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Abstract  

Motivation  

De   Bruijn   graphs   play   an   essential   role   in   computational   biology,   facilitating   rapid   alignment-free   comparison   of  

genomic   datasets   as   well   as   reconstruction   of   underlying   genomic   sequences.   Subsequently,   an   important   question  

is   how   to   efficiently   represent,   compress,   and   transmit   de   Bruijn   graphs   of   most   common   types   of   genomic   data  

sets,   such   as   sequencing   reads,   genomes,   and   pan-genomes.  

Results  

We   introduce   simplitigs,   an   efficient   representation   of   de   Bruijn   graphs   for   alignment-free   applications.   Simplitigs  

are   a   generalization   of   unitigs   and   correspond   to   spellings   of   vertex-disjoint   paths   in   a   de   Bruijn   graph.   We   present  

an   easy-to-plug-in   greedy   heuristic   for   their   computation   and   implement   it   in   a   program   called   ProphAsm.   We   use  

ProphAsm   to   compare   the   scaling   of   simplitigs   and   unitigs   on   a   range   of   genomic   datasets.   We   demonstrate   that  

simplitigs   are   superior   to   unitigs   in   terms   of   the   cumulative   sequence   length   as   well   as   of   the   number   of   sequences,  

and   that   are   sufficiently   close   to   theoretical   bounds   for   practical   applications.   Finally,   we   demonstrate   that,   when  

combined   with   standard   full-text   indexes,   simplitigs   provide   a   scalable   solution   for    k -mer   search.  

Availability  

ProphAsm   is   written   in   C++   and   is   available   under   the   MIT   license   from    http://github.com/prophyle/prophasm .  
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Introduction  

Advances   in   DNA   sequencing   started   the   golden   age   of   biology   in   which   phenomena   previously   unobservable   can  

be   studied   on   an   unprecedented   scale.   However,   sequencing   capacity   has   been   growing   faster   than   computer  

performance   and   memory,   and   also   faster   than   available   human   resources.   Nowadays   large   amounts   of   sequencing  

data   are   available,   of   a   decreasing   completeness   and   quality   though.   In   consequence,   traditional   sequence-based  

representations   and   sequence   alignment-based   techniques    [1–3]    have   become   less   suitable   for   real-life   scenarios  

due   to   the   space-   and   time-complexities   they   impose   as   well   as   due   to   their   sequence-oriented   nature   in   the   age   of  

datasets   exhibiting   graph   structure.  

  

An   example   is   given   by   bacterial   genomics.   Modern   large-scale   studies   of   bacterial   species   comprise   tens   of  

thousands   of   sequenced   isolates   (see,   e.g.,    [4–6] ).   However,   information   about   isolates’   genomes   is   almost   always  

incomplete,   as   sequencing   provides   only   partial   observations   of   the   genomes.   While   it   is   relatively   straightforward  

to   compute   draft   assemblies   of   bacterial   genomes,   completing   the   genomes   is   difficult.   Due   to   repetitive   regions,   a  

full   reconstruction   from   short   reads   is   mathematically   impossible   even   if   the   sequencing   reads   were   error-free    [7] .  

Long   reads   are   often   unavailable   and   reference   sequences   are   of   limited   applicability   due   to   the   high   variability   of  

bacteria   and   unclear   borders   between   species.   While   draft   assemblies   may   be   sufficient   for   many   analyses,   they   are  

often   not   an   ideal   universal   representation   for   a   multitude   of   reasons.   Most   importantly,   draft   assemblies   created  

using   different   assemblers   are   not   directly   comparable   and   this   can   introduce   false   differential   signals   into   studies  

[8–10] .   In   many   scenarios   it   is   therefore   desirable   to   move   data   analysis   closer   to   the   sequencing   technology   and  

work   with   graph   representations   obtained   directly   from   raw   reads   without   assembling   the   genomes.  

 

De   Bruijn   graphs   belong   to   the   most   popular   graph   representations   of   genomic   datasets.   They   are   defined   as  

directed   graphs     where   V   is   the   set   of   all    k -mers   (i.e.,   substrings   of   a   fixed   length   )   occurring   in   the V , )G = ( E k  
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dataset   with   edges   connecting   a   vertex   v   to   a   vertex   w   if   there   is   a   long   prefix-suffix   overlap   between   v   and   w. k − 1  

As   follows   from   the   definition,   a   de   Bruijn   graph   is   defined   by   the   underlying    k -mer   set   and   its   edges   can   be  

defined   implicitly   (unlike   the   edge-centric   definition   where    k -mer   sets   are   associated   with   edges    [11] ).   In   this   paper,  

we   consider   only   vertex-centric   graphs.  

  

De   Bruijn   graphs   feature   remarkable   properties.   First,   their   computation   from   data   is   easy   and   deterministic.  

Algorithms   for   enumerating   and   counting    k -mers   have   been   extensively   studied   and   many   programs   are   available  

[12–15] .   If   the   datasets   contain   sequencing   errors,   the   computation   may   also   involve   graph   cleaning.   This   aims   at  

removing   those    k -mers   that   are   the   result   of   sequencing   errors   and,   due   to   their   supposed   randomness,   are   expected  

to   be   rare.   Second,   if   k   is   chosen   appropriately,   de   Bruijn   graphs   can   capture   substantial   information   about   the  

entire   molecules   under   sequencing   as   these   correspond   to   some   walks   in   the   graphs,   provided   that   sequencing   was  

sufficiently   deep.   Third,   de   Bruijn   graphs   can   be   handled   easily,   which   simplifies   software   development   as   well   as  

dataset   analysis   and   interpretation.   These   properties   have   led   to   a   large   variety   of   applications   of   de   Bruijn   graphs.  

  

De   Bruijn   graphs   have   been   widely   studied   in   the   context   of   sequence   assembly    [16–18] .   Here,   their   construction   is  

typically   the   first   step   to   the   reconstruction   of   genomes   and   transcriptomes   under   sequencing   from   retrieved  

sequencing   reads.   Many   modern   assemblers   (e.g.,   SPAdes    [19] ,   ABySS    [20] ,   Velvet    [21] ,   Minia    [22] ,   and  

MEGAHIT    [23] )   follow   the   de-Bruijn-graph   paradigm.   

 

Alignment-free   sequence   comparison    [24]    is   another   major   application   of   de   Bruijn   graphs,   following   the   idea   that  

similar   sequences   share   common    k -mers,   and   comparing   de   Bruijn   graphs   thus   provides   a   good   measure   of  

sequence   or   dataset   similarity.   This   involves   applications   of   de   Bruijn   graphs   to   variant   calling   and   genotyping  

[25–29] ,   transcript   abundance   estimation    [30] ,   and   metagenomic   classification    [31–34] .   The   latter   also  

demonstrates   another   particularity   of   de   Bruijn   graphs   –   their   remarkable   ability   to   approximate   the   graph   structure  

of   pan-genomes.   Indeed,   reference   databases   of   bacterial   strains   are   often   highly   incomplete   and   noisy;  
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nevertheless,    k -mer-based   classifiers   perform   best   among   all   classifiers   in   inferring   abundance   profiles    [35] ,   which  

also   suggests   that   de   Bruijn   graphs   can   be   used   to   represent   pan-genomes.   Furthermore,   de   Bruijn   graphs   with   a  

large    k -mer   size   can   be   used   for   indexing   variation   graphs    [36,37] .  

 

The   importance   of   de   Bruijn   graphs   leads   us   to   a   key   problem:   their   space-efficient   representation.   While   general  

de   Bruijn   graphs   may   impose   large   space   requirements,   it   has   been   shown   that   those   of   real   datasets   can   be   highly  

compressible.   Indeed,   given   the   linearity   of   DNA   and   RNA   molecules   and   the   nature   of   sequencing,   genomic    k -mer  

datasets   exhibit   the   so-called   spectrum-like   property:   the   existence   of   long   strings   of   which   most   of   the    k -mers   are  

substrings    [11] .  

  

In   this   paper,   we   study   the   problem   of   representation   of   de   Bruijn   graphs   for   alignment-free   data   analysis.   Building  

on   previous   works    [38,39] ,   we   propose    simplitigs    as   an   effective   representation   of   de   Bruijn   graphs.   Simplitigs  

provide   a   “textual”   representation   of   the   graph,   in   the   form   of   a   set   of   sequences,   representing   each    k -mer   exactly  

once   and   facilitating   easy   indexing   with   standard   full-text   indexes.   Simplitigs   use   the   observation   that   in   practical  

applications,   such   graphs   typically   contain   long   paths.   In   contrast   to   unitigs,   which   are   the   paths   that   do   not   contain  

any   branching   nodes,   simplitigs   can   contain   branching   nodes.  

  

Finally,   we   present   ProphAsm,   a   tool   for   computing   simplitigs   for   a   given   dataset,   such   as   reads,   genomes,  

pan-genomes   or   metagenomes.   ProphAsm   proceeds   by   building   the   associated   de   Bruijn   graph   in   memory,  

followed   by   a   greedy   enumeration   of   maximal   vertex-disjoint   paths.   We   use   ProphAsm   to   demonstrate   that  

simplitigs   are   superior   to   unitigs   both   in   terms   of   the   cumulative   sequence   length   and   the   number   of   sequences,   and  

that   they   are   sufficiently   close   to   theoretical   bounds   in   practical   applications.   The   employed   heuristic   can   be   easily  

integrated   into   any   software   producing   de   Bruijn   graphs.   
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Results  

Simplitigs   as   an   efficient   representation   of   de   Bruijn   graphs  

We   developed   the   concept   of   simplitigs   to   efficiently   represent   de   Bruijn   graphs   for   alignment-free   applications  

( Figure   1 ).   Simplitigs   are   a   generalization   of   unitigs   and   correspond   to   spellings   of   vertex-disjoint   paths   covering   a  

given   de   Bruijn   graph;   consequently,   maximal   simplitigs   are   such   simplitigs   that   cannot   be   further   compacted   by  

merging   (Methods).   Note   that   unitigs   and    k -mers   are   also   simplitigs,   but   not   maximal,   in   general.   The   main  

conceptual   difference   between   maximal   simplitigs   and   maximal   unitigs   is   that   unitigs   are   limited   by   branching  

nodes   (which   are   crucial   for   genome   assembly),   whereas   simplitigs   are   not   limited   by   this   constraint.   This   allows  

for   further   compactification,   with   a   benefit   increasing   proportionally   to   the   amount   of   branching   nodes   in   the   graph.  

 

We   designed   a   greedy   heuristic   for   the   computation   of   simplitigs   ( Algorithm   1,    Methods).   At   every   step,   it   selects  

a    k -mer   from   the   current    k -mer   set   and   keeps   extending   it   forward   and   then   backward   as   long   as   possible,   while  

removing   the   already   used    k -mers   from   the   set.   This   process   is   repeated   until   all    k -mers   are   covered.   We   provide   an  

implementation   in   a   program   called   ProphAsm   ( github.com/prophyle/prophasm ).   The   heuristic   can   be   easily  

applied   by   any   other   software   that   outputs   de   Bruijn   graphs   or    k -mer   sets.  

 

In   the   following   sections,   we   use   ProphAsm   to   compare   maximal   simplitigs   with   maximal   unitigs   on   different   types  

of   data   sets.   
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A)  B)  

 

Figure   1.   Simplitigs   vs.   unitigs   and   uncompacted    k -mers.   A) Simplitig   subgraphs   of   de   Bruijn   graphs  

corresponding   to   individual   kmers   (1),   maximal   unitigs   (2),   and   maximal   simplitigs   (3).    Every   component   of   a  

simplitig   subgraph   corresponds   to   a   path   and   its   spelling   constitutes   a   simplitig   (see   Methods   for   more   details).  

B) Scheme   of   different   types   of   simplitig   subgraphs   with   respect   to   the   degree   of   compactification   of   the  

k -mer   set.    While   unitigs   (the   dark   grey   area)   correspond   to   compactification   along   non-branching   nodes   in   the  

associated   de   Bruijn   graph,   simplitigs   (the   light   and   dark   grey   areas)   can   also   contain   branching   nodes.   When  

starting   with   individual    k -mers,   every   step   of   compactification   decreases   the   number   of   sequences   by   1   and   the  

cumulative   length   of   sequences   by   .   Unlike   maximal   unitigs,   maximal   simplitigs   are   not   determined   uniquely k − 1  

and   they   may   have   even   different   cumulative   lengths   (corresponding   to   different   local   optima   of   compactification).  
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Algorithm   1.   Greedy   computation   of   maximal   simplitigs   for   a    k -mer   set.    In   an   iterative   fashion,   the   algorithm  

draws   a    k -mer   from   the   set   of   canonical    k -mers   ,   uses   it   as   a   new   simplitig,   and   then   keeps   extending   the K  

simplitig   forwards   and   backwards   as   long   as   possible,   while   removing   the   already   used   canonical    k -mers   from   . K  

Function    extend_simplitig_forward   (K,   simplitig):  

extending   =    True  

while    extending:  

extending   =    False  

q   =   suffix   (simplitig,   k-1),  

for    x    in    [‘A’,   ‘C’,   ‘G’,   ‘T’]:  

can_kmer   =   canonical(q   +   x)  

if    can_kmer    in    K:  

extending   =    True  

simplitig   =   simplitig   +   x  

K.remove   (can_kmer)  

break  

return    K,   simplitig  

  

Function    get_maximal_simplitig   (K,   initial_kmer):  

simplitig   =   initial_kmer  

K.remove   (initial_kmer)  

K,   simplitig   =   extend_simplitig_forward   (K,   simplitig)  

simplitig   =   reverse_completent   (simplitig)  

K,   simplitig   =   extend_simplitig_forward   (K,   simplitig)  

return    K,   simplitig  

  

Function    compute_simplitigs   (kmers):  

K   =   {}  

for    kmer    in    kmers:  

K.add   (canonical(kmer))  

simplitigs   =   {}  

while    |K|   >   0:  

initial_kmer   =   K.pop   ()  

K,   simplitig   =   get_maximal_simplitig   (K,   initial_kmer)  

simplitigs.add   (simplitig)  

return    simplitigs  
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Simplitigs   of   selected   model   organisms  

We   evaluated   the   simplitig   representation   on   individual   genomes   of   six   model   organisms   for   a   range   of    k -mer  

lengths   ( Figure   2,    Methods).   Understanding   the   scaling   based   on   the    k -mer   length   is   important   for   practical  

applications;   the    k -mer   size   is   typically   chosen   with   respect   to   the   used   sequencing   technology   and   genomic  

diversity.   The   range   for   our   experiments   was   selected   based   on   values   that   are   most   commonly   used   for  

alignment-free   sequence   comparison   (see,   e.g.,    [30,31,40] ).   For   each   organism   and   a    k -mer   length,   we   computed  

maximal   simplitigs   and   unitigs,   and   compared   them   in   terms   of   two   basic   characteristics:   the   number   of   sequences  

produced   and   their   cumulative   length.   Whereas   the   former   defines   the   number   of   records   to   be   kept,   the   latter  

determines   the   total   memory   needed.   Note   that   the   two   numbers   are   tightly   connected   (Methods,   (eq   1)).  

 

First,   we   analyzed   the   number   of   sequences   produced   ( Figure   2 ,   upper   plots).   We   observe   that   for   all   datasets,   as  

the    k -mer   size   increases,   the   number   of   simplitigs   grows   and   then   decreases   slowly.   The   number   of   unitigs   grows  

rapidly   at   the   beginning,   and   subsequently   drops   substantially,   approaching   the   number   of   simplitigs.   The  

cumulative   length   ( Figure   2 ,   lower   plots)   is   bounded   from   below   by   the   number   of    k -mers   in   the   genome   plus  

,   corresponding   to   the   theoretically   maximum   degree   of   compactification.   In   such   a   case,   all    k -mers   would k − 1  

occur   on   the   same   simplitig;   however,   this   is   not   attainable   for   most   datasets.   As   we   can   observe   and   (eq   1)  

explains,   the   shapes   of   the   curves   in   the   lower   plots   copy   the   upper   plots,   while   being   only   shifted   up   by   a   factor   of  

the   theoretical   lower   bound.   When   comparing   the   simplitig   and   unitig   curves,   we   can   observe   the   same   patterns   as  

for   the   number   of   sequences.  
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Figure   2.   Comparison   of   the   simplitig   and   unitig   representations   for   selected   model   organisms   and   a   range   of  

k -mers.    The   number   of   sequences   and   their   cumulative   length   for   representation   obtained   by   ProphAsm,   BCALM  

2   and   the   theoretical   lower   bound   for   six   model   organisms   ordered   by   their   genome   size:     S.   pneumoniae    (2,22Mbp),   

Escherichia   coli    (genome   length:   4.64   Mbp),    Saccharomyces   cerevisiae    (genome   length:   12.2   Mbp),  

Caenorhabditis   elegans    (genome   length:   100   Mbp),    Bombyx   mori    (genome   length:   482   Mbp),   and    Homo   sapiens  

(genome   length:   3.21   Gbp).   The   area   highlighted   in   grey   shows   the   discrepancy   between   the   maximal   unitigs   and  

the   theoretical   lower   bound.  
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Note   that   the   maxima   of   both   functions   occur   at   (or   are   very   close   to)   the   value   ,   where     is   the   genome Gk = log4 G  

size.   This   is   readily   explained,   as   for   values   of     up   to   ,   an   overwhelming   fraction   of   all      k -mers   belong k Glog4 4k  

to   the   genome,   which   makes   the   de   Bruijn   graph   branch   at   nearly   every   node.   As   a   consequence,   unitigs   are  

essentially   reduced   to   individual    k -mers,   and   their   number   grows   exponentially.   Starting   from   ,   the Gk = log4  

number   of    k -mers   is   bounded   by   the   genome   length,   and   they   begin   to   form   longer   non-branching   paths   in   the  

graph,   which   drives   down   the   number   of   unitigs.   Importantly,   however,   the   number   of   unitigs   and   their   total   size  

keep   being   much   larger   than   those   of   simplitigs   even   for   larger   values   of   ,   especially   for   large   eukaryotic k  

genomes.   

 

Overall,   we   observed   that   simplitigs   always   provide   better   performance   than   unitigs.   In   particular,   they   quickly  

approach   the   theoretical   lower   bounds   for   both   characteristics   tested.   Every   data   set   has   a   range   of    k -mer   lengths  

where   the   difference   between   simplitigs   and   unitigs   is   striking,   and   after   a   certain   threshold,   the   difference   almost  

vanishes.   While   for   short   genomes   this   threshold   is   located   at   smaller    k -mer   lengths   than   those   typically   used   in  

alignment-free   applications   (e.g.,     for    E.   coli ),   for   long   genomes   this   threshold   has   not   been   attained   on   the 7k ≈ 1  

tested   range   and   seems   to   be   substantially   shifted   towards   large    k -mers   (e.g.,    B.   mori ).   All   this   suggests   that   in  

practical   applications,   simplitigs   are   preferable   for   indexing   individual   genomes   and   the   benefit   is   likely   to   increase  

with   the   genome   size.  
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Simplitigs   of   bacterial   pan-genomes  

Computational   pan-genomics   has   recently   emerged   as   an   important   sub-branch   of   bioinformatics    [41] .   One   of   the  

motivations   is   the   analysis   of   sequencing   data   in   the   context   of   whole   species.   Species   are   then   represented   using  

so-called   pan-genome   representations,   i.e.,   reference   structures   including   all   within-species   variation.   De   Bruijn  

graphs   are   particularly   useful   as   pan-genomic   references   as   they   can   be   easily   constructed   from   a   variety   of  

different   data   types,   ranging   from   assembled   reference   sequences   to   the   original   sequencing   reads.   We   sought   to  

evaluate   the   usefulness   of   simplitigs   for   bacterial   pan-genomes,   which   are   particularly   challenging   due   to   their   high  

diversity   and   variability.  

  

We   compared   simplitig   and   unitig   representations   of   the    Neisseria   gonorrhoeae    pan-genome,   as   a   function   of   the  

number   of   genomes   included   for   the    k -mer   length   31   ( Figure   3 ,   Methods).   We   used   1,102   clinical   isolates   collected  

from   2000   to   2013   by   the   Centers   for   Disease   Control   and   Prevention’s   Gonococcal   Isolate   Surveillance   Project  

[42] ;   the   data   set   comprises   draft   assemblies   from   Illumina   HiSeq   reads.   As   expected,   as   the   number   of   isolates   and  

the   associated   variance   grow,   the   number   of   sequences   and   their   cumulative   length   grow   as   well,   both   for   maximal  

unitigs   and   simplitigs.   While   simplitigs   and   unitigs   perform   comparably   well   when   one   bacterial   genome   is  

included   (consistent   with    Figure   2 ),   the   improvement   of   simplitigs   over   unitigs   grows   in   the   cumulative   length   as  

more   genomes   are   included   and   eventually   stabilizes   at   a   factor   of   approximately   1.5   ( Figure   3 ,   bottom   plot).   On  

the   other   hand,   the   improvement   in   the   number   of   sequences   steadily   decreases   along   the   whole   range   and   stabilizes  

at   a   factor   of   approximately   3.0.  

  

To   verify   the   generality   of   our   findings,   we   repeated   the   experiment   with   the   same   dataset   for   the    k -mer   length   18  

and   also   with   616   pneumococcal   genomes   from   a   carriage   study   of   children   in   Massachusetts    [43,44]    with   the  

k -mer   lengths   18   and   31   (Methods).   In   all   cases,   the   results   were   qualitatively   the   same,   except   for   small   changes   in  

the   resulting   relative   improvements.  
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Figure   3.   Pan-genomic   scaling   of   maximal   simplitigs   and   maximal   unitigs   for    Neisseria   gonorrhoeae    and    k   =  

31.    The   first   two   plots   show   the   number   of   sequences   and   their   cumulative   length   as   a   function   of   the   number   of  

genomes,   respectively.   Lower   bounds   correspond   to   a   hypothetical   perfect   case   with   a   single   simplitig   containing  

all   the    k -mers.   The   third   plot   displays   the   relative   improvement   of   simplitigs   compared   to   unitigs.  
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Application   of   simplitigs   for    k -mer   search   in   bacterial   pan-genomes  

Any   sequence   data   can   be   searched   for    k -mers   using   full-text   indexes.   Importantly,   the   simplitig   representation   can  

accelerate   the    k -mer   lookup   in   datasets   with   redundant    k -mer   content   by   removing   these   redundancies,   which   we  

show   on   the   example   of    k -mer   look   up   in   bacterial   pan-genomes.  

 

The   most   popular   compact   and   powerful   indexes   supporting   fast   string   search   are   BWT   indexes    [48] ,   i.e.,   indexes  

based   on   the   Burrows-Wheeler   Transform    [49] ,   sometimes   also   referred   to   as   FM-indexes.   Many   highly   optimized  

implementations   were   developed   for   read   mapping   (e.g.,    [45–47] );   in   our   experiments   we   used   the   BWA   index  

[46] ,   following   the   widespread   use   and   superior   performance.   

Single   pan-genome  

We   first   evaluated   the   performance   of    k -mer   presence/absence   queries   on   a   single   pan-genome   ( Table   1,    Methods).  

We   used   the   same    N.   gonorrhoeae    draft   genome   assemblies   as   previously   to   build   a   gonococcal    k -mer   pan-genome  

for   five   different    k -mer   sizes   using   three   strategies:   by   merging   the   draft   assemblies,   by   computing   comprehensible  

unitigs,   and   by   computing   comprehensive   simplitigs   ( Table   1a ).   For   all   of   them,   we   constructed   BWT   indexes  

using   BWA    [46] ,   queried   ten   million    k -mers   using   BWA   fastmap    [50] ,   and   evaluated   the   resulting   memory   footprint  

and   query   performance   ( Table   1b ).  

 

Consistent   with   the   previous   experiments,   simplitigs   provided   a   clear   improvement   over   unitigs   ( Table   1a ).  

Maximal   simplitigs   improved   3.0×–4.9×   the   number   of   sequences   and   a   1.5×–2.1×   the   cumulative   sequence  

lengths.   Intuitively,   the   resulting   memory   footprint   of   BWA   should   be   proportional   to   the   cumulative   sequence  

length,   and   therefore,   the   improvement   in   memory   footprint   was   expected   to   be   similar   to   the   one   of   the   cumulative  

sequence   length.   Surprisingly,   the   memory   footprint   improved   substantially   more   (2.7×   –   5.6×)   ( Table   1b ).   To  

explain   this   phenomenon,   it   is   important   to   understand   that   the   underlying   full-text   engine   has   to   keep   information  
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about   individual   sequences   in   memory   as   separate   records   and   standard   read   mappers   are   optimized   for   low  

numbers   of   references.   As   the   number   of   reference   sequences   grows,   it   has   a   negative   impact   on   both   the   memory  

footprint   and   query   speed.   However,   since   simplitigs   provided   3.0×–4.9×   improvement   in   the   number   of   sequences  

over   unitigs,   it   helped   to   alleviate   this   overhead.   Overall,   the   comparatively   high   number   of   maximal   unitigs  

observed   throughout   our   experiments   ( Figures   1   and   2 )   provides   a   further   argument   for   using   simplitigs   as   the  

preferable   representation   of    k -mer   sets.  

 

 

Table   1.    K -mer   queries   for   the    N.   gonorrhoeae    pan-genome.      a)    Characteristics   of   the   obtained   unitigs   and  

simplitigs.    b)    Time   and   memory   footprint   of   BWA   for    k -mer   queries   (10M    k -mers).  

k  
Draft   assemblies  Unitigs  Simplitigs  

#   sequences  
[×10 3 ]  

cumulative  
length    [Mbp]  

#   sequences   
[×10 3 ]  

cumulative  
length    [Mbp]  

#   sequences  
[×10 3 ]  

cumulative  
length    [Mbp]  

15  

79  2,400  

440  9.3  90  4.4  
19  190  6.9  60  4.5  
23  180  7.7  59  5.0  
27  180  8.6  59  5.5  
31  180  9.6  60  6.0  

 

b)  

k  
Draft   assemblies  Unitigs  Simplitigs  

time    [sec]  mem    [MB]  time    [sec]  mem    [MB]  time    [sec]  mem    [MB]  

15  34  

3,600  

42  78  24  14  
19  50  35  37  28  12  
23  66  41  37  32  13  
27  81  48  38  37  14  
31  97  56  40  42  14  
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Multiple   pan-genomes  

Finally,   we   evaluated   the   performance   of   the   simplitig   representation   for   simultaneous   indexing   of   multiple  

bacterial   pan-genomes   ( Table   2 ,   Methods).   We   downloaded   all   complete   bacterial   genomes   from   Genbank   (as   of  

December   2019;   10,502   genomes   out   of   which   we   managed   to   download   9,570;   Methods).   We   restricted   ourselves  

to   the   complete   genomes   as   the   draft   genomes   in   Genbank   are   known   to   be   largely   impacted   by   contamination  

[51–53] .   We   grouped   individual   genomes   per   species   which   resulted   in   719   bacterial   pan-genomes.   We   then  

computed   simplitigs   and   unitigs   for   every   species,   merged   the   obtained   representations,   and   calculated   the   same  

statistics   as   previously   ( Table   2a );   we   performed   this   experiment   for   the    k -mer   lengths   18   and   31.   Finally,   we  

constructed   BWT   indexes   using   BWA,   and   measured   the   resulting    k -mer   lookup   performance   using   the   same   ten  

million    k -mers   as   in   the   previous   section   ( Table   2b ).  

 

In   this   case,   the   number   of   sequences   was   reduced   by   a   factor   of   4.2×   and   3.1×   and   the   cumulative   sequence   length  

by   a   factor   of   1.6×   and   1.3×   for     and   ,   respectively   ( Table   2a ).   For     simplitigs   provided   1.2× 8k = 1 1k = 3 1k = 3  

speedup   and   1.8×   improvement   in   memory   consumption   ( Table   2b );   for ,   the   speedup   could   not   be k 8  = 1  

evaluated   (Methods).   These   results   are   consistent   with   the   previous   sections   and   provide   further   evidence   that  

simplitigs   are   useful   not   only   for   storage,   but   also   for   fast    k -mer   lookup.   
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Table   2.    K -mer   queries   for   multiple   pan-genomes   indexed   simultaneously.    Bacterial   pan-genomes   were  

computed   from   the   complete   Genbank   assemblies.    a)    Characteristics   of   the   obtained   unitigs   and   simplitigs.    b)    Time  

and   memory   footprint   of   BWA   for    k -mer   queries   (10   million    k -mers).  

a)  

k  
Unitigs  Simplitigs  

#   sequences  
[×10 6 ]  

cumulative  
length    [Gbp]  #   sequences    [×10 6 ]  cumulative  

length    [Gbp]  
18  250  9.0  59  5.7  
31  110  8.6  36  6.4  

 

b)  

k  
Unitigs  Simplitigs  

time    [s]  mem    [GB]  time    [s]  mem    [GB]  

18  NA  21  146  15  
31  179  23  149  13  
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Discussion  

We   introduced   the   concept   of   simplitigs,   a   generalization   of   unitigs,   and   demonstrated   that   simplitigs   constitute   a  

compact,   efficient   and   scalable   representation   of   de   Bruijn   graphs   for   commonly   used   genomic   datasets.   The   two  

representations   share   many   similarities.   Both   represent   de   Bruijn   graphs   in   a   lossless   fashion,   correspond   to  

spelling   of   vertex-disjoint   paths,   and   preserve    k -mer   sets.   Being   text-based   and   stored   as   FASTA   files,   both   can   be  

easily   manipulated   using   standard   Unix   tools   and   indexed   using   full-text   indexes.   On   the   other   hand,   unlike   unitigs,  

general   simplitigs   are   not   expected   to   have   direct   biological   significance   as   neighboring   segments   of   the   same  

simplitig   may   correspond   to   distant   parts   of   the   same   DNA   molecule   or   even   to   different   ones.   Not   all   situations  

allow   unitigs   to   be   replaced   by   simplitigs,   but   where   applicable,   simplitigs   show   much   better   compression  

properties.  

 

We   provided   ProphAsm,   a   tool   implementing   a   greedy   heuristic   to   compute   maximal   simplitigs   from   a    k -mer   set.  

This   heuristic   is   easy   to   implement   in   any   software,   which   suggests   its   further   use   as   a   generic   method   for  

serialization   of    k -mer   sets.   The   simplicity   is   in   contrast   to   the   unitig   model,   where   the   complexity   of   the   bi-directed  

de   Bruijn   graph   model   may   complicate   debugging;   for   instance,   BCALM   2   does   not   support    k -mer   lengths   that   are  

divisible   by   four   (as   for   December   2019;   unsupported   since   2017).   As   a   downside,   the   naive   implementation   of   the  

ProphAsm   heuristic   using   a   standard   hashtable   may   run   into   memory   issues.   However,   the   memory   consumption  

can   be   readily   improved   using   more   advanced   data   structures,   similarly   to   what   has   been   done   for   tools   for   unitig  

computation    [39,54,55] .  

 

We   note   that   ProphAsm   is   a   spin-off   of   the   ProPhyle   software   ( https://prophyle.github.io/ ,    [33] )   for  

phylogeny-based   metagenomic   classification.   Simplitig   computation   is   an   important   component   of   ProPhyle    [56] ,  

allowing   efficient   indexing   of    k -mers   assigned   to   nodes   of   the   phylogenetic   tree.   Independently   of   the   present   work,  

simplitigs   were   also   recently   studied   in    [57]    under   the   name   “spectrum-preserving   strings”.  
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The   data   presented   in   this   paper   highlight   the   scaling   of   computational   resources   as   more   sequencing   data   become  

available    [58] .   The   studied   gonococcal   dataset   constitutes   a   relatively   complete   image   of   a   bacterial   population   in   a  

geographical   region   and   at   a   given   time   scale.   As   such,   it   can   be   used   to   model   the   “state   of   completion”   of    k -mer  

pan-genomes.   On   the   other   hand,   the   multiple   pan-genomes   experiment   provided   insights   about   the   resulting  

performance   when   a   large   number   of   pan-genomes   is   queried   simultaneously   using   a   BWT   index.   This   allows   us   to  

make   predictions   about   the   scaling   for   species   where   at   present   only   a   limited   number   of   assemblies   are   available,  

but   more   data   are   likely   to   be   generated   in   the   future.   Overall,   with   more   data   available,   the   comparative   benefits   of  

simplitigs   over   unitigs   grow.  

 

Besides   the   presented   advantages,   simplitigs   also   introduce   several   technical   challenges   related   to   the   ambiguity   (as  

illustrated   in    Figure   1 ).   Whereas   maximal   unitigs   are   uniquely   defined   (up   to   the   order   and   reverse  

complementing),   this   is   not   the   case   for   maximal   simplitigs.   In   the   presented   heuristic,   the   resulting   maximal  

simplitigs   and   their   characteristics   depend   on   the   order   in   which   the   initial    k -mers   are   drawn   from   the   underlying  

set.   At   every   iteration,   once   a   maximal   simplitig   is   built,   a   new    k -mer   is   drawn   from   the   graph   as   the   new   initial  

k -mer.   In   the   case   of   ProphAsm,   this   is   an   unordered   set   from   the   C++   standard   library,   which   makes   it   difficult   to  

implement   reproducibly   across   platforms.  

 

Modern   bioinformatics   applications   of   de   Bruijn   graphs   often   require   multiple   graphs   considered   simultaneously.  

The   resulting   structure   is   usually   referred   to   as   a   colored   de   Bruijn   graph    [25]    and   its   representations   have   been  

widely   studied   ( [59–70] ).   Even   though   we   touched   upon   this   setting   in   the   section   Multiple   pan-genomes,  

exploiting   the   similarity   between   individual   de   Bruijn   graphs   for   further   compression   in   simplitig-based   approaches  

is   to   be   addressed   in   future   work.  
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With   the   growing   interest   in    k -mer   indexing   of   all   genomic   datasets    [69] ,   we   anticipate   the   simplitig   representation  

to   be   valuable   as   a   generic   compact   representation   of   de   Bruijn   graphs.   
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Methods  

De   Bruijn   graphs  

All   strings   are   assumed   to   be   over   the   alphabet   .   A    k -mer   is   a   string   of   length   .   For   a   string A, , , }{ C G T k  

,   we   define     and   .   For   two   strings     and     of   length   at   least   ,   we ...ss = s1 n (s) ··pref k = s1 · sk (s) ··suf k = sn−k+1 · sn s t k  

define   the   binary   connectivity   relation     if   and   only   if   .   Given   a   set     of    k -mers,   the    de ts→k (s) (t)pref k = suf k K  

Bruijn   graph    of     is   the   directed   graph     with     and   .   This   definition   of   de K V , )G = ( E V = K (u, ) | u v}E = { v →k−1  

Bruijn   graphs   is    node-centric ,   as   nodes   are   identified   with    k -mers   and   edges   are   implicit.   Therefore,   we   can   use   the  

terms   “k-mer   set”   and   “de   Bruijn   graph”   interchangeably.  

Simplitigs  

Consider   a   set     of    k -mers   and   the   corresponding   de   Bruijn   graph   .   A    simplitig   graph      is K V , )G = ( E V , )G′ = ( E′  

a   spanning   subgraph   of     that   is   acyclic   and   the   in-degree   and   out-degree   of   any   node   is   at   most   one.   It   follows G  

from   this   definition   that   a   simplitig   graph   is   a   vertex-disjoint   union   of   paths   called    simplitigs .   A   simplitig   is   called  

maximal    if   it   cannot   be   extended   forward   or   backward   without   breaking   the   definition   of   simplitig   graph.   In   more  

detail,   a   simplitig     is   maximal   if   the   following   conditions   hold u ... uu1→k−1 2→k−1 →k−1 n  

● either     has   no   incoming   edges   in   ,   or   for   any   edge   ,     belongs   to   another   simplitig   and   it u1 G v, )( u1 ∈ E v  

is   not   its   last   vertex,  

● either     has   no   outgoing   edges   in   ,   or   for   any   edge   ,     belongs   to   another   simplitig   and   it   is un G u , )( n v ∈ E v  

not   its   first   vertex.  

A    unitig    is   a   simplitig     such   that   each   of   the   nodes   has   in-degree   1   in   graph   .   A u ... uu1→k−1 2→k−1 →k−1 n , ..,u2 . un G  

maximal   unitig    is   defined   similarly.  
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Greedy   computation   of   simplitigs  

The   problem   of   computing   maximal   simplitigs   that   are   optimal   in   the   cumulative   sequence   length   corresponds   to  

the   vertex-disjoint   path   cover   problem,   which   is   known   to   be   NP-hard   in   the   general   case    [71]    but   the   complexity   is  

unknown   for   de   Bruijn   graphs.   Throughout   this   paper,   a   greedy   approach   was   used   for   the   computation   of  

simplitigs   ( Algorithm   1 ).   Simplitigs   were   constructed   iteratively,   starting   from   an   arbitrary    k -mer   and   being  

extended   greedily   forwards   and   backwards   as   long   as   possible.   Note   that    Algorithm   1    works   in   the   bi-directed  

setting,   in   which   canonical    k -mers   are   used   instead   of   “standard”    k -mers.   A   formal   definition   of   bi-directed   de  

Bruijn   graphs   requires   complex   formalism   (see,   e.g.,  

https://github.com/GATB/bcalm/tree/master/bidirected-graphs-in-bcalm2 ).   Since   the   greedy   heuristic   works  

similarly   in   both   setups   and   does   not   require   the   extended   formalism,   we   resorted   to   the   uni-directed   model   for   the  

explanation   of   the   concepts.  

Comparing   simplitigs   with   unitigs  

We   compare   simplitigs   and   unitigs   in   terms   of   the   number   of   sequences   produced   and   their   cumulative   length.   Note  

that   these   numbers   are   related:   assuming   that   the   frequency   of   every    k -mer   is   1,   then  

um_seq_len  #kmers  (k ) #seqsc =   +   − 1 (eq   1)  

Finding   the   optimal   solutions   can   be   highly   expensive   computationally.   However,   we   can   easily   provide   the   lower  

bound   corresponding   to   the   maximum   possible   degree   of   compactification   (i.e.,   a   single kmers  k  1,# +   −    

simplitig   covering   all    k -mers).   In   the   situations   where   cumulative   sequence   length   of   simplitigs   approaches   this  

bound,   the   greedy   heuristic   presented   above   is   sufficient.  

Correctness   evaluation  

The   correctness   of   simplitigs   can   be   verified   using   an   arbitrary    k -mer   counter.   Simplitigs   are   correct   if   and   only   if  

every    k -mer   is   present   exactly   once   and   the   number   of   distinct    k -mers   is   the   same   as   in   the   original   datasets.   To  

verify   the   correctness   of   ProphAsm   outputs,   we   used   JellyFish   2    [12] .  
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Experimental   evaluation   –   model   organisms  

Reference   sequences   for   six   selected   model   organisms   were   downloaded   from   RefSeq:    S.   pneumoniae    str.   ATCC  

700669   (accession:   NC_011900.1,   length   2.22   Mbp),    Escherichia   coli    str.   K-12   (accession:   NC_000913.3,   length:  

4.64   Mbp),    Saccharomyces   cerevisiae    (accession:   NC_001133.9,   length:   12.2   Mbp),    Caenorhabditis   elegans  

(accession:   GCF_000002985.6,   length:   100   Mbp),    Bombyx   mori    (accession:   GCF_000151625.1,   length:   482   Mbp),  

and    Homo   sapiens    (HG38,    http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz ,   length:   3.21   Gbp).  

For   each   of   them,   simplitigs   and   unitigs   were   computed   using   ProphAsm   and   BCALM   2,   respectively,   for   the   range  

of    k -mer   sizes   [11,31].   As   the   BCALM   2   algorithm   does   not   support    k -mer   sizes   that   are   multiples   of   4,   the  

corresponding   experiments   had   been   excluded   from   the   evaluation.   When   applied   to   HG38,   both   programs   also  

experienced   in   a   single   case   of   an   integer   overflow   error:   BCALM   2   and   ProphAsm   failed   with     and 1k = 3  

  respectively. 6,k = 1  

Experimental   evaluation   –   pan-genomic   scaling  

First,   1,102   draft   assemblies   of    N.   gonorrhoeae    clinical   isolates   (collected   from   2000   to   2013   by   the   Centers   for  

Disease   Control   and   Prevention’s   Gonococcal   Isolate   Surveillance   Project    [42] ,   and   sequenced   using   Illumina  

HiSeq)   were   downloaded   from   Zenodo    [72] .   Second,   616   draft   assemblies   of    S.   pneumoniae    isolates   (collected  

from   2001   to   2007   for   a   carriage   study   of   children   in   Massachusetts,   USA    [43,44] ,   and   sequenced   using   Illumina  

HiSeq)   were   downloaded   from   the   SRA   FTP   server   using   the   accession   codes   provided   in   Table   1   in    [44] .   For   each  

of   these   datasets,   an   increasing   number   of   genomes   was   being   taken,   merged   and   simplitigs   and   unitigs   computed  

using   ProphAsm   and   BCALM   2,   respectively.   This   experiment   was   performed   for     and     To   avoid 8k = 1 1.k = 3  

excessive   resource   usage   the   functions   were   evaluated   at   points   in   an   increasing   distance   (for   intervals   [10,   100]  

and   [100,+∞]   only   multiples   of   5   and   20   were   evaluated,   respectively).  
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Experimental   evaluation   –   fulltext    k -mer   queries  

In   the   single   pan-genome   experiment,   the   same   1,102   assemblies   of    N.   gonorrhoeae    were   merged   into   a   single   file.  

ProphAsm   and   BCALM   2   were   then   used   to   compute   simplitigs   and   unitigs   from   this   file   for  

.   All   three   obtained   FASTA   files   (assemblies,   simplitigs,   and   unitigs)   were   used   to   construct 5, 19, 23, 27, 31k = 1          

a   BWA   index,   which   was   then   queried   for    k -mers   using   ‘bwa   fastmap   -l   {kmer-size}’.   The    k -mers   were   previously  

generated   from   the   same   pan-genome   using   DWGsim    [73]    (version   0.1.11,   with   the   parameters   ‘-z   0   -1   {kmer-size}  

-2   0   -N   10000000’).  

 

For   the   multiple   pan-genome   experiment,   a   list   of   available   bacterial   assemblies   was   downloaded   from  

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt .   For   all   assemblies   marked   as  

complete,   accessions   were   extracted   and   used   for   their   download   using   RSync   (files   matching  

‘*v?_genomic.fna.gz’).   The   assemblies   were   then   merged   and   the   obtained   master   file   then   used   for   computing  

simplitigs   and   unitigs   using   ProphAsm   and   BCALM   2.   The   obtained   simplitig   and   unitig   files   were   used   to  

construct   a   BWA   index   and   queried   for   the   same    k -mers   as   in   the   previous   section   using   ‘bwa   fastmap   -l  

{kmer-size}’.   The   times   of   loading   the   indexes   into   memory   were   measured   separately   and   subtracted   from   the  

query   times.   With   unitigs   for   ,   bwa   repeatedly   crashed   in   the   middle   of    k -mer   matching   for   an   unspecified 8k = 1  

reason.  

Computational   setup  

The   model   organism   experiment   was   performed   on   the   HMS   O2   research   high-performance   cluster   on   nodes   with  

120   GB   RAM.   All   other   experiments   were   performed   on   an   iMac   4.2   GHz   Quad-Core   Intel   Core   i7   with   40   GB  

RAM   and   an   SSD   disk.   The   reproducibility   of   computation   was   ensured   using   BioConda    [74] .   All   benchmarking  

was   performed   using   ProphAsm   v0.1.0   and   BCALM   2   v2.2.1   (commit   c8ac60252fa).   Times   and   memory   footprint  

were   measured   using   GNU   time.  
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Implementation   and   availability  

ProphAsm   is   written   in   C++   and   available   under   the   MIT   license   from    http://github.com/prophyle/prophasm .   The  

software   package   is   also   available   from   BioConda    [74] .  
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