

1

2

3

4

5

6

7

8

9

10

Simplitigs as an efficient and scalable representation of de
Bruijn graphs

Karel Břinda 1,2,* , Michael Baym 1 , and Gregory Kucherov 3,4

1 Department of Biomedical Informatics, Harvard Medical School, Boston, USA

2 Center for Communicable Disease Dynamic, Department of Epidemiology, Harvard T.H. Chan School of

Public Health, Boston, USA

3 CNRS/LIGM Univ Gustave Eiffel, Marne-la-Vallée, France

4 Skolkovo Institute of Science and Technology, Moscow, Russia

* Correspondence to karel.brinda@hms.harvard.edu

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

mailto:karel.brinda@hms.harvard.edu
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Abstract

Motivation

De Bruijn graphs play an essential role in computational biology, facilitating rapid alignment-free comparison of

genomic datasets as well as reconstruction of underlying genomic sequences. Subsequently, an important question

is how to efficiently represent, compress, and transmit de Bruijn graphs of most common types of genomic data

sets, such as sequencing reads, genomes, and pan-genomes.

Results

We introduce simplitigs, an efficient representation of de Bruijn graphs for alignment-free applications. Simplitigs

are a generalization of unitigs and correspond to spellings of vertex-disjoint paths in a de Bruijn graph. We present

an easy-to-plug-in greedy heuristic for their computation and implement it in a program called ProphAsm. We use

ProphAsm to compare the scaling of simplitigs and unitigs on a range of genomic datasets. We demonstrate that

simplitigs are superior to unitigs in terms of the cumulative sequence length as well as of the number of sequences,

and that are sufficiently close to theoretical bounds for practical applications. Finally, we demonstrate that, when

combined with standard full-text indexes, simplitigs provide a scalable solution for k -mer search.

Availability

ProphAsm is written in C++ and is available under the MIT license from http://github.com/prophyle/prophasm .

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://github.com/prophyle/prophasm
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Introduction

Advances in DNA sequencing started the golden age of biology in which phenomena previously unobservable can

be studied on an unprecedented scale. However, sequencing capacity has been growing faster than computer

performance and memory, and also faster than available human resources. Nowadays large amounts of sequencing

data are available, of a decreasing completeness and quality though. In consequence, traditional sequence-based

representations and sequence alignment-based techniques [1–3] have become less suitable for real-life scenarios

due to the space- and time-complexities they impose as well as due to their sequence-oriented nature in the age of

datasets exhibiting graph structure.

An example is given by bacterial genomics. Modern large-scale studies of bacterial species comprise tens of

thousands of sequenced isolates (see, e.g., [4–6]). However, information about isolates’ genomes is almost always

incomplete, as sequencing provides only partial observations of the genomes. While it is relatively straightforward

to compute draft assemblies of bacterial genomes, completing the genomes is difficult. Due to repetitive regions, a

full reconstruction from short reads is mathematically impossible even if the sequencing reads were error-free [7] .

Long reads are often unavailable and reference sequences are of limited applicability due to the high variability of

bacteria and unclear borders between species. While draft assemblies may be sufficient for many analyses, they are

often not an ideal universal representation for a multitude of reasons. Most importantly, draft assemblies created

using different assemblers are not directly comparable and this can introduce false differential signals into studies

[8–10] . In many scenarios it is therefore desirable to move data analysis closer to the sequencing technology and

work with graph representations obtained directly from raw reads without assembling the genomes.

De Bruijn graphs belong to the most popular graph representations of genomic datasets. They are defined as

directed graphs where V is the set of all k -mers (i.e., substrings of a fixed length) occurring in the V ,)G = (E k

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/aDDI+tlA1+ClF9
https://paperpile.com/c/48fmZz/upQS+cI1V+C9r3
https://paperpile.com/c/48fmZz/K2ja
https://paperpile.com/c/48fmZz/IN45+3L9B+VGId
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

dataset with edges connecting a vertex v to a vertex w if there is a long prefix-suffix overlap between v and w. k − 1

As follows from the definition, a de Bruijn graph is defined by the underlying k -mer set and its edges can be

defined implicitly (unlike the edge-centric definition where k -mer sets are associated with edges [11]). In this paper,

we consider only vertex-centric graphs.

De Bruijn graphs feature remarkable properties. First, their computation from data is easy and deterministic.

Algorithms for enumerating and counting k -mers have been extensively studied and many programs are available

[12–15] . If the datasets contain sequencing errors, the computation may also involve graph cleaning. This aims at

removing those k -mers that are the result of sequencing errors and, due to their supposed randomness, are expected

to be rare. Second, if k is chosen appropriately, de Bruijn graphs can capture substantial information about the

entire molecules under sequencing as these correspond to some walks in the graphs, provided that sequencing was

sufficiently deep. Third, de Bruijn graphs can be handled easily, which simplifies software development as well as

dataset analysis and interpretation. These properties have led to a large variety of applications of de Bruijn graphs.

De Bruijn graphs have been widely studied in the context of sequence assembly [16–18] . Here, their construction is

typically the first step to the reconstruction of genomes and transcriptomes under sequencing from retrieved

sequencing reads. Many modern assemblers (e.g., SPAdes [19] , ABySS [20] , Velvet [21] , Minia [22] , and

MEGAHIT [23]) follow the de-Bruijn-graph paradigm.

Alignment-free sequence comparison [24] is another major application of de Bruijn graphs, following the idea that

similar sequences share common k -mers, and comparing de Bruijn graphs thus provides a good measure of

sequence or dataset similarity. This involves applications of de Bruijn graphs to variant calling and genotyping

[25–29] , transcript abundance estimation [30] , and metagenomic classification [31–34] . The latter also

demonstrates another particularity of de Bruijn graphs – their remarkable ability to approximate the graph structure

of pan-genomes. Indeed, reference databases of bacterial strains are often highly incomplete and noisy;

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/tsi3
https://paperpile.com/c/48fmZz/ZWYX+8drX+RPNu+KGPT
https://paperpile.com/c/48fmZz/k6Xg+l2lo+DR3C
https://paperpile.com/c/48fmZz/n3EN
https://paperpile.com/c/48fmZz/f114
https://paperpile.com/c/48fmZz/wa8D
https://paperpile.com/c/48fmZz/KwNc
https://paperpile.com/c/48fmZz/qsyT
https://paperpile.com/c/48fmZz/IRdH
https://paperpile.com/c/48fmZz/ffj7+wIsb+MBTq+iwn2+pJaP
https://paperpile.com/c/48fmZz/NYvU
https://paperpile.com/c/48fmZz/EZCt+Ub1O+hGKh+mCvz
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

nevertheless, k -mer-based classifiers perform best among all classifiers in inferring abundance profiles [35] , which

also suggests that de Bruijn graphs can be used to represent pan-genomes. Furthermore, de Bruijn graphs with a

large k -mer size can be used for indexing variation graphs [36,37] .

The importance of de Bruijn graphs leads us to a key problem: their space-efficient representation. While general

de Bruijn graphs may impose large space requirements, it has been shown that those of real datasets can be highly

compressible. Indeed, given the linearity of DNA and RNA molecules and the nature of sequencing, genomic k -mer

datasets exhibit the so-called spectrum-like property: the existence of long strings of which most of the k -mers are

substrings [11] .

In this paper, we study the problem of representation of de Bruijn graphs for alignment-free data analysis. Building

on previous works [38,39] , we propose simplitigs as an effective representation of de Bruijn graphs. Simplitigs

provide a “textual” representation of the graph, in the form of a set of sequences, representing each k -mer exactly

once and facilitating easy indexing with standard full-text indexes. Simplitigs use the observation that in practical

applications, such graphs typically contain long paths. In contrast to unitigs, which are the paths that do not contain

any branching nodes, simplitigs can contain branching nodes.

Finally, we present ProphAsm, a tool for computing simplitigs for a given dataset, such as reads, genomes,

pan-genomes or metagenomes. ProphAsm proceeds by building the associated de Bruijn graph in memory,

followed by a greedy enumeration of maximal vertex-disjoint paths. We use ProphAsm to demonstrate that

simplitigs are superior to unitigs both in terms of the cumulative sequence length and the number of sequences, and

that they are sufficiently close to theoretical bounds in practical applications. The employed heuristic can be easily

integrated into any software producing de Bruijn graphs.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/E1LI
https://paperpile.com/c/48fmZz/eEI3+8hgJ
https://paperpile.com/c/48fmZz/tsi3
https://paperpile.com/c/48fmZz/jhyi+BWOb
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

Results

Simplitigs as an efficient representation of de Bruijn graphs

We developed the concept of simplitigs to efficiently represent de Bruijn graphs for alignment-free applications

(Figure 1). Simplitigs are a generalization of unitigs and correspond to spellings of vertex-disjoint paths covering a

given de Bruijn graph; consequently, maximal simplitigs are such simplitigs that cannot be further compacted by

merging (Methods). Note that unitigs and k -mers are also simplitigs, but not maximal, in general. The main

conceptual difference between maximal simplitigs and maximal unitigs is that unitigs are limited by branching

nodes (which are crucial for genome assembly), whereas simplitigs are not limited by this constraint. This allows

for further compactification, with a benefit increasing proportionally to the amount of branching nodes in the graph.

We designed a greedy heuristic for the computation of simplitigs (Algorithm 1, Methods). At every step, it selects

a k -mer from the current k -mer set and keeps extending it forward and then backward as long as possible, while

removing the already used k -mers from the set. This process is repeated until all k -mers are covered. We provide an

implementation in a program called ProphAsm (github.com/prophyle/prophasm). The heuristic can be easily

applied by any other software that outputs de Bruijn graphs or k -mer sets.

In the following sections, we use ProphAsm to compare maximal simplitigs with maximal unitigs on different types

of data sets.

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://github.com/prophyle/prophasm
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

116

117

118

119

120

121

122

123

124

125

A) B)

Figure 1. Simplitigs vs. unitigs and uncompacted k -mers. A) Simplitig subgraphs of de Bruijn graphs

corresponding to individual kmers (1), maximal unitigs (2), and maximal simplitigs (3). Every component of a

simplitig subgraph corresponds to a path and its spelling constitutes a simplitig (see Methods for more details).

B) Scheme of different types of simplitig subgraphs with respect to the degree of compactification of the

k -mer set. While unitigs (the dark grey area) correspond to compactification along non-branching nodes in the

associated de Bruijn graph, simplitigs (the light and dark grey areas) can also contain branching nodes. When

starting with individual k -mers, every step of compactification decreases the number of sequences by 1 and the

cumulative length of sequences by . Unlike maximal unitigs, maximal simplitigs are not determined uniquely k − 1

and they may have even different cumulative lengths (corresponding to different local optima of compactification).

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Algorithm 1. Greedy computation of maximal simplitigs for a k -mer set. In an iterative fashion, the algorithm

draws a k -mer from the set of canonical k -mers , uses it as a new simplitig, and then keeps extending the K

simplitig forwards and backwards as long as possible, while removing the already used canonical k -mers from . K

Function extend_simplitig_forward (K, simplitig):

extending = True

while extending:

extending = False

q = suffix (simplitig, k-1),

for x in [‘A’, ‘C’, ‘G’, ‘T’]:

can_kmer = canonical(q + x)

if can_kmer in K:

extending = True

simplitig = simplitig + x

K.remove (can_kmer)

break

return K, simplitig

Function get_maximal_simplitig (K, initial_kmer):

simplitig = initial_kmer

K.remove (initial_kmer)

K, simplitig = extend_simplitig_forward (K, simplitig)

simplitig = reverse_completent (simplitig)

K, simplitig = extend_simplitig_forward (K, simplitig)

return K, simplitig

Function compute_simplitigs (kmers):

K = {}

for kmer in kmers:

K.add (canonical(kmer))

simplitigs = {}

while |K| > 0:

initial_kmer = K.pop ()

K, simplitig = get_maximal_simplitig (K, initial_kmer)

simplitigs.add (simplitig)

return simplitigs

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

Simplitigs of selected model organisms

We evaluated the simplitig representation on individual genomes of six model organisms for a range of k -mer

lengths (Figure 2, Methods). Understanding the scaling based on the k -mer length is important for practical

applications; the k -mer size is typically chosen with respect to the used sequencing technology and genomic

diversity. The range for our experiments was selected based on values that are most commonly used for

alignment-free sequence comparison (see, e.g., [30,31,40]). For each organism and a k -mer length, we computed

maximal simplitigs and unitigs, and compared them in terms of two basic characteristics: the number of sequences

produced and their cumulative length. Whereas the former defines the number of records to be kept, the latter

determines the total memory needed. Note that the two numbers are tightly connected (Methods, (eq 1)).

First, we analyzed the number of sequences produced (Figure 2 , upper plots). We observe that for all datasets, as

the k -mer size increases, the number of simplitigs grows and then decreases slowly. The number of unitigs grows

rapidly at the beginning, and subsequently drops substantially, approaching the number of simplitigs. The

cumulative length (Figure 2 , lower plots) is bounded from below by the number of k -mers in the genome plus

, corresponding to the theoretically maximum degree of compactification. In such a case, all k -mers would k − 1

occur on the same simplitig; however, this is not attainable for most datasets. As we can observe and (eq 1)

explains, the shapes of the curves in the lower plots copy the upper plots, while being only shifted up by a factor of

the theoretical lower bound. When comparing the simplitig and unitig curves, we can observe the same patterns as

for the number of sequences.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/EZCt+NYvU+7vCD
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

182

183

184

185

186

187

188

189

190

Figure 2. Comparison of the simplitig and unitig representations for selected model organisms and a range of

k -mers. The number of sequences and their cumulative length for representation obtained by ProphAsm, BCALM

2 and the theoretical lower bound for six model organisms ordered by their genome size: S. pneumoniae (2,22Mbp),

Escherichia coli (genome length: 4.64 Mbp), Saccharomyces cerevisiae (genome length: 12.2 Mbp),

Caenorhabditis elegans (genome length: 100 Mbp), Bombyx mori (genome length: 482 Mbp), and Homo sapiens

(genome length: 3.21 Gbp). The area highlighted in grey shows the discrepancy between the maximal unitigs and

the theoretical lower bound.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Note that the maxima of both functions occur at (or are very close to) the value , where is the genome Gk = log4 G

size. This is readily explained, as for values of up to , an overwhelming fraction of all k -mers belong k Glog4 4k

to the genome, which makes the de Bruijn graph branch at nearly every node. As a consequence, unitigs are

essentially reduced to individual k -mers, and their number grows exponentially. Starting from , the Gk = log4

number of k -mers is bounded by the genome length, and they begin to form longer non-branching paths in the

graph, which drives down the number of unitigs. Importantly, however, the number of unitigs and their total size

keep being much larger than those of simplitigs even for larger values of , especially for large eukaryotic k

genomes.

Overall, we observed that simplitigs always provide better performance than unitigs. In particular, they quickly

approach the theoretical lower bounds for both characteristics tested. Every data set has a range of k -mer lengths

where the difference between simplitigs and unitigs is striking, and after a certain threshold, the difference almost

vanishes. While for short genomes this threshold is located at smaller k -mer lengths than those typically used in

alignment-free applications (e.g., for E. coli), for long genomes this threshold has not been attained on the 7k ≈ 1

tested range and seems to be substantially shifted towards large k -mers (e.g., B. mori). All this suggests that in

practical applications, simplitigs are preferable for indexing individual genomes and the benefit is likely to increase

with the genome size.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Simplitigs of bacterial pan-genomes

Computational pan-genomics has recently emerged as an important sub-branch of bioinformatics [41] . One of the

motivations is the analysis of sequencing data in the context of whole species. Species are then represented using

so-called pan-genome representations, i.e., reference structures including all within-species variation. De Bruijn

graphs are particularly useful as pan-genomic references as they can be easily constructed from a variety of

different data types, ranging from assembled reference sequences to the original sequencing reads. We sought to

evaluate the usefulness of simplitigs for bacterial pan-genomes, which are particularly challenging due to their high

diversity and variability.

We compared simplitig and unitig representations of the Neisseria gonorrhoeae pan-genome, as a function of the

number of genomes included for the k -mer length 31 (Figure 3 , Methods). We used 1,102 clinical isolates collected

from 2000 to 2013 by the Centers for Disease Control and Prevention’s Gonococcal Isolate Surveillance Project

[42] ; the data set comprises draft assemblies from Illumina HiSeq reads. As expected, as the number of isolates and

the associated variance grow, the number of sequences and their cumulative length grow as well, both for maximal

unitigs and simplitigs. While simplitigs and unitigs perform comparably well when one bacterial genome is

included (consistent with Figure 2), the improvement of simplitigs over unitigs grows in the cumulative length as

more genomes are included and eventually stabilizes at a factor of approximately 1.5 (Figure 3 , bottom plot). On

the other hand, the improvement in the number of sequences steadily decreases along the whole range and stabilizes

at a factor of approximately 3.0.

To verify the generality of our findings, we repeated the experiment with the same dataset for the k -mer length 18

and also with 616 pneumococcal genomes from a carriage study of children in Massachusetts [43,44] with the

k -mer lengths 18 and 31 (Methods). In all cases, the results were qualitatively the same, except for small changes in

the resulting relative improvements.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/SGxm
https://paperpile.com/c/48fmZz/LiPb
https://paperpile.com/c/48fmZz/Om01+2h6g
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

233

234

235

236

237

238

239

Figure 3. Pan-genomic scaling of maximal simplitigs and maximal unitigs for Neisseria gonorrhoeae and k =

31. The first two plots show the number of sequences and their cumulative length as a function of the number of

genomes, respectively. Lower bounds correspond to a hypothetical perfect case with a single simplitig containing

all the k -mers. The third plot displays the relative improvement of simplitigs compared to unitigs.

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Application of simplitigs for k -mer search in bacterial pan-genomes

Any sequence data can be searched for k -mers using full-text indexes. Importantly, the simplitig representation can

accelerate the k -mer lookup in datasets with redundant k -mer content by removing these redundancies, which we

show on the example of k -mer look up in bacterial pan-genomes.

The most popular compact and powerful indexes supporting fast string search are BWT indexes [48] , i.e., indexes

based on the Burrows-Wheeler Transform [49] , sometimes also referred to as FM-indexes. Many highly optimized

implementations were developed for read mapping (e.g., [45–47]); in our experiments we used the BWA index

[46] , following the widespread use and superior performance.

Single pan-genome

We first evaluated the performance of k -mer presence/absence queries on a single pan-genome (Table 1, Methods).

We used the same N. gonorrhoeae draft genome assemblies as previously to build a gonococcal k -mer pan-genome

for five different k -mer sizes using three strategies: by merging the draft assemblies, by computing comprehensible

unitigs, and by computing comprehensive simplitigs (Table 1a). For all of them, we constructed BWT indexes

using BWA [46] , queried ten million k -mers using BWA fastmap [50] , and evaluated the resulting memory footprint

and query performance (Table 1b).

Consistent with the previous experiments, simplitigs provided a clear improvement over unitigs (Table 1a).

Maximal simplitigs improved 3.0×–4.9× the number of sequences and a 1.5×–2.1× the cumulative sequence

lengths. Intuitively, the resulting memory footprint of BWA should be proportional to the cumulative sequence

length, and therefore, the improvement in memory footprint was expected to be similar to the one of the cumulative

sequence length. Surprisingly, the memory footprint improved substantially more (2.7× – 5.6×) (Table 1b). To

explain this phenomenon, it is important to understand that the underlying full-text engine has to keep information

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/FFFo
https://paperpile.com/c/48fmZz/Kz6c
https://paperpile.com/c/48fmZz/nY7A+e9nk+p67s
https://paperpile.com/c/48fmZz/e9nk
https://paperpile.com/c/48fmZz/e9nk
https://paperpile.com/c/48fmZz/WgMv
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

263

264

265

266

267

268

269

270

271

272

273

274

275

about individual sequences in memory as separate records and standard read mappers are optimized for low

numbers of references. As the number of reference sequences grows, it has a negative impact on both the memory

footprint and query speed. However, since simplitigs provided 3.0×–4.9× improvement in the number of sequences

over unitigs, it helped to alleviate this overhead. Overall, the comparatively high number of maximal unitigs

observed throughout our experiments (Figures 1 and 2) provides a further argument for using simplitigs as the

preferable representation of k -mer sets.

Table 1. K -mer queries for the N. gonorrhoeae pan-genome. a) Characteristics of the obtained unitigs and

simplitigs. b) Time and memory footprint of BWA for k -mer queries (10M k -mers).

k
Draft assemblies Unitigs Simplitigs

sequences
[×10 3]

cumulative
length [Mbp]

sequences
[×10 3]

cumulative
length [Mbp]

sequences
[×10 3]

cumulative
length [Mbp]

15

79 2,400

440 9.3 90 4.4
19 190 6.9 60 4.5
23 180 7.7 59 5.0
27 180 8.6 59 5.5
31 180 9.6 60 6.0

b)

k
Draft assemblies Unitigs Simplitigs

time [sec] mem [MB] time [sec] mem [MB] time [sec] mem [MB]

15 34

3,600

42 78 24 14
19 50 35 37 28 12
23 66 41 37 32 13
27 81 48 38 37 14
31 97 56 40 42 14

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

Multiple pan-genomes

Finally, we evaluated the performance of the simplitig representation for simultaneous indexing of multiple

bacterial pan-genomes (Table 2 , Methods). We downloaded all complete bacterial genomes from Genbank (as of

December 2019; 10,502 genomes out of which we managed to download 9,570; Methods). We restricted ourselves

to the complete genomes as the draft genomes in Genbank are known to be largely impacted by contamination

[51–53] . We grouped individual genomes per species which resulted in 719 bacterial pan-genomes. We then

computed simplitigs and unitigs for every species, merged the obtained representations, and calculated the same

statistics as previously (Table 2a); we performed this experiment for the k -mer lengths 18 and 31. Finally, we

constructed BWT indexes using BWA, and measured the resulting k -mer lookup performance using the same ten

million k -mers as in the previous section (Table 2b).

In this case, the number of sequences was reduced by a factor of 4.2× and 3.1× and the cumulative sequence length

by a factor of 1.6× and 1.3× for and , respectively (Table 2a). For simplitigs provided 1.2× 8k = 1 1k = 3 1k = 3

speedup and 1.8× improvement in memory consumption (Table 2b); for , the speedup could not be k 8 = 1

evaluated (Methods). These results are consistent with the previous sections and provide further evidence that

simplitigs are useful not only for storage, but also for fast k -mer lookup.

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/JRL7+Gptx+LFia
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

292

293

294

295

296

297

298

Table 2. K -mer queries for multiple pan-genomes indexed simultaneously. Bacterial pan-genomes were

computed from the complete Genbank assemblies. a) Characteristics of the obtained unitigs and simplitigs. b) Time

and memory footprint of BWA for k -mer queries (10 million k -mers).

a)

k
Unitigs Simplitigs

sequences
[×10 6]

cumulative
length [Gbp] # sequences [×10 6] cumulative

length [Gbp]
18 250 9.0 59 5.7
31 110 8.6 36 6.4

b)

k
Unitigs Simplitigs

time [s] mem [GB] time [s] mem [GB]

18 NA 21 146 15
31 179 23 149 13

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Discussion

We introduced the concept of simplitigs, a generalization of unitigs, and demonstrated that simplitigs constitute a

compact, efficient and scalable representation of de Bruijn graphs for commonly used genomic datasets. The two

representations share many similarities. Both represent de Bruijn graphs in a lossless fashion, correspond to

spelling of vertex-disjoint paths, and preserve k -mer sets. Being text-based and stored as FASTA files, both can be

easily manipulated using standard Unix tools and indexed using full-text indexes. On the other hand, unlike unitigs,

general simplitigs are not expected to have direct biological significance as neighboring segments of the same

simplitig may correspond to distant parts of the same DNA molecule or even to different ones. Not all situations

allow unitigs to be replaced by simplitigs, but where applicable, simplitigs show much better compression

properties.

We provided ProphAsm, a tool implementing a greedy heuristic to compute maximal simplitigs from a k -mer set.

This heuristic is easy to implement in any software, which suggests its further use as a generic method for

serialization of k -mer sets. The simplicity is in contrast to the unitig model, where the complexity of the bi-directed

de Bruijn graph model may complicate debugging; for instance, BCALM 2 does not support k -mer lengths that are

divisible by four (as for December 2019; unsupported since 2017). As a downside, the naive implementation of the

ProphAsm heuristic using a standard hashtable may run into memory issues. However, the memory consumption

can be readily improved using more advanced data structures, similarly to what has been done for tools for unitig

computation [39,54,55] .

We note that ProphAsm is a spin-off of the ProPhyle software (https://prophyle.github.io/ , [33]) for

phylogeny-based metagenomic classification. Simplitig computation is an important component of ProPhyle [56] ,

allowing efficient indexing of k -mers assigned to nodes of the phylogenetic tree. Independently of the present work,

simplitigs were also recently studied in [57] under the name “spectrum-preserving strings”.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/BWOb+ROzP+LvyQ
https://prophyle.github.io/
https://paperpile.com/c/48fmZz/hGKh
https://paperpile.com/c/48fmZz/j31L
https://paperpile.com/c/48fmZz/1sPM
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

The data presented in this paper highlight the scaling of computational resources as more sequencing data become

available [58] . The studied gonococcal dataset constitutes a relatively complete image of a bacterial population in a

geographical region and at a given time scale. As such, it can be used to model the “state of completion” of k -mer

pan-genomes. On the other hand, the multiple pan-genomes experiment provided insights about the resulting

performance when a large number of pan-genomes is queried simultaneously using a BWT index. This allows us to

make predictions about the scaling for species where at present only a limited number of assemblies are available,

but more data are likely to be generated in the future. Overall, with more data available, the comparative benefits of

simplitigs over unitigs grow.

Besides the presented advantages, simplitigs also introduce several technical challenges related to the ambiguity (as

illustrated in Figure 1). Whereas maximal unitigs are uniquely defined (up to the order and reverse

complementing), this is not the case for maximal simplitigs. In the presented heuristic, the resulting maximal

simplitigs and their characteristics depend on the order in which the initial k -mers are drawn from the underlying

set. At every iteration, once a maximal simplitig is built, a new k -mer is drawn from the graph as the new initial

k -mer. In the case of ProphAsm, this is an unordered set from the C++ standard library, which makes it difficult to

implement reproducibly across platforms.

Modern bioinformatics applications of de Bruijn graphs often require multiple graphs considered simultaneously.

The resulting structure is usually referred to as a colored de Bruijn graph [25] and its representations have been

widely studied ([59–70]). Even though we touched upon this setting in the section Multiple pan-genomes,

exploiting the similarity between individual de Bruijn graphs for further compression in simplitig-based approaches

is to be addressed in future work.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/aDBw
https://paperpile.com/c/48fmZz/ffj7
https://paperpile.com/c/48fmZz/4cUY+R9xq+7LwR+JNqQ+lsDq+1pqI+4v3p+M9PH+IkO4+aTSW+8JYV+p7eU
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

347

348

With the growing interest in k -mer indexing of all genomic datasets [69] , we anticipate the simplitig representation

to be valuable as a generic compact representation of de Bruijn graphs.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/8JYV
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Methods

De Bruijn graphs

All strings are assumed to be over the alphabet . A k -mer is a string of length . For a string A, , , }{ C G T k

, we define and . For two strings and of length at least , we ...ss = s1 n (s) ··pref k = s1 · sk (s) ··suf k = sn−k+1 · sn s t k

define the binary connectivity relation if and only if . Given a set of k -mers, the de ts→k (s) (t)pref k = suf k K

Bruijn graph of is the directed graph with and . This definition of de K V ,)G = (E V = K (u,) | u v}E = { v →k−1

Bruijn graphs is node-centric , as nodes are identified with k -mers and edges are implicit. Therefore, we can use the

terms “k-mer set” and “de Bruijn graph” interchangeably.

Simplitigs

Consider a set of k -mers and the corresponding de Bruijn graph . A simplitig graph is K V ,)G = (E V ,)G′ = (E′

a spanning subgraph of that is acyclic and the in-degree and out-degree of any node is at most one. It follows G

from this definition that a simplitig graph is a vertex-disjoint union of paths called simplitigs . A simplitig is called

maximal if it cannot be extended forward or backward without breaking the definition of simplitig graph. In more

detail, a simplitig is maximal if the following conditions hold u ... uu1→k−1 2→k−1 →k−1 n

● either has no incoming edges in , or for any edge , belongs to another simplitig and it u1 G v,)(u1 ∈ E v

is not its last vertex,

● either has no outgoing edges in , or for any edge , belongs to another simplitig and it is un G u ,)(n v ∈ E v

not its first vertex.

A unitig is a simplitig such that each of the nodes has in-degree 1 in graph . A u ... uu1→k−1 2→k−1 →k−1 n , ..,u2 . un G

maximal unitig is defined similarly.

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Greedy computation of simplitigs

The problem of computing maximal simplitigs that are optimal in the cumulative sequence length corresponds to

the vertex-disjoint path cover problem, which is known to be NP-hard in the general case [71] but the complexity is

unknown for de Bruijn graphs. Throughout this paper, a greedy approach was used for the computation of

simplitigs (Algorithm 1). Simplitigs were constructed iteratively, starting from an arbitrary k -mer and being

extended greedily forwards and backwards as long as possible. Note that Algorithm 1 works in the bi-directed

setting, in which canonical k -mers are used instead of “standard” k -mers. A formal definition of bi-directed de

Bruijn graphs requires complex formalism (see, e.g.,

https://github.com/GATB/bcalm/tree/master/bidirected-graphs-in-bcalm2). Since the greedy heuristic works

similarly in both setups and does not require the extended formalism, we resorted to the uni-directed model for the

explanation of the concepts.

Comparing simplitigs with unitigs

We compare simplitigs and unitigs in terms of the number of sequences produced and their cumulative length. Note

that these numbers are related: assuming that the frequency of every k -mer is 1, then

um_seq_len #kmers (k) #seqsc = + − 1 (eq 1)

Finding the optimal solutions can be highly expensive computationally. However, we can easily provide the lower

bound corresponding to the maximum possible degree of compactification (i.e., a single kmers k 1,# + −

simplitig covering all k -mers). In the situations where cumulative sequence length of simplitigs approaches this

bound, the greedy heuristic presented above is sufficient.

Correctness evaluation

The correctness of simplitigs can be verified using an arbitrary k -mer counter. Simplitigs are correct if and only if

every k -mer is present exactly once and the number of distinct k -mers is the same as in the original datasets. To

verify the correctness of ProphAsm outputs, we used JellyFish 2 [12] .

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/MB8I
https://github.com/GATB/bcalm/tree/master/bidirected-graphs-in-bcalm2
https://paperpile.com/c/48fmZz/ZWYX
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

Experimental evaluation – model organisms

Reference sequences for six selected model organisms were downloaded from RefSeq: S. pneumoniae str. ATCC

700669 (accession: NC_011900.1, length 2.22 Mbp), Escherichia coli str. K-12 (accession: NC_000913.3, length:

4.64 Mbp), Saccharomyces cerevisiae (accession: NC_001133.9, length: 12.2 Mbp), Caenorhabditis elegans

(accession: GCF_000002985.6, length: 100 Mbp), Bombyx mori (accession: GCF_000151625.1, length: 482 Mbp),

and Homo sapiens (HG38, http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz , length: 3.21 Gbp).

For each of them, simplitigs and unitigs were computed using ProphAsm and BCALM 2, respectively, for the range

of k -mer sizes [11,31]. As the BCALM 2 algorithm does not support k -mer sizes that are multiples of 4, the

corresponding experiments had been excluded from the evaluation. When applied to HG38, both programs also

experienced in a single case of an integer overflow error: BCALM 2 and ProphAsm failed with and 1k = 3

 respectively. 6,k = 1

Experimental evaluation – pan-genomic scaling

First, 1,102 draft assemblies of N. gonorrhoeae clinical isolates (collected from 2000 to 2013 by the Centers for

Disease Control and Prevention’s Gonococcal Isolate Surveillance Project [42] , and sequenced using Illumina

HiSeq) were downloaded from Zenodo [72] . Second, 616 draft assemblies of S. pneumoniae isolates (collected

from 2001 to 2007 for a carriage study of children in Massachusetts, USA [43,44] , and sequenced using Illumina

HiSeq) were downloaded from the SRA FTP server using the accession codes provided in Table 1 in [44] . For each

of these datasets, an increasing number of genomes was being taken, merged and simplitigs and unitigs computed

using ProphAsm and BCALM 2, respectively. This experiment was performed for and To avoid 8k = 1 1.k = 3

excessive resource usage the functions were evaluated at points in an increasing distance (for intervals [10, 100]

and [100,+∞] only multiples of 5 and 20 were evaluated, respectively).

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
https://paperpile.com/c/48fmZz/LiPb
https://paperpile.com/c/48fmZz/cgKj
https://paperpile.com/c/48fmZz/Om01+2h6g
https://paperpile.com/c/48fmZz/2h6g
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

Experimental evaluation – fulltext k -mer queries

In the single pan-genome experiment, the same 1,102 assemblies of N. gonorrhoeae were merged into a single file.

ProphAsm and BCALM 2 were then used to compute simplitigs and unitigs from this file for

. All three obtained FASTA files (assemblies, simplitigs, and unitigs) were used to construct 5, 19, 23, 27, 31k = 1

a BWA index, which was then queried for k -mers using ‘bwa fastmap -l {kmer-size}’. The k -mers were previously

generated from the same pan-genome using DWGsim [73] (version 0.1.11, with the parameters ‘-z 0 -1 {kmer-size}

-2 0 -N 10000000’).

For the multiple pan-genome experiment, a list of available bacterial assemblies was downloaded from

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt . For all assemblies marked as

complete, accessions were extracted and used for their download using RSync (files matching

‘*v?_genomic.fna.gz’). The assemblies were then merged and the obtained master file then used for computing

simplitigs and unitigs using ProphAsm and BCALM 2. The obtained simplitig and unitig files were used to

construct a BWA index and queried for the same k -mers as in the previous section using ‘bwa fastmap -l

{kmer-size}’. The times of loading the indexes into memory were measured separately and subtracted from the

query times. With unitigs for , bwa repeatedly crashed in the middle of k -mer matching for an unspecified 8k = 1

reason.

Computational setup

The model organism experiment was performed on the HMS O2 research high-performance cluster on nodes with

120 GB RAM. All other experiments were performed on an iMac 4.2 GHz Quad-Core Intel Core i7 with 40 GB

RAM and an SSD disk. The reproducibility of computation was ensured using BioConda [74] . All benchmarking

was performed using ProphAsm v0.1.0 and BCALM 2 v2.2.1 (commit c8ac60252fa). Times and memory footprint

were measured using GNU time.

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

https://paperpile.com/c/48fmZz/IhoS
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
https://paperpile.com/c/48fmZz/v7o1
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

436

437

438

439

440

441

442

Implementation and availability

ProphAsm is written in C++ and available under the MIT license from http://github.com/prophyle/prophasm . The

software package is also available from BioConda [74] .

Acknowledgements

The authors thank Jasmijn Baaijens for careful reading and valuable comments. This work was supported by the

David and Lucile Packard Foundation. Portions of this research were conducted on the O2 high-performance

compute clusters, supported by the Research Computing Groups at Harvard Medical School.

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://github.com/prophyle/prophasm
https://paperpile.com/c/48fmZz/v7o1
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

443

444

445

446
447

448
449

450
451

452
453
454

455
456
457

458
459

460
461

462
463
464

465
466

467
468

469
470

471
472

473
474

475
476

References

1. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. J Mol Biol. 1970;48: 443–453. doi: 10.1016/0022-2836(70)90057-4

2. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147: 195–197.
doi: 10.1016/0022-2836(81)90087-5

3. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982;162: 705–708.
doi: 10.1016/0022-2836(82)90398-9

4. Petit RA, Read TD. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ. 2018;6:
e5261. doi: 10.7717/peerj.5261

5. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic
definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact.
EBioMedicine. 2019;43: 338–346. doi: 10.1016/j.ebiom.2019.04.021

6. Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M, the Agama Study Group. The EnteroBase user’s
guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic
diversity. Genome Research. 2020. pp. 138–152. doi: 10.1101/gr.251678.119

7. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and
solutions. Nat Rev Genet. 2011;13: 36–46. doi: 10.1038/nrg3117

8. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res. 2012;22: 557–567. doi: 10.1101/gr.131383.111

9. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: evaluating de
novo methods of genome assembly in three vertebrate species. Gigascience. 2013;2: 10.
doi: 10.1186/2047-217X-2-10

10. Alhakami H, Mirebrahim H, Lonardi S. A comparative evaluation of genome assembly reconciliation tools.
Genome Biol. 2017;18: 93. doi: 10.1186/s13059-017-1213-3

11. Chikhi R, Holub J, Medvedev P. Data structures to represent sets of k-long DNA sequences. 2019; 1–16.
Available: http://arxiv.org/abs/1903.12312

12. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics. 2011;27: 764–770. doi: 10.1093/bioinformatics/btr011

13. Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based k-mer counting on a PC. BMC Bioinformatics.
2013;14: 160. doi: 10.1186/1471-2105-14-160

14. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory usage. Bioinformatics. 2013;29:
652–653. doi: 10.1093/bioinformatics/btt020

15. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, et al. The khmer software
package: enabling efficient nucleotide sequence analysis. F1000Res. 2015; 1–12.

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/aDDI
http://paperpile.com/b/48fmZz/aDDI
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://paperpile.com/b/48fmZz/tlA1
http://paperpile.com/b/48fmZz/tlA1
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://paperpile.com/b/48fmZz/ClF9
http://paperpile.com/b/48fmZz/ClF9
http://dx.doi.org/10.1016/0022-2836(82)90398-9
http://paperpile.com/b/48fmZz/upQS
http://paperpile.com/b/48fmZz/upQS
http://dx.doi.org/10.7717/peerj.5261
http://paperpile.com/b/48fmZz/cI1V
http://paperpile.com/b/48fmZz/cI1V
http://paperpile.com/b/48fmZz/cI1V
http://dx.doi.org/10.1016/j.ebiom.2019.04.021
http://paperpile.com/b/48fmZz/C9r3
http://paperpile.com/b/48fmZz/C9r3
http://paperpile.com/b/48fmZz/C9r3
http://dx.doi.org/10.1101/gr.251678.119
http://paperpile.com/b/48fmZz/K2ja
http://paperpile.com/b/48fmZz/K2ja
http://dx.doi.org/10.1038/nrg3117
http://paperpile.com/b/48fmZz/IN45
http://paperpile.com/b/48fmZz/IN45
http://dx.doi.org/10.1101/gr.131383.111
http://paperpile.com/b/48fmZz/3L9B
http://paperpile.com/b/48fmZz/3L9B
http://paperpile.com/b/48fmZz/3L9B
http://dx.doi.org/10.1186/2047-217X-2-10
http://paperpile.com/b/48fmZz/VGId
http://paperpile.com/b/48fmZz/VGId
http://dx.doi.org/10.1186/s13059-017-1213-3
http://paperpile.com/b/48fmZz/tsi3
http://paperpile.com/b/48fmZz/tsi3
http://arxiv.org/abs/1903.12312
http://paperpile.com/b/48fmZz/ZWYX
http://paperpile.com/b/48fmZz/ZWYX
http://dx.doi.org/10.1093/bioinformatics/btr011
http://paperpile.com/b/48fmZz/8drX
http://paperpile.com/b/48fmZz/8drX
http://dx.doi.org/10.1186/1471-2105-14-160
http://paperpile.com/b/48fmZz/RPNu
http://paperpile.com/b/48fmZz/RPNu
http://dx.doi.org/10.1093/bioinformatics/btt020
http://paperpile.com/b/48fmZz/KGPT
http://paperpile.com/b/48fmZz/KGPT
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

477

478
479

480
481

482
483

484
485
486

487
488

489
490

491
492

493
494
495

496
497

498
499

500
501
502

503
504

505
506

507
508
509

510
511

512

doi: 10.12688/f1000research.6924.1

16. Idury RM, Waterman MS. A New Algorithm for DNA Sequence Assembly. J Comput Biol. 1995;2: 291–306.
doi: 10.1089/cmb.1995.2.291

17. Pevzner PA. 1-Tuple DNA Sequencing: Computer Analysis. J Biomol Struct Dyn. 1989;7: 63–73.
doi: 10.1080/07391102.1989.10507752

18. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proceedings of
the National Academy of Sciences. 2001;98: 9748–9753. doi: 10.1073/pnas.171285098

19. Bankevich A, Nurk S, Antipov D, Gurevich A a., Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome
Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19: 455–477.
doi: 10.1089/cmb.2012.0021

20. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM. ABySS: A parallel assembler for short read
sequence data. 2009; 1117–1123. doi: 10.1101/gr.089532.108.

21. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome
Res. 2008;18: 821–829. doi: 10.1101/gr.074492.107

22. Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter.
Algorithms Mol Biol. 2013;8: 22. doi: 10.1186/1748-7188-8-22

23. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and
complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31: 1674–1676.
doi: 10.1093/bioinformatics/btv033

24. Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence comparison: benefits,
applications, and tools. Genome Biol. 2017;18: 186. doi: 10.1186/s13059-017-1319-7

25. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using
colored de Bruijn graphs. Nat Genet. 2012;44: 226–232. doi: 10.1038/ng.1028

26. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-resistance predictions
from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun.
2015;6: 10063. doi: 10.1038/ncomms10063

27. Shajii AR, Yorukoglu D, William Yu Y, Berger B, Yu YW, Berger B. Fast genotyping of known SNPs through
approximate k-mer matching. Bioinformatics. 2016;32: i538–i544. doi: 10.1093/bioinformatics/btw460

28. Sun C, Medvedev P. Toward fast and accurate SNP genotyping from whole genome sequencing data for
bedside diagnostics. Bioinformatics. 2019;35: 415–420. doi: 10.1093/bioinformatics/bty641

29. Nordström KJV, Albani MC, James GV, Gutjahr C, Hartwig B, Turck F, et al. Mutation identification by direct
comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat
Biotechnol. 2013;31: 325–330. doi: 10.1038/nbt.2515

30. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat
Biotechnol. 2016;34: 525–527. doi: 10.1038/nbt.3519

31. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments.

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/KGPT
http://dx.doi.org/10.12688/f1000research.6924.1
http://paperpile.com/b/48fmZz/k6Xg
http://paperpile.com/b/48fmZz/k6Xg
http://dx.doi.org/10.1089/cmb.1995.2.291
http://paperpile.com/b/48fmZz/l2lo
http://paperpile.com/b/48fmZz/l2lo
http://dx.doi.org/10.1080/07391102.1989.10507752
http://paperpile.com/b/48fmZz/DR3C
http://paperpile.com/b/48fmZz/DR3C
http://dx.doi.org/10.1073/pnas.171285098
http://paperpile.com/b/48fmZz/n3EN
http://paperpile.com/b/48fmZz/n3EN
http://paperpile.com/b/48fmZz/n3EN
http://dx.doi.org/10.1089/cmb.2012.0021
http://paperpile.com/b/48fmZz/f114
http://paperpile.com/b/48fmZz/f114
http://dx.doi.org/10.1101/gr.089532.108.
http://paperpile.com/b/48fmZz/wa8D
http://paperpile.com/b/48fmZz/wa8D
http://dx.doi.org/10.1101/gr.074492.107
http://paperpile.com/b/48fmZz/KwNc
http://paperpile.com/b/48fmZz/KwNc
http://dx.doi.org/10.1186/1748-7188-8-22
http://paperpile.com/b/48fmZz/qsyT
http://paperpile.com/b/48fmZz/qsyT
http://paperpile.com/b/48fmZz/qsyT
http://dx.doi.org/10.1093/bioinformatics/btv033
http://paperpile.com/b/48fmZz/IRdH
http://paperpile.com/b/48fmZz/IRdH
http://dx.doi.org/10.1186/s13059-017-1319-7
http://paperpile.com/b/48fmZz/ffj7
http://paperpile.com/b/48fmZz/ffj7
http://dx.doi.org/10.1038/ng.1028
http://paperpile.com/b/48fmZz/wIsb
http://paperpile.com/b/48fmZz/wIsb
http://paperpile.com/b/48fmZz/wIsb
http://dx.doi.org/10.1038/ncomms10063
http://paperpile.com/b/48fmZz/MBTq
http://paperpile.com/b/48fmZz/MBTq
http://dx.doi.org/10.1093/bioinformatics/btw460
http://paperpile.com/b/48fmZz/iwn2
http://paperpile.com/b/48fmZz/iwn2
http://dx.doi.org/10.1093/bioinformatics/bty641
http://paperpile.com/b/48fmZz/pJaP
http://paperpile.com/b/48fmZz/pJaP
http://paperpile.com/b/48fmZz/pJaP
http://dx.doi.org/10.1038/nbt.2515
http://paperpile.com/b/48fmZz/NYvU
http://paperpile.com/b/48fmZz/NYvU
http://dx.doi.org/10.1038/nbt.3519
http://paperpile.com/b/48fmZz/EZCt
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

513

514
515
516

517
518

519
520
521

522
523

524
525
526

527
528
529

530
531

532
533

534
535
536

537
538

539
540
541

542
543

544
545
546

547
548

549

Genome Biol. 2014;15: R46. doi: 10.1186/gb-2014-15-3-r46

32. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy
classification using a reference genome database. Bioinformatics. 2013;29: 2253–2260.
doi: 10.1093/bioinformatics/btt389

33. Břinda K, Salikhov K, Pignotti S, Kucherov G. ProPhyle: An accurate, resource-frugal and deterministic DNA
sequence classifier. Zenodo; 2017. doi: 10.5281/zenodo.1045429

34. Corvelo A, Clarke WE, Robine N, Zody MC. taxMaps: comprehensive and highly accurate taxonomic
classification of short-read data in reasonable time. Genome Res. 2018;28: 751–758.
doi: 10.1101/gr.225276.117

35. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking Metagenomics Tools for Taxonomic Classification.
Cell. 2019;178: 779–794. doi: 10.1016/j.cell.2019.07.010

36. Sirén J. Indexing Variation Graphs. 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). Philadelphia, PA: Society for Industrial and Applied Mathematics; 2017. pp.
13–27. doi: 10.1137/1.9781611974768.2

37. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nat Biotechnol. 2018;36: 875–881.
doi: 10.1038/nbt.4227

38. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the Representation of De Bruijn Graphs. J
Comput Biol. 2015;22: 336–352. doi: 10.1089/cmb.2014.0160

39. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low
memory. Bioinformatics. 2016;32: i201–i208. doi: 10.1093/bioinformatics/btw279

40. Břinda K, Callendrello A, Ma KC, MacFadden DR, Charalampous T, Lee RS, et al. Rapid inference of
antibiotic resistance and susceptibility by genomic neighbour typing. Nature Microbiology. 2020.
doi: 10.1038/s41564-019-0656-6

41. Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics: status,
promises and challenges. Brief Bioinform. 2016; bbw089. doi: 10.1093/bib/bbw089

42. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic Epidemiology of
Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the
United States, 2000–2013. J Infect Dis. 2016;214: 1579–1587. doi: 10.1093/infdis/jiw420

43. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of
post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45: 656–663. doi: 10.1038/ng.2625

44. Croucher NJ, Finkelstein JA, Pelton SI, Parkhill J, Bentley SD, Lipsitch M, et al. Population genomic datasets
describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Scientific data. 2015;2:
150058. doi: 10.1038/sdata.2015.58

45. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 2009;10: R25. doi: 10.1186/gb-2009-10-3-r25

46. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics.

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/EZCt
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://paperpile.com/b/48fmZz/Ub1O
http://paperpile.com/b/48fmZz/Ub1O
http://paperpile.com/b/48fmZz/Ub1O
http://dx.doi.org/10.1093/bioinformatics/btt389
http://paperpile.com/b/48fmZz/hGKh
http://paperpile.com/b/48fmZz/hGKh
http://dx.doi.org/10.5281/zenodo.1045429
http://paperpile.com/b/48fmZz/mCvz
http://paperpile.com/b/48fmZz/mCvz
http://paperpile.com/b/48fmZz/mCvz
http://dx.doi.org/10.1101/gr.225276.117
http://paperpile.com/b/48fmZz/E1LI
http://paperpile.com/b/48fmZz/E1LI
http://dx.doi.org/10.1016/j.cell.2019.07.010
http://paperpile.com/b/48fmZz/eEI3
http://paperpile.com/b/48fmZz/eEI3
http://paperpile.com/b/48fmZz/eEI3
http://dx.doi.org/10.1137/1.9781611974768.2
http://paperpile.com/b/48fmZz/8hgJ
http://paperpile.com/b/48fmZz/8hgJ
http://paperpile.com/b/48fmZz/8hgJ
http://dx.doi.org/10.1038/nbt.4227
http://paperpile.com/b/48fmZz/jhyi
http://paperpile.com/b/48fmZz/jhyi
http://dx.doi.org/10.1089/cmb.2014.0160
http://paperpile.com/b/48fmZz/BWOb
http://paperpile.com/b/48fmZz/BWOb
http://dx.doi.org/10.1093/bioinformatics/btw279
http://paperpile.com/b/48fmZz/7vCD
http://paperpile.com/b/48fmZz/7vCD
http://paperpile.com/b/48fmZz/7vCD
http://dx.doi.org/10.1038/s41564-019-0656-6
http://paperpile.com/b/48fmZz/SGxm
http://paperpile.com/b/48fmZz/SGxm
http://dx.doi.org/10.1093/bib/bbw089
http://paperpile.com/b/48fmZz/LiPb
http://paperpile.com/b/48fmZz/LiPb
http://paperpile.com/b/48fmZz/LiPb
http://dx.doi.org/10.1093/infdis/jiw420
http://paperpile.com/b/48fmZz/Om01
http://paperpile.com/b/48fmZz/Om01
http://dx.doi.org/10.1038/ng.2625
http://paperpile.com/b/48fmZz/2h6g
http://paperpile.com/b/48fmZz/2h6g
http://paperpile.com/b/48fmZz/2h6g
http://dx.doi.org/10.1038/sdata.2015.58
http://paperpile.com/b/48fmZz/nY7A
http://paperpile.com/b/48fmZz/nY7A
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://paperpile.com/b/48fmZz/e9nk
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

550

551
552

553
554

555

556
557

558
559

560
561

562
563

564
565

566
567

568
569

570
571

572
573
574

575
576

577
578

579
580

581
582

583
584

2009;25: 1754–1760. doi: 10.1093/bioinformatics/btp324

47. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics. 2009;25: 1966–1967. doi: 10.1093/bioinformatics/btp336

48. Ferragina P, Manzini G. Opportunistic data structures with applications. Proceedings 41st Annual Symposium
on Foundations of Computer Science. IEEE Comput. Soc; 2000. pp. 390–398. doi: 10.1109/SFCS.2000.892127

49. Burrows M, Wheeler DJ. A Block-sorting Lossless Data Compression Algorithm. 1994.

50. Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics. 2012;28: 1838–1844. doi: 10.1093/bioinformatics/bts280

51. Merchant S, Wood DE, Salzberg SL. Unexpected cross-species contamination in genome sequencing projects.
PeerJ. 2014;2: e675. doi: 10.7717/peerj.675

52. Lu J, Salzberg SL. Removing contaminants from databases of draft genomes. PLoS Comput Biol. 2018;14:
e1006277. doi: 10.1371/journal.pcbi.1006277

53. Steinegger M, Salzberg SL. Terminating contamination: large-scale search identifies more than 2,000,000
contaminated entries in GenBank. bioRxiv. 2020. p. 2020.01.26.920173. doi: 10.1101/2020.01.26.920173

54. Guo H, Fu Y, Gao Y, Li J, Wang Y, Liu B. deGSM: memory scalable construction of large scale de Bruijn
Graph. IEEE/ACM Trans Comput Biol Bioinform. 2019; 1–1. doi: 10.1109/TCBB.2019.2913932

55. Pan T, Nihalani R, Aluru S. Fast de Bruijn Graph Compaction in Distributed Memory Environments.
IEEE/ACM Trans Comput Biol Bioinform. 2018; 1–1. doi: 10.1109/TCBB.2018.2858797

56. Břinda K. Novel computational techniques for mapping and classifying Next-Generation Sequencing data.
PhD Thesis, Université Paris-Est. 2016.

57. Rahman A, Medvedev P. Representation of k-mer sets using spectrum-preserving string sets. bioRxiv. 2020. p.
2020.01.07.896928. doi: 10.1101/2020.01.07.896928

58. Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy of
k-mer-based lowest common ancestor species identification. Genome Biol. 2018;19: 165.
doi: 10.1186/s13059-018-1554-6

59. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn Graphs. 2012. pp. 225–235.
doi: 10.1007/978-3-642-33122-0_18

60. Holley G, Wittler R, Stoye J. Bloom Filter Trie: an alignment-free and reference-free data structure for
pan-genome storage. Algorithms Mol Biol. 2016;11: 3. doi: 10.1186/s13015-016-0066-8

61. Solomon B, Kingsford C. Fast search of thousands of short-read sequencing experiments. Nat Biotechnol.
2016;34: 300–302. doi: 10.1038/nbt.3442

62. Muggli MD, Bowe A, Noyes NR, Morley PS, Belk KE, Raymond R, et al. Succinct colored de Bruijn graphs.
Bioinformatics. 2017;33: 3181–3187. doi: 10.1093/bioinformatics/btx067

63. Sun C, Harris RS, Chikhi R, Medvedev P. AllSome Sequence Bloom Trees. J Comput Biol. 2018;25: 467–479.
doi: 10.1089/cmb.2017.0258

29

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/e9nk
http://dx.doi.org/10.1093/bioinformatics/btp324
http://paperpile.com/b/48fmZz/p67s
http://paperpile.com/b/48fmZz/p67s
http://dx.doi.org/10.1093/bioinformatics/btp336
http://paperpile.com/b/48fmZz/FFFo
http://paperpile.com/b/48fmZz/FFFo
http://dx.doi.org/10.1109/SFCS.2000.892127
http://paperpile.com/b/48fmZz/Kz6c
http://paperpile.com/b/48fmZz/WgMv
http://paperpile.com/b/48fmZz/WgMv
http://dx.doi.org/10.1093/bioinformatics/bts280
http://paperpile.com/b/48fmZz/JRL7
http://paperpile.com/b/48fmZz/JRL7
http://dx.doi.org/10.7717/peerj.675
http://paperpile.com/b/48fmZz/Gptx
http://paperpile.com/b/48fmZz/Gptx
http://dx.doi.org/10.1371/journal.pcbi.1006277
http://paperpile.com/b/48fmZz/LFia
http://paperpile.com/b/48fmZz/LFia
http://dx.doi.org/10.1101/2020.01.26.920173
http://paperpile.com/b/48fmZz/ROzP
http://paperpile.com/b/48fmZz/ROzP
http://dx.doi.org/10.1109/TCBB.2019.2913932
http://paperpile.com/b/48fmZz/LvyQ
http://paperpile.com/b/48fmZz/LvyQ
http://dx.doi.org/10.1109/TCBB.2018.2858797
http://paperpile.com/b/48fmZz/j31L
http://paperpile.com/b/48fmZz/j31L
http://paperpile.com/b/48fmZz/1sPM
http://paperpile.com/b/48fmZz/1sPM
http://dx.doi.org/10.1101/2020.01.07.896928
http://paperpile.com/b/48fmZz/aDBw
http://paperpile.com/b/48fmZz/aDBw
http://paperpile.com/b/48fmZz/aDBw
http://dx.doi.org/10.1186/s13059-018-1554-6
http://paperpile.com/b/48fmZz/4cUY
http://paperpile.com/b/48fmZz/4cUY
http://dx.doi.org/10.1007/978-3-642-33122-0_18
http://paperpile.com/b/48fmZz/R9xq
http://paperpile.com/b/48fmZz/R9xq
http://dx.doi.org/10.1186/s13015-016-0066-8
http://paperpile.com/b/48fmZz/7LwR
http://paperpile.com/b/48fmZz/7LwR
http://dx.doi.org/10.1038/nbt.3442
http://paperpile.com/b/48fmZz/JNqQ
http://paperpile.com/b/48fmZz/JNqQ
http://dx.doi.org/10.1093/bioinformatics/btx067
http://paperpile.com/b/48fmZz/lsDq
http://paperpile.com/b/48fmZz/lsDq
http://dx.doi.org/10.1089/cmb.2017.0258
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

585
586

587
588

589
590

591
592

593
594

595
596

597
598

599
600

601
602
603

604

605
606
607

608

64. Pandey P, Almodaresi F, Bender MA, Ferdman M, Johnson R, Patro R. Mantis: A Fast, Small, and Exact
Large-Scale Sequence-Search Index. Cell Syst. 2018;7: 201–207.e4. doi: 10.1016/j.cels.2018.05.021

65. Yu Y, Liu J, Liu X, Zhang Y, Magner E, Lehnert E, et al. SeqOthello: querying RNA-seq experiments at scale.
Genome Biol. 2018;19: 167. doi: 10.1186/s13059-018-1535-9

66. Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index for the compacted colored de
Bruijn graph. Bioinformatics. 2018. pp. i169–i177. doi: 10.1093/bioinformatics/bty292

67. Harris RS, Medvedev P. Improved representation of sequence Bloom trees. Bioinformatics. 2019.
doi: 10.1093/bioinformatics/btz662

68. Holley G, Melsted P. Bifrost – Highly parallel construction and indexing of colored and compacted de Bruijn
graphs. bioRxiv. 2019; 1–19. doi: 10.1101/695338

69. Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and
viral genomic data. Nat Biotechnol. 2019;37: 152–159. doi: 10.1038/s41587-018-0010-1

70. Bingmann T, Bradley P, Gauger F, Iqbal Z. COBS: a Compact Bit-Sliced Signature Index. arXiv [cs.DB].
2019. Available: http://arxiv.org/abs/1905.09624

71. Manuel P. Revisiting path-type covering and partitioning problems. arXiv [math.CO]. 2018. Available:
http://arxiv.org/abs/1807.10613

72. Grad Y. Data for “Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins,
Macrolides, and Fluoroquinolones in the United States, 2000-2013.” Zenodo; 2019.
doi: 10.5281/ZENODO.2618836

73. Homer N. DWGSIM: Whole Genome Simulator for Next-Generation Sequencing. GitHub repository. 2010.

74. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences. Nat Methods. 2018;15: 475–476.
doi: 10.1038/s41592-018-0046-7

30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.01.12.903443doi: bioRxiv preprint

http://paperpile.com/b/48fmZz/1pqI
http://paperpile.com/b/48fmZz/1pqI
http://dx.doi.org/10.1016/j.cels.2018.05.021
http://paperpile.com/b/48fmZz/4v3p
http://paperpile.com/b/48fmZz/4v3p
http://dx.doi.org/10.1186/s13059-018-1535-9
http://paperpile.com/b/48fmZz/M9PH
http://paperpile.com/b/48fmZz/M9PH
http://dx.doi.org/10.1093/bioinformatics/bty292
http://paperpile.com/b/48fmZz/IkO4
http://paperpile.com/b/48fmZz/IkO4
http://dx.doi.org/10.1093/bioinformatics/btz662
http://paperpile.com/b/48fmZz/aTSW
http://paperpile.com/b/48fmZz/aTSW
http://dx.doi.org/10.1101/695338
http://paperpile.com/b/48fmZz/8JYV
http://paperpile.com/b/48fmZz/8JYV
http://dx.doi.org/10.1038/s41587-018-0010-1
http://paperpile.com/b/48fmZz/p7eU
http://paperpile.com/b/48fmZz/p7eU
http://arxiv.org/abs/1905.09624
http://paperpile.com/b/48fmZz/MB8I
http://arxiv.org/abs/1807.10613
http://paperpile.com/b/48fmZz/cgKj
http://paperpile.com/b/48fmZz/cgKj
http://paperpile.com/b/48fmZz/cgKj
http://dx.doi.org/10.5281/ZENODO.2618836
http://paperpile.com/b/48fmZz/IhoS
http://paperpile.com/b/48fmZz/v7o1
http://paperpile.com/b/48fmZz/v7o1
http://paperpile.com/b/48fmZz/v7o1
http://dx.doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1101/2020.01.12.903443
http://creativecommons.org/licenses/by-nc/4.0/

