pattern is reversed for temperature-related variables, 19 
where Taiwan is within the ancestral environmental range. Despite such differences, 20 
anthropogenic climate change impacts both types of variants strongly. The results constitute 21 
one of the few examples in nature demonstrating that the effect sizes of adaptive variants differ 22 
under distinct environmental pressures, and the patterns support theoretical predictions that 23 
natural selection favors new mutations with larger effect sizes in a novel environment where 24 
the population is far from the adaptive peak. Despite the importance of new mutations, however, 25 
the pace of anthropogenic climate change may not allow the accumulation of such mutations. 26 
	  27 
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Introduction: 28 
Anthropogenic climatic change posts an imminent threat to most organisms. For large and 29 

sessile plant species with long generation time, the speed of migration may not keep up with 30 
environmental change, and therefore phenotypic plasticity and genetic variation in the 31 
population may allow their survival under novel environments1-4. Adaptive genetic variation 32 
originates from standing variants before or new mutations after environmental change. Since 33 
anthropogenic climate change greatly outpaces natural mutation, the amount of standing 34 
genetic variation is therefore critical for the rapid response of a population to changing 35 
environments5-7. It remains unclear, however, whether standing variants are sufficient to 36 
guarantee future survival, given that they are mostly adaptive to the present range of climatic 37 
variability. While it may be difficult to perform manipulative experiments in the field to 38 
compare the effects of new mutations (NM) and standing variation (SV), one could investigate 39 
NM and SV during climatic change in the past. 40 

Adaptation could happen through genetic variants that differ in their origins (NM or SV) 41 
or effect sizes (Mendelian genes with major effects or polygenic variants with minor effects). 42 
However, how these factors interact and respond to environmental pressures remains relatively 43 
uninvestigated. For example, does SV and NM differ in their relative number or effect sizes 44 
towards environmental adaptation, and how does this relationship change with different types 45 
of environmental factor? For adaptive new mutations that were fixed when facing environment 46 
change, Fisher first predicted primarily small allelic effects8 while Kimura emphasized 47 
intermediate effects9. Orr, later considering the entire adaptive walk, concluded the evolution 48 
towards a novel adaptive peak should first happen through fixation of large-effect mutations 49 
and later by small-effect polymorphisms10. While this was supported by some studies, the 50 
majority of these are microbial experimental evolution in well-controlled environments11,12, 51 
and few have specifically compared the effects of NM and SV. To test whether this idea holds 52 
in nature, empirical investigations on natural populations are needed. 53 

Taiwan is well-suited for such studies: Unlike oceanic islands such as Hawaii, Taiwan is 54 
a continental island where most species originated from the East Asian continent with recurrent 55 
gene flow13. The land bridge between Taiwan and China during the glacial maximum allowed 56 
exchange of SV, and the isolation during interglacial periods enabled the development of NM. 57 
Here we investigate the genomic basis of environmental adaptation of a wild banana species, 58 
Musa itinerans, whose habitats in Taiwan are considered peripheral from ancestral area 59 
reconstructions14, providing an opportunity to distinguish SV from NM, as well as their 60 
response to ancestral versus novel adaptive landscapes. We investigated how past events (SV 61 
versus NM) influence present adaptation and whether local adaptation may persist under future 62 
anthropogenic climate change. 63 
 64 
 65 
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Results: 66 
Environmental adaptation in Musa itinerans 67 

We first sampled Musa itinerans at 24 populations across Taiwan (Fig. 1a; Supplementary 68 
Fig. 1a; Supplementary Table 1) and investigated the population structure using 14 69 
microsatellites (Supplementary Table 2). Environmental Niche Modeling (with 483 occurrence 70 
points from field survey and Google Street View) reported species distribution (Fig. 1b) in line 71 
with the previous statement that Musa itinerans inhabits sunny valleys, watersheds, and 72 
hillsides with gentle slopes15. Populations differentiated mostly between east and west 73 
(Supplementary Fig. 1b). The most unsuitable environments lay within the Central Mountain 74 
Range and the southwestern plains (Fig. 1b), respectively corresponding to low annual mean 75 
temperature (BIO1) and low precipitation of driest quarter (BIO17), the two most important 76 
bioclimatic variables determining species distribution (MaxEnt permutation importance16: 36.7 77 
for BIO1 and 27.3 for BIO17). 78 

To test for local adaptation, we examined the pattern of “isolation by adaptation17”, a 79 
process where differential local adaptation restricted effective gene flow and promoted genetic 80 
differentiation among populations, by dissecting geographic and environmental effects on 81 
genetic differentiation. The strait-line “fly-over” geographical distance, calculated as the 82 
straight-line distance between locations, does not explain patterns of genetic differentiation 83 
(Mantel’s r = 0.146 and P = 0.062). However, if we considered that Central Mountain Range 84 
lacks corridors for M. itinerans to disperse (Fig. 1b), this fly-over geographical distance could 85 
be too unrealistic. We therefore used resistance distance, calculated from the route with least 86 
resistance among populations on the niche suitability map (Fig. 1b), to represent the “realized” 87 
geographical distance (Fig. 1c) and found that genetic differentiation was significantly 88 
associated with resistance (Mantel’s r = 0.226 and P = 0.006). The environmental Mahalanobis 89 
distance of bioclimatic variables also showed strong association with genetic differentiation 90 
(Mantel’s r = 0.298 and P = 0.005). Given that the environmental distance could be strongly 91 
dependent on geography, we performed Partial Mantel test to control the geographical effect. 92 
After controlling for realized geographic distance (resistance distance), genetic differentiation 93 
still correlates with the Mahalanobis environmental distance (Mantel’s r = 0.250 and P = 0.012), 94 
suggesting differential local adaptation is associated with genetic variation. 95 
 96 
Standing variation versus new mutations 97 

To identify genomic regions associated with environmental adaptation, we performed 98 
pooled sequencing for each population. SNPs were separated into standing variation (SV: both 99 
alleles exist in Taiwan and China) or new mutations (NM, polymorphic only in Taiwan). SV 100 
outnumbered NM in both adaptive (identified with Bayenv18) and non-adaptive SNPs, and after 101 
controlling for the overall number of SNPs in SV and NM, SV were further enriched among 102 
adaptive polymorphisms (Supplementary Table 3). However, since adaptive SNPs also have 103 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903427
http://creativecommons.org/licenses/by-nc-nd/4.0/


higher minor allele frequency (MAF) (Supplementary Fig. 2a), this pattern could be 104 
confounded: SV are more likely to have higher MAF than NM, and SNPs with higher MAF 105 
may be more likely detected as adaptive due to higher statistical power. We therefore 106 
performed the same test with a subset where the adaptive and non-adaptive SNPs have similar 107 
allele frequencies (ranging from the first quantile of adaptive MAF to the third quantile of non-108 
adaptive MAF separately for each bioclimatic variable; Supplementary Fig. 2a). In this case as 109 
well, SV are still disproportionately abundant (Supplementary Table 4), suggesting SV are 110 
more likely than NM to become environment-associated SNPs. Another potential confounding 111 
factor is the geographic extent of variants: if most NM resulted from mutations restricted to a 112 
few local populations, the limited distribution prevents environment association for NM. We 113 
therefore compared the number of Taiwanese populations containing the minor alleles for SV 114 
and NM, respectively. Contrary to the direction predicted by the aforementioned confounding 115 
factor, the geographic extent of minor alleles for SV is slightly smaller than NM (15.8 116 
populations for SV and 16.3 for NM, P < 0.001). 117 

In addition to SNP number, do NM and SV differ in their directions of effect? Under the 118 
null hypothesis that (1) the effects of NM are equally likely to facilitate adaptation to the 119 
ancestral or novel environments and (2) natural selection is equally likely to fix NM facilitating 120 
adaptation towards either direction, we expected no enrichment of new alleles in either 121 
environment. When we separated the Taiwanese populations into those within the Chinese 122 
ancestral environmental range and those with novel environments, frequencies of putatively 123 
adaptive new alleles in NM SNPs were higher in the latter set of populations, with precipitation 124 
of driest quarter (BIO17) and precipitation of coldest quarter (BIO19) showing the strongest 125 
effect (Fig. 2a; Supplementary Fig. 2b). Given that the directions of mutation effects should be 126 
random, these results suggest that new variants facilitating adaptation to novel environments 127 
are more likely to be retained by selection. 128 

The results above suggest SV might be more important than NM in terms of enriched 129 
number of variants with environment association, and adaptive NM, while lower in number, 130 
are more associated with novel environments. On the other hand, the number of candidate SNPs 131 
does not necessarily reflect the overall importance of SV over NM, since the effect size also 132 
needs to be considered. To investigate the effect size of SV and NM in environmental 133 
adaptation, we compared their Bayes factors from Bayenv and focused on two bioclimatic 134 
variables that were important in determining species distribution, annual mean temperature 135 
(BIO1) and precipitation of driest quarter (BIO17). The two variables exhibit opposite patterns 136 
(Fig. 2c): While in BIO17 and other related precipitation variables (Supplementary Fig. 3a) 137 
NM consistently had higher Bayes factor and therefore stronger effect size than SV, in BIO1 138 
and other related temperature variables (Supplementary Fig. 3a) we observed the reverse. The 139 
same trend was observed when we estimated the effect size with gradient forest19,20 (Fig. 2b, c; 140 
Supplementary Fig. 3b, c): BIO17 was the most important factor for differential local 141 
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adaptation, and NM had stronger effects than SV. On the other hand, BIO1 was the least 142 
important factor where SV had stronger effects. Finally, the “importance” estimated by 143 
gradient forest is analogous to r2, representing the amount of allele frequency variation 144 
explained by environmental gradients. Assuming a simple linear relationship between allele 145 
frequency and environment, the value of r2 only represents how well each data point (a 146 
population) fits along the regression line. We were, however, also interested in the regression 147 
slope: the amount of allele frequency changes along environmental gradients (Supplementary 148 
Fig. 3d). Again, BIO17 had the largest overall slope among all bioclimatic variables 149 
(Supplementary Fig. 3e), with NM being significantly higher than SV (Fig. 2c). BIO1 had the 150 
lowest overall slope, again with the reversed pattern. Given that the MAF of adaptive NM and 151 
SV SNPs are similar, there is no need to control for allele frequency in these tests 152 
(Supplementary Fig. 4a). Therefore, NM with larger effect size per SNP (as estimated by 153 
Bayenv Bayes factor, gradient forest r2 weighted importance, and gradient forest slope) were 154 
associated with the adaptation to novel environments outside of the ancestral niche space, 155 
consistent with previous population genetics modeling results8-10.  156 

The observed patterns could be integrated with the unique climate of Taiwan. In 157 
comparison to the rest of the species range, northern Taiwan experiences northeastern 158 
monsoons during winter and has higher precipitation during the typical winter dry season (Fig. 159 
3b). This pattern has been maintained since at least the last glacial maximum (Fig. 3d). The 160 
novel environments might impose novel adaptive optima to the immigrant population from 161 
China. The response to selection imposed by these environmental gradients is strong (with 162 
highest Bayes factor, r2, and slope among all bioclimatic variables; Supplementary Fig. 3a, c, 163 
e) especially for NM, where new alleles are strongly associated with novel environments 164 
(Supplementary Fig. 2b). More importantly, for this major driver of adaptation (BIO17), the 165 
greatest increment of gradient forest importance lies between 200 mm and 300 mm (Fig. 2b), 166 
a range also distinguishing the novel Taiwanese versus ancestral Chinese environments (Fig. 167 
3b). This suggests that the majority of differential local adaptation is associated with such 168 
novel-versus-ancestral environmental differences. Annual mean temperature (BIO1) is the 169 
other extreme: the environmental gradient within Taiwan is well within the ancestral Chinese 170 
environmental range (Fig. 3a), which can also be traced back to the last glacial maximum (Fig. 171 
3c). It is likely that SV already contained genetic variants adaptive to such environmental 172 
gradients and are therefore more important than NM (Fig. 2c). In summary, we observed 173 
adaptation happening through the assortment of SV for a new territory with similar adaptive 174 
landscape and optimum (BIO1; Figs. 2c, 3a, c). For adaptation to novel environments and a 175 
new adaptive landscape (BIO17; Figs. 2c, 3b, d), NM with larger effect sizes were more likely 176 
favored by natural selection. Our results are therefore consistent with Orr’s model3, providing 177 
one of the few examples in nature. 178 
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One key point of this study is the correct designation of SV or NM. It is possible that some 179 
SV SNPs were mis-assigned as NM if we missed an allele in China, most likely for SNPs with 180 
low MAF. We addressed this issue with the following: (1) The Taiwanese populations were 181 
nested within China in the phylogenetic tree (Supplementary Fig. 4b) and contained much less 182 
genetic variation (Supplementary Fig. 4c). Due to the stronger genetic drift in Taiwan than 183 
China, it is less likely that an originally SV SNP would retain both alleles in Taiwan but lose 184 
one in China. (2) In the extreme case, assuming 50% of NM SNPs were mis-assigned from SV, 185 
we performed 100 new analyses, each randomly assigning 50% of NM SNPs back to SV. These 186 
new analyses yielded similar results, with NM having higher effect sizes than SV in 187 
precipitation-related variables (Supplementary Fig. 5a). (3) Since MAF are correlated between 188 
Taiwan and China (Spearman’s rank correlation ρ = 0.35, P < 0.001), we performed analyses 189 
with top 50% MAF SNPs in Taiwan, thereby reducing the chance of missing minor alleles in 190 
China. The results are qualitatively the same (Supplementary Fig. 5b-d). 191 
 192 
Fate of adaptive variants under future climate change 193 

In addition to understanding how past events (SV versus NM) affected present adaptation, 194 
we are also concerned with how these factors affect the future of this species under 195 
anthropogenic climate change. We predicted 16 future outcomes and used Bayenv to 196 
investigate the future fate of currently adaptive SNPs. Currently adaptive SNPs retaining high 197 
association with future environments are classified as “retention”, while those no longer 198 
associated with future environments are “disruption”. Different from the present pattern of SV 199 
being enriched in adaptive SNPs, we saw no clear tendency for any set of adaptive SNPs 200 
enriched towards retention or disruption (Supplementary Table 5), suggesting both SV and NM 201 
will be affected by climate change. 202 

Under the 16 future scenarios we identified two extreme conditions: CCSM4-2070-203 
RCP8.5 as the niche-expansion extreme (Fig. 4a-d) and MIROC-2070-RCP4.5 as the niche-204 
contraction extreme (Fig. 4e-h). Intending to investigate whether SV and NM have different 205 
fates under the two contrasting future predictions of this species, we used the genetic offset 206 
value from the gradient forest results to estimate genetic mismatch for SV and NM separately, 207 
which is associated with the magnitude of allele frequency turnover perturbed by future 208 
climatic conditions20 (Fig. 4b, f). The “genetic offset difference” was calculated by subtracting 209 
genetic offset caused by SV from that of NM (Fig. 4c, g). We found no general consensus of 210 
whether or where in Taiwan NM or SV SNPs are more affected by climate change (Fig. 4c, g), 211 
suggesting NM and SV might both be affected by future anthropogenic climate change despite 212 
their distinct genetic architecture in adaptation to current environments. 213 

Traditional species distribution models build the species-wide niche model from all 214 
occurrence records of a species, thereby assuming all populations in a species reacting equally 215 
to the environment and overlooking local adaptation due to within-species polymorphism6. 216 
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Here we propose a concept, “extinction risk”, integrating species-level and population-level 217 
responses to future climate change simply by dividing genetic offset (estimated from gradient 218 
forest) by suitability (estimated from MaxEnt). While the two future conditions exhibit slight 219 
differences in suitability and genetic offset, the extinction risks are surprisingly similar, with 220 
very high risk in western Taiwan (Fig. 4d, h). In Western Taiwan, the expansion-extreme model 221 
suggested high suitability for the species as a whole but also high local population mismatch, 222 
thereby having similar trends of extinction risk as the contraction-extreme model. Taken 223 
together, our results emphasize the importance of considering both whole-species suitability as 224 
well as adaptation of local populations when considering the effect of anthropogenic climate 225 
change on the fate of sessile species. 226 
 227 
Discussion: 228 

Assessing the within-species variation in climate association is the crucial first step to 229 
understand species susceptibility to fluctuating environment, and the relative importance of 230 
standing variation (SV) and new mutations (NM) in adaptation has long been debated7,21-25. In 231 
this study, we investigate how past genetic variation (SV and NM) contribute to the adaptation 232 
of present environments as well as how these factors together affect the future fate of a species 233 
under anthropogenic climate change. 234 

For a population facing environmental change and therefore a novel adaptive landscape, 235 
previous population genetics models have documented the effect size distribution of new 236 
mutations fixed by natural selection. Considering the entire adaptive walk of a population 237 
facing novel environments, Orr’s model predicted the distribution of effect sizes where early 238 
substitutions have larger effect than later ones10. Consistent with Orr’s prediction, we show 239 
that NM have stronger effect size than SV in precipitation-related variables, where Taiwan 240 
exceeds the ancestral climatic range in China (and therefore the migrating population was far 241 
away from the optimum in the new adaptive landscape). This pattern is reversed for 242 
temperature-related variables, where Taiwan has similar environmental range as China. Here 243 
we provide another perspective to recent research showing that SV contributes to adaptation7,25. 244 
We show that SV indeed dominate over NM in number7. However, the effect size of SV and 245 
NM hinges on environmental conditions: natural selection may prefer new mutations 246 
contributing to the adaptation to the new rather than the old environment, and the effect sizes 247 
of NM tend to be higher than SV under such conditions. Our results imply that standing genetic 248 
variation in a population may not be sufficient for the adaptation to anthropogenic climate 249 
change. 250 

Ecological niche models are widely used to predict future species distribution, but such 251 
models often do not account for the differential adaptation of populations within species. Our 252 
observed difference between the major determinant of species-wide range distribution (BIO1) 253 
and the driver of differential adaptation of populations within species (BIO17) demonstrates 254 
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the need to consider local adaptation. Incorporating species distribution modeling (predicting 255 
the future range of the whole species) and genetic offset (predicting the genetic mismatch of 256 
each local population to future environments), we identified the potential risk of western 257 
lowland populations despite the seemingly distinct species distribution modeling results in 258 
different future climate scenarios. In other words, despite in some future scenarios the range of 259 
environments suitable for the whole species might increase, giving the impression that the 260 
species benefits from anthropogenic climate change, such change might be detrimental to each 261 
local population uniquely adapted to a much narrower environmental range than the whole 262 
species. Finally, we separately calculated the genetic offset originated from the mismatch of 263 
SV or NM to future environments and showed that both will be affected by anthropogenic 264 
climate change, regardless of their distinct genetic architecture towards environmental 265 
adaptation. Since we distinguished SNPs into SV or NM based on past environmental change, 266 
all of these genetic variants will be standing variation when facing future climate change. Novel 267 
mutations facilitating the adaptation to new environments may happen in the future, although 268 
they will be strongly outpaced by anthropogenic climate change. 269 
 270 

Methods: 271 
Sample collection and DNA extraction. 272 

Field work was conducted during 2017 (August - December) and 2018 (January - May). 273 
We sampled Musa itinerans at 24 sites across Taiwan (Supplementary Fig. 1a; Supplementary 274 
Table 1). Fresh leaves were harvested from nine to fifteen individuals at each site. Total 275 
genomic DNA was extracted using the standard CTAB extraction method26. Since other 276 
commercial Musa species were also grown in Taiwan, we developed an indel marker for 277 
species delimitation. From previous studies27-30, we identified a 6-bp insertion specific for the 278 
Taiwanese M. itinerans in the atpB-rbcL region of chloroplast. We designed a primer pair (5’-279 
GAAGGGGTAGGATTGATTCTCA-3’; 5’-CGACTTGGCATGGCACTATT-3’) and used 280 
amplicon size to confirm all collected samples are Taiwanese M. itinerans. 281 
 282 
Simple sequence repeat genotyping and analysis. 283 

SSR primer sequences used in this study were originally developed for the genus Musa31,32, 284 
which were then applied on Musa itinerans. Previously documented primer sequences were 285 
first searched against the Musa acuminata DH-Pahang genome version 233 on Banana Genome 286 
Hub (https://banana-genome-hub.southgreen.fr/) to check specificity as having only one 287 
amplicon, resulting in 26 primer pairs. These primers were then experimented to check 288 
specificity on M. itinerans, resulting in 14 pairs (Supplementary Table 2). We modified each 289 
pair of primers by capping the 5’ end of forward primers with M13 sequences 290 
(CACGACGTTGTAAAACGAC) and inflorescent molecules34. SSR amplicons were run 291 
through capillary electrophoresis and the length of each allele was recorded. 292 
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Population structure of 20 populations (Supplementary Table 1) was analyzed with 14 293 
SSR markers (Supplementary Table 2). Lowland populations (C35H, WFL, THNL, PTWT, 294 
P199H, MLLYT, HDPG, TTL, NAJY, HLCN, NXIR, and DFR), east transect populations 295 
(TPS300, TPS500, TPS700, and TPS900), and west transect populations (XT400, XT700, 296 
XT1200, and XT1500) were used in the analysis. We inferred the ancestry of 244 individuals 297 
with STRUCTURE 2.3.435,36, parameterizing a run to have (1) run length of burnin and after-298 
burnin period of 100,000, (2) admixture ancestry model, and (3) independent allele frequency 299 
model, further setting 20 runs for each K value. 300 

To investigate the association among genetic, geographical, and environmental distance, 301 
we generated these distance matrices. Genetic distance was calculated by GenAlEx 6.50337,38 302 
from 14 SSR markers; straight geographical distance (the fly-over distance) was generated by 303 
ArcGIS 10.5 (http://desktop.arcgis.com/en/); environmental distance was measured as 304 
Mahalanobis distance to address the correlation among nine bioclimatic variables (below). In 305 
addition to the fly-over geographical distance which assumes organism dispersal ignores 306 
landscapes, we further calculated as resistance distance the cumulative cost along the least cost 307 
path (below). Matrix association was examined under Mantel and Partial Mantel tests. 308 
Statistical significance was examined with 1,000 permutations. We performed Mantel tests on 309 
(1) genetic distance vs. fly-over distance, (2) genetic distance vs. resistance distance, (3) genetic 310 
distance vs. Mahalanobis environmental distance, and Partial Mantel tests on (4) genetic 311 
distance vs. Mahalanobis environmental distance while controlling for resistance distance. 312 
 313 
Species distribution modeling. 314 

Current and future species distribution models were built for Musa itinerans using 315 
presence-only data (483 occurrence points) obtained from field survey and Google Street view. 316 
Occurrence points were then reduced to 204 cells by the removal of co-occurring presence data 317 
within the same 1×1 km grid. MaxEnt 3.4.116, implemented with the maximum entropy 318 
modeling approach, reports an overall niche suitability and the importance of predictors by 319 
analyzing the presence-only data as well as background (psuedo-absence) data distribution39-320 
41. We downloaded from WorldClim database version 1.4 (http://worldclim.org/) spatial layers 321 
of 19 present-day bioclimatic variables based on high-resolution monthly temperature and 322 
rainfall data42. Layers were selected at spatial resolution of 30 arc-second and with a mask that 323 
ranges 119.25-122.47°E and 21.76-25.49°N covering Taiwan. Variables showing high 324 
dependence (Pearson’s correlation coefficient > 0.9 calculated from ENMTools43) from each 325 
other were removed, resulting in nine final variables: BIO1－mean annual temperature, BIO2326 
－mean diurnal range, BIO3－isothermality, BIO7－temperature annual range, BIO12－327 
annual precipitation, BIO15 － precipitation seasonality, BIO16 － precipitation of wettest 328 
quarter, BIO17－precipitation of driest quarter, and BIO19－precipitation of coldest quarter 329 
(Supplementary Table 1). 330 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Present species distribution model was constructed using the default optimization settings 331 
in MaxEnt, except the regularization set to three. We tested the predictive model by ten-fold 332 
cross-validation which was carried out by randomly partitioning the data into ten equally sized 333 
subsets and then replicating models while omitting one subset in turn. In each turn, the 334 
predictive model was built using nine subsets as training data and evaluated using the other 335 
subset as test data. The output of the predictive model is the probability of presence, or called 336 
suitability, and we averaged the ten runs to have an averaged suitability. 337 

To predict the species distribution under different scenarios of future climate change, we 338 
projected the present-day model onto eight future climatic conditions combining two periods 339 
(2050 and 2070) and four Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 6.0, 340 
and RCP 8.5). Future climatic layers were obtained from the WorldClim database at spatial 341 
resolution of 30 arc-second and were developed based on two general circulation models: the 342 
Community Climate System Model44, CCSM, and the Model for Interdisciplinary Research on 343 
Climate45, MIROC. Species distribution models for the future were carried out using the same 344 
settings described above. 345 

To estimate the least cost path between populations, we first generated the resistance 346 
surface by taking the reciprocal of suitability. Resistance and suitability is simply a monotonic 347 
transformation in which locations with higher suitability exhibit lower resistance. Pairwise 348 
least cost path was then measured among 20 populations from the resistance surface, performed 349 
by SDM Toolbox v2.346. While least cost path is the single line with least overall cost, we also 350 
constructed the least cost corridor between populations, allowing 1%, 2%, or 5% higher cost 351 
than the least cost value. In essence, the least cost corridors represent the realized dispersal 352 
routes of organisms along suitable habitats. 353 
 354 
Sequencing library construction and SNP identification. 355 

We conducted whole genome pooled-sequencing47 for each population (Supplementary 356 
Table 1), resulting in 24 pooled-sequencing libraries. Equal amount of DNA from ten 357 
individuals at each population were pooled, except for the PTWT population where only nine 358 
individuals were available. A library with 300-400 bp insert size for each pool was prepared 359 
using NEBNext Ultra II DNA Library Prep Kit (New England Biolabs). Libraries were then 360 
sequenced with 150 bp paired-end on the HiSeq X Ten platform. 361 

Illumina reads were then trimmed with SolexaQA48, followed by the removal of adaptor 362 
sequences with cutadapt49, subsequently mapped to the Musa itinerans reference genome 363 
assembly ASM164941v150 with BWA 0.7.1551. Picard Tools 364 
(http://broadinstitute.github.io/picard) was used to mark duplicated read pairs, and the 365 
genotypes were called following GATK 3.7 best practice52. 366 

For the 24 pooled samples, we filtered out sites with (1) more than two alleles, (2) indels, 367 
(3) quality (QUAL) < 30, (4) quality by depth (QD) < 2, (5) call rate < 0.74, and (6) depth (DP) 368 
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> genome-wide average depth plus three standard deviations, resulting in 4,200,177 SNPs. 369 
SNPs with (1) minor allele frequency (MAF) < 0.05, (2) missing data in any of the pooled-seq 370 
sample, and (3) DP per sample < 20 were further filtered out, resulting in 1,256,894 SNPs. 371 

To investigate the relationship between Taiwanese and Chinese M. itinerans, we 372 
downloaded public data from 24 Chinese accessions (SRR6382516 - SRR6382539)53. SNPs 373 
were called using all 24 Chinese and the 24 Taiwanese samples together following the pipeline 374 
described above. We did not perform any site filtering for this joint data set since the main 375 
objective is to investigate whether specific SNPs in Taiwan also existed in China as SV. This 376 
dataset has 18,442,853 SNPs. SRR6382532 was excluded due to high missing rate. Only when 377 
evaluating the averaged expected heterozygosity between Taiwanese and Chinese populations 378 
did we filter out sites with (1) indels and (2) QUAL < 30, resulting in 15,591,923 SNPs. 379 

To assess the phylogeny of our Taiwanese populations and Chinese accessions, we 380 
downloaded Musa acuminata sequence (SRR7013754) as an outgroup. SNPs were called using 381 
one M. acuminata species, 24 Chinese and 24 Taiwanese samples together following the 382 
pipeline described above. We filtered out sites with (1) more than two alleles, (2) indels, (3) 383 
QUAL < 30, and (4) call rate < 0.9, resulting in 12,693,687 SNPs. This dataset also excluded 384 
SRR6382532. 385 
 386 
Environmentally-associated SNP identification. 387 

We used Bayenv 2.018 to search for SNPs highly associated with environmental variables. 388 
Bayenv estimates the relationship between SNPs and environments while controlling the 389 
whole-genome population structure from a subset of loose linkage-disequilibrium SNPs. Loose 390 
linkage-disequilibrium SNPs were formed by sampling (1) one SNP from scaffolds more than 391 
10 kb and less than 100 kb, (2) two SNPs from scaffolds more than 100 kb and less than 500 392 
kb, (3) three SNPs from scaffolds more than 500 kb and less than 1000 kb, and (4) four SNPs 393 
from scaffolds more than 1000 kb. We then, for each bioclimatic variable, defined as the 394 
adaptive SNPs ones exhibiting top 1% Bayes factor and top 5% rho value (a nonparametric 395 
correlation coefficient capable to reduce outlier effects). 396 

We further investigated the fate of currently adaptive SNPs under anthropogenic climate 397 
change, performing the same Bayenv analyses of currently adaptive SNPs using future climatic 398 
conditions. We included two time periods (2050 and 2070) and four Representative 399 
Concentration Pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from two general 400 
circulation models, CCSM44 and MIROC45, resulting in 16 future climatic conditions. If a 401 
currently adaptive SNP remains strongly associated with environments, it should exhibit Bayes 402 
factor above the current threshold. We then defined as “retention” a currently adaptive SNP 403 
constantly exhibiting Bayes factor above the current adaptive threshold in all future scenarios, 404 
and defined as “disruption” a currently adaptive SNP exhibiting Bayes factor above the current 405 
adaptive threshold in none of the future scenarios. 406 
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 407 
The gradient forest method and genetic offset. 408 

We used a novel method, gradient forest19,20, to estimate the effect of environmental 409 
gradients on allele frequency differences among populations. Gradient forest is a regression-410 
tree based machine-learning algorithm using environmental variables to partition SNP allele 411 
frequencies. The analysis was done separately for each SNP. The resulting “importance” 412 
measures how much of the variation in allele frequency was explained by partitioning the 413 
populations based on a specific value in an environmental variable. By making multiple 414 
regression trees (thus generating a random forest) for a SNP, the goodness-of-fit r2 of a random 415 
forest is measured as the proportion of variance explained by this random forest, which is then 416 
partitioned among environmental variables in proportion to their conditional importance. Such 417 
SNP-wise importance of each environmental variable is then averaged across SNPs belonging 418 
to the standing variation (SV) or new mutations (NM) group, resulting in the overall importance 419 
(of each environmental variable). In the end, one could obtain the relation curve between 420 
environmental gradient and cumulative importance (analogous to the cumulative r2, proportion 421 
of allele frequency differences among populations explained by environments). This curve has 422 
two properties. First, the highest point of the cumulative importance curve denotes the overall 423 
association between a climatic variable and allele frequency, and we used this to represent the 424 
effect size of these SNPs. Second, when traversing along the environmental gradient, a sudden 425 
increase of cumulative importance at some environmental value (for example, 20°C) denotes 426 
populations on either side of this environmental cutoff have very different allele frequency 427 
compositions. In other words, this represents a threshold factor for local adaptation. 428 
 One can use this cumulative importance curve to estimate the effect of future 429 
environmental change on local populations. In the example above, a population’s local 430 
temperature increased from 19°C to 21°C due to climate change would require larger allele 431 
frequency shift than another population whose local temperature changed from 17°C to 19°C. 432 
The “genetic offset”10 could then be calculated as the Euclidean distance between cumulative 433 
importance corresponding to the contemporary environmental value and that corresponding to 434 
the future environmental value, considering all bioclimatic variables together. Genetic offset 435 
can then be considered to be the magnitude of genetic change needed for a population to be 436 
still adaptive in the face of climate change. 437 
 438 
Regression slope. 439 

The regression slope is not given by gradient forest, since it only reports the r2 importance 440 
estimate. Thus, we introduced the simple linear regression y=α+βx	 to measure	the regression 441 
slope. We took y as the allele frequency, x as the standardized bioclimatic variable, and β 442 
(slope) as the measurement of the amount of allele frequency changes along environmental 443 
gradients. By fitting simple linear regression with the general least-square approach, β can 444 
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then be expanded to rxy
sy

sx
, where rxy is the correlation coefficient (the square root of gradient 445 

forest measured “importance”) between x (environment value) and y (allele frequency), and 446 
sx and sy are the standard deviation of x and y. 447 
	  448 
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Figures: 595 

 596 
Fig. 1 | Sample distribution and niche modeling of Musa itinerans. a, Sampling sites are 597 
distributed along the latitudinal and altitudinal gradient. Lowland populations are represented 598 
as white circles; transect populations are represented as white triangles and squares. b, 599 
Suitability is derived from MaxEnt niche modeling. c, Least-cost-corridor landscape is 600 
constructed from pairwise least-cost paths among 20 populations from the resistance surface 601 
(the reciprocal of niche suitability). 602 
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 604 
Fig. 2 | The environment-dependent enrichment of new alleles and the distinct effect sizes 605 
of standing variation (SV) and new mutations (NM) in contrasting climatic factors. BIO1 606 
reflects annual mean temperature, and BIO17 indicates precipitation of driest quarter. a, Mean 607 
frequency of new alleles among NM SNPs compared between populations that have local 608 
environments within or outside of the ancestral climatic range. New alleles are enriched in 609 
novel environments (**P < 0.01, ***P < 0.001, t-test). Values on the horizontal axis denote the 610 
number of Taiwanese populations within the ancestral or novel environmental range. b, 611 
Gradient forest cumulative r2 importance is shown along environmental gradients. c, Effect 612 
sizes as estimated from Bayes factor, gradient forest r2 importance, and gradient forest slope 613 
all show that SV exhibit higher effect sizes in BIO1 but the reverse in BIO17 (**P < 0.01, ***P 614 
< 0.001, Wilcoxon rank-sum test for Bayes factor and t-test for r2 importance and slope). 615 
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 617 
Fig. 3 | Annual mean temperature (BIO1) and precipitation of driest quarter (BIO17) for 618 
the present and last glacial maximum. a, b, Present environments. c, d, Last-glacial-619 
maximum environments, showing the environments on the extent of land. Maps on all panels 620 
have the same range in latitude and longitude. 621 
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 623 

Fig. 4 | The fate of Musa itinerans under two extreme future conditions. a-d, Niche-624 
expansion extreme (CCSM4-2070-RCP8.5) reports the species-average niche suitability from 625 
MaxEnt modeling (a), the genetic mismatch of locally adaptive populations to future 626 
environments based on the genetic offset from gradient forest (b), genetic offset difference 627 
calculated as the genetic offset experienced by new mutations minus that from standing 628 
variation (c), and extinction risk estimated as genetic offset divided by niche suitability (shown 629 
as 32 bins with equal grid counts; d). e-h, Niche-contraction extreme (MIROC-2070-RCP4.5) 630 
reports the suitability (e), genetic offset (f), genetic offset difference (g), and extinction risk (h). 631 
Grids with present niche suitability < 0.2 are excluded and colored in gray in b-d and f-h. 632 
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Data Availability: 634 
Population pooled sequencing reads are available under NCBI BioProject PRJNA575344. 635 
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 651 

Supplementary Fig. 1 | Sampling site and population structure of Taiwanese Musa 652 
itinerans under STRUCTURE K = 2. a, Solid circles represent collection locations 653 
corresponding to their coordinates and elevation: Gray circles indicate populations of low 654 
elevation (LE); blue circles indicate populations of Xitou transect (XT); red circles indicate 655 
populations of Taipingshan transect (TPS). b, Individual ancestry is plotted on the right side, 656 
while population ancestry is plotted on map with a pie chart. Map template is provided by 657 
*Cheng-Tao Lin. 658 
*Cheng-Tao Lin (2018) QGIS template for displaying species distribution by horizontal and 659 
vertical view in Taiwan. URL: https://github.com/mutolisp/distrmap_tw.qgis. DOI: 660 
10.5281/zenodo.1493690 661 
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 663 

Supplementary Fig. 2 | Allele frequency distribution. a, Minor allele frequency distribution 664 
of adaptive and non-adaptive SNPs. b, Frequency of new alleles in Taiwanese populations 665 
within the ancestral or novel environmental range. Statistical significance from Student’s t-test 666 
between the novel and ancestral environmental range for each bioclimatic variable is shown. 667 
Values on the horizontal axis denote the number of Taiwanese populations within the ancestral 668 
or novel environmental range. 669 
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 671 

Supplementary Fig. 3 | Profiling of effect sizes. a, Bayenv Bayes factor distribution for 672 
adaptive new mutations and standing variation (*P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon 673 
rank-sum test). b, Cumulative r2 importance from gradient forest along environmental 674 
gradients. c, Gradient forest r2 importance distribution (***P < 0.001, Welch’s t-test). d, 675 
Example figure showing the relationship between r2 importance and slope. r2 indicates the 676 
extent that allele frequency fits a linear model, while slope indicates the amount of allele 677 
frequency changes along the linear relationship. The graphs indicate one should also investigate 678 
regression slopes in addition to the gradient forest r2. Values on the horizontal axis show the 679 
range of standardized environmental variables. e, The distribution of regression slopes when 680 
one regresses adaptive SNP allele frequency onto environmental gradients (**P < 0.01, ***P 681 
< 0.001, Welch’s t-test). 682 
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 684 

Supplementary Fig. 4 | Evolutionary analyses on Taiwanese and Chinese Musa itinerans. 685 
a, Minor allele frequency distribution of adaptive SNPs in Taiwan. b, Phylogeny of Taiwanese 686 
and Chinese Musa itinerans. The gray-colored indicates Taiwanese lowland populations (LE); 687 
the blue-colored indicates Taiwanese populations of Xitou transect (XT); the red-colored 688 
indicates Taiwanese populations of Taipingshan transect (TPS); the black-colored indicates 689 
Chinese accessions and the outgroup Musa acuminata. c, Table showing the expected 690 
heterozygosity among Taiwanese and Chinese populations. 691 
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 693 

Supplementary Fig. 5 | Multi-analyses addressing ascertainment of standing variation 694 
and new mutation. a, The distribution of gradient forest r2 importance across 100 re-sampling 695 
trials. In each re-sampling trials, a random set of 50% new mutations were assigned as standing 696 
variation, and the mean r2 importance was reported for each trial. All comparisons show strong 697 
statistical significance from Student’s t-test between new mutations and introduced standing 698 
variation (***P < 0.001). b-d, Profiling of effect sizes of adaptive SNPs with top 50% minor 699 
allele frequency. Distribution of Bayes factor (***P < 0.001, Wilcoxon rank-sum test; b), 700 
gradient forest r2 importance (*P < 0.05, ***P < 0.001, Welch’s t-test; c), and regression slopes 701 
of adaptive SNP allele frequency onto environmental gradients (***P < 0.001, Welch’s t-test; 702 
d) is analyzed between new mutations and standing variation for each bioclimatic variable. 703 
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Supplementary Table 1 | Population coordinates and bioclimatic information 705 

 706 
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Supplementary Table 2 | SSR primer information 708 

 709 

Primer sequences were searched against the Musa acuminata DH-Pahang version 233 on 710 
Banana Genome Hub (https://banana-genome-hub.southgreen.fr/). 711 
*The chromosome and position indicate locations on Musa acuminata where primer sequences 712 
were found by blast. 713 
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Supplementary Table 3 | Number of new-mutation (NM) or standing-variation (SV) SNPs 715 
with (adaptive) or without (non-adaptive) significant associations with bioclimatic 716 
variables 717 

 718 
Statistical significance from χ2  test is shown for each bioclimatic variable. Odds ratio is 719 
calculated as (adaptive SV / adaptive NM) / (non-adaptive SV / non-adaptive NM). 720 
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Supplementary Table 4 | Number of new-mutation (NM) or standing-variation (SV) SNPs 722 
with (adaptive) or without (non-adaptive) significant associations with bioclimatic 723 
variables (controlled for minor allele frequency) 724 

 725 
The number of four sets of SNPs whose minor allele frequency (MAF) ranges from the first 726 
quantile of adaptive MAF to the third quantile of non-adaptive MAF separately for each 727 
bioclimatic variable is shown. Statistical significance from χ2  test is shown for each 728 
bioclimatic variable. Odds ratio is calculated as (adaptive SV / adaptive NM) / (non-adaptive 729 
SV / non-adaptive NM). 730 
	  731 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903427doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 5 | Number of currently adaptive new-mutation (NM) or standing-732 
variation (SV) SNPs that remain (retention) or lose (disruption) significant associations 733 
with environments under all future climate-change scenarios 734 

 735 
Statistical significance from χ2  test is shown for each bioclimatic variable. Odds ratio is 736 
calculated as (retention SV / retention NM) / (disruption SV / disruption NM). 737 
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