
Accelerating Prediction of Chemical Shift of Protein
Structures on GPUs

Eric Wright1, Mauricio Ferrato1, Alex Bryer2, Robert Searles3, Juan Perilla2, Sunita
Chandrasekaran1*

1 Dept. of CIS, UDEL, Newark, DE, USA
2 Dept of Chemistry, UDEL, Newark, DE, USA
3 NVIDIA, CA, USA

*schandra@udel.edu

Abstract

Experimental chemical shifts (CS) from solution and solid state magic-angle-spinning
nuclear magnetic resonance spectra provide atomic level information for each amino
acid within a protein or protein complex. However, structure determination of large
complexes and assemblies based on NMR data alone remains challenging due the
complexity of the calculations. Here, we present a hardware accelerated strategy for the
estimation of NMR chemical-shifts of large macromolecular complexes based on the
previously published PPM One software. The original code was not viable for
computing large complexes, with our largest dataset taking approximately 14 hours to
complete. Our results show that the code refactoring and acceleration brought down the
time taken of the software running on an NVIDIA V100 GPU to 46.71 seconds for our
largest dataset of 11.3M atoms. We use OpenACC, a directive-based programming
model for porting the application to a heterogeneous system consisting of x86 processors
and NVIDIA GPUs. Finally, we demonstrate the feasibility of our approach in systems
of increasing complexity ranging from 100K to 11.3M atoms.

Author summary

Introduction 1

Computing architectures are ever-evolving. As these architectures become increasingly 2

complex, we need better software stacks that will help us seamlessly port real-world 3

scientific applications to these emerging architectures. It is also important to prepare 4

applications such that they can be readily retargeted to existing and future systems 5

without the need for drastic changes to the code itself. In an ideal world, we are looking 6

for solutions to create a performance productive software. However, this is not easy and 7

is sometimes an impossible task to accomplish. 8

Programming and optimizing for different architectures at a minimum often require 9

codes written in different programming languages. This presents an inherent difficulty 10

for software developers as they would need to develop and maintain an entire secondary 11

code base. For this reason, it is ideal to have a single programming standard that is 12

both portable to all architectures and maintains high performance. There are three 13

main reasons why this is difficult: (1) Sufficient parallelism is not exposed to hardware 14

architecture if the algorithm is structured in a way that it limits the level of 15

January 12, 2020 1/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


concurrency, (2) Features in a programming model are often hardware-facing and only 16

occasionally application/user-facing, and (3) to encompass different applications from 17

different fields of study would require the programming standard to have many levels of 18

abstraction in a sensible way. 19

There are currently three widely accepted solutions that software developers adapt 20

create performance portable applications: libraries, languages, and directives. Libraries 21

suffer from an inherent scope problem; they can only solve a specific subset of problems 22

and are only designed for a specific subset of architectures. Languages are flawed 23

because of the reasons previously outlined such as requiring the programmer to rewrite 24

significant amounts of code. Directives are special lines of code added alongside 25

standard code. These additional lines of code act as hints to the compiler that create 26

the necessary executables for the platform the code is being compiled upon. This 27

provides the portability that is important to software developers and in many 28

applications offer competitive performance when compared to its language-specific 29

counterpart. We believe that directives offer a reliable balance between performance 30

and portability and is what we will focus on for the remainder of this manuscript. 31

Two directive-based programming models that are widely popular are OpenMP [1,2] 32

and OpenACC [3]. OpenMP was created in 1997 as a shared-memory programming 33

model. Since 2013 (OpenMP 4.0 offloading), the model has begun to target 34

heterogeneous computing systems and is continuing to evolve. Applications that have 35

been deployed using the OpenMP offloading model include Pseudo-Spectral Direct 36

Numerical Simulation-Combined Compact Difference (PSDNS-CCD3D) [4] - a CFD 37

code for turbulent flow simulation, and Quicksilver [5] - a Monte Carlo Transport code. 38

OpenACC is the other directive-based programming model and was created in 2011. 39

The model has since been adopted widely by scientific developers, to port their large 40

scientific applications—sometimes production code—to heterogeneous architectures. 41

Some examples include ANSYS [6], GAUSSIAN [7], nuclear reactor code Minisweep [8] 42

(mini application of Denovo), and Icosahedral non-hydrostatic (ICON) [9]. Both 43

OpenMP and OpenACC allow incremental improvement to a given code base. 44

Directives also help create a re-usable code especially when the implementations can 45

target more than one type of architecture. 46

A few points to note: For the current manuscript, we have chosen the OpenACC 47

model after observing the OpenACC compiler’s (PGI implementation) maturity and 48

stability. GCC (by Mentor Graphics) also offers an OpenACC implementation, however 49

at the time of running this experiment the implementation was not yet mature enough. 50

Overview of the Scientific Problem: Chemical Shift Prediction 51

Nuclear magnetic resonance (NMR) is an experimental technique employed in numerous 52

fields such as chemistry, physics, biochemistry, biophysics and structural biology. A 53

chemical shift, the principle observable in NMR instrumentation, provides valuable 54

insight into protein secondary structure by allowing inference about conformation to be 55

drawn based on peak shift. Measured in parts per million (ppm), a chemical shift 56

describes the resonant frequency of a nucleus by comparing its observed frequency to 57

that of a standard reference in the presence of a magnetic field. Magnetic resonance 58

imaging, or MRI, is a familiar application of this powerful technology. 59

Computational tools to aid structure determination with NMR observables have 60

materialized into a rich domain of protein study and protein chemical shifts have been 61

used in varying ways to successfully elucidate structure. Commonly, these programs 62

employ perusal of scientific databases to establish and parse relationships between shifts, 63

sequence and structure [10–15]. The accuracy of such solutions is contingent upon the 64

availability of data, both from NMR experiment and sequence homology assignment, 65

the latter which treats the similarity among proteins according to commonalities in 66

January 12, 2020 2/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


their sequences and probable evolution. Thanks to projects such as the BioMagResBank 67

(BMRB) [16], NMR data is more available than ever before, engendering the feasibility 68

of semi-empirical prediction methods which utilize existing chemical shift data to 69

parameterize functional prediction models. 70

Obviating the need for database searching and sequence matching is a semi-empirical 71

method named PPM [17]. The goal of PPM was to provide a prediction model that 72

could operate over NMR conformational ensembles, predict chemical shifts from 73

structure and provide new dimensions of protein forcefield refinement, structural 74

refinement, and ensemble validation—a goal which PPM met aptly. In a departure from 75

ensemble analysis, PPM’s successor PPM One introduced a static-structure based 76

chemical shift prediction method that showed competitive accuracy with other 77

software [18]. 78

Motivation 79

Drawing from approximations of first principle calculations and trained with accessible 80

NMR data, the PPM One model considers chemical shift as a sum of discrete 81

descriptors. These descriptors, which quantify chemical shifts due to ring current effects, 82

hydrogen bond effects, dihedral angles, and more [17,18], take the form of relatively 83

simple— and differentiable—functions of the atomic coordinates. Considering these 84

factors, PPM One is a prime target for parallelization and optimization; to extend 85

practical application of the software to larger structures, populous NMR ensembles, or 86

molecular dynamics trajectories describing thousands of structures. While a suitable 87

candidate to this end, the original PPM One code was not written in a way to exploit 88

the massive compute power of accelerators such as GPUs. In our work, we have ported 89

the PPM One application to utilize parallel hardware, such as GPUs, using OpenACC. 90

Contributions 91

• Equip domain scientists with an accelerated version of PPM One that functions in 92

a realistic lab environment. 93

• Provide an accelerated chemical shift prediction code that can be adapted to large 94

Molecular Dynamics packages. 95

• Demonstrate the feasibility and scalability of our approach in systems of 96

increasing complexity ranging from 2,000 to 13,000,000 atoms. 97

Materials and methods 98

Preparing code for acceleration 99

Before accelerating or parallelizing a given code, a standard practice is to identify 100

computational hotspots that take the most execution time. This generally means that 101

we are looking for the largest or most intensive loops that exist within the application. 102

To find these portions of the code we use dedicated profiling tools, then we examine the 103

source code and determine if they are or could be refactored to be accelerator-friendly. 104

Identifying Computational Hotspot in Chemical Shift Prediction 105

The OpenACC-enabled profiler that comes packaged with the PGI compiler is called 106

PGPROF. PGPROF displays detailed information about CPU and GPU performance. 107

This information includes breakdowns by runtime, memory management, and 108

January 12, 2020 3/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


accelerator utilization. We used PGPROF to find functions in PPM One that are the 109

most time consuming and thus are the most important parallelization targets. The two 110

main functions (1) predict bb static ann() and (2) predict proton static new() 111

accounted for the majority of the total runtime (81.23% and 16.28% respectively). 112

These two functions are composed of other smaller functions that were also analyzed 113

using PGPROF. The most significant of these was get contact(), taking 35% of the 114

total runtime. We also observed that the time taken for get contact() scales well with 115

the dataset size. When profiling with large molecules (1+ million atoms), we found that 116

get contact() could take upwards of 80% of the programs total runtime. This makes 117

get contact() the most important sub-function and our first target for parallelization. 118

get select() follows with 23% of runtime, but it was optimized by our initial code 119

refactoring and will be outlined in Section 2.2. 120

Fig 1 shows the results of our profile when using a relatively small molecule (100,000 121

atoms). Some other functions that were found in the profile are getani() (18% runtime), 122

gethbond() (15% runtime), and getring() (12% runtime). Similar to get contact(), we 123

also found that gethbond() scales somewhat well with the size of the molecule, whereas 124

getani() and getring() do not scale as much. 125

Fig 1. Visual representation of function runtime breakdown before and
after serial optimizations

Inital Code Refactoring 126

Many of these functions in the original sequential code were written as a direct 127

implementation of their respective algorithms. Unfortunately, this caused issues when 128

attempting to move the code to accelerators. One of our first observations when using 129

the profiling tools was a significant redundancy of memory copying caused by calling 130

the getselect() function an unnecessary number of times. To fix this, we altered the 131

code to only call getselect() once, and then store and reuse the associated memory. 132

This optimization alone led to a 20% performance increase when running with some of 133

the datasets. 134

The next optimization we made was to a function called clear(). The clear() 135

function filters through a list of protons, removing any of them that do not work with 136

the algorithm. The way that the protons were removed from the list was simply 137

inefficient; the runtime of this function varied greatly depending on which dataset was 138

tested since some molecular structures require more protons to be filtered than others. 139

The clear() function could vary from taking seconds to taking hours depending on the 140

dataset alone. As a result, we rewrote clear() to use a more efficient list filter that 141

made the operation take only a few seconds or less for all structures. 142

Lastly, we ran into some problems with the C++ STL containers that were used 143

within the code. This mostly applied to the C++ standard vector class. To account for 144

this, many C++ vectors were replaced with basic arrays. This did not have any 145

meaningful impact on the performance on its own but allowed for more efficient 146

communication with the GPU. In other places, we interfaced with the vector containers 147

by using the built-in data() function to retrieve the underlying memory, allowing us to 148

move the data to the GPU without the need to use extra libraries or code rewrites. 149

Using OpenACC for Acceleration 150

This section begins with a brief overview of the OpenACC model followed by using 151

OpenACC for acceleration. 152

January 12, 2020 4/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overview of OpenACC model 153

As mentioned earlier, OpenACC is a directive-based programming model that targets 154

heterogeneous systems comprising of CPUs and accelerators. The model exposes three 155

levels of parallelism via gang, worker and vector parallelism that enables programmers 156

to abstract the architecture along with maximally utilizing the potential of multicore or 157

accelerators. Since the model is directive-based it allows the programmers to achieve 158

performance while almost maintaining the original source code base. Typically, 159

compute-intensive portions of the program often identified by profilers are offloaded to 160

the accelerators; a task orchestrated by the host by allocating memory on the 161

accelerator device, initiating data transfer, offloading the code to the accelerator, 162

passing arguments to the compute region, queuing the device code, waiting for 163

completion, transferring results back to the host, and deallocating memory. With often 164

only minor adjustments to memory management near parallelized compute regions, the 165

model accommodates both shared and discrete memory or any combination of the two 166

across any number of devices. The model has the capacity to expose the separate 167

memories through the use of a device data environment. 168

Acceleration 169

The following section highlights the usage of some of the OpenACC features for our 170

case. They are also the most commonly used features. 171

After ensuring that the code was accelerator-friendly, we began applying OpenACC 172

directives to the code. We tackled each function individually in order of importance, 173

meaning that we started with get contact() and finished with getring(). Everytime we 174

made a meaningful alteration we would re-run the code on a few different datasets and 175

compare the results to their non-accelerated baselines. This would let us know if we 176

made any errors along the way. 177

We decorated the major loops in the code with the OpenACC parallel loop directive. 178

This told the compiler to offload these loops on the GPU automatically. In some cases, 179

this alone was enough to see a speedup as some loops were embarassingly parallel. 180

However, in other cases we saw significant slowdown and sometimes wildly incorrect 181

code output compared to our serial baseline. These two problems were overcome by 182

using other OpenACC features. 183

To fix our incorrect output, we had to implement both the reduction clause and 184

atomic directive. The reduction clause is important to include in parallel loops that 185

contain race conditions. These are areas in the code that can result in errors when 186

multiple parallel units overwrite each other in shared memory. The reduction clause 187

prevents this by aligning memory reads/writes to produce a single coherent value. 188

The atomic directive fills a similar purpose. However, it is useful in situations where 189

many different race conditions could occur at different locations in memory. There was 190

only one situation in our code where a reduction clause was not sufficient, and that was 191

in the gethbond() function. 192

The other problem we overcame was handling overall slowdown in the code. This is 193

largely due to having too many memory transfers between the host and device. After 194

profiling our initial parallelization of the get contact() function, we saw that the 195

majority of the time was spent on transferring data between the host and device 196

memory. Originally, get contact() would be called many times throughout code 197

execution (hundreds to thousands of times, depending on the dataset). We added a loop 198

that would iterate over all of the individual get contact() calls, which gave us another 199

dimension to expose parallelism. This also means that no data would need to be 200

transferred between the different calls of get contact(). This change was beneficial 201

because out of all of the functions get contact() received the largest speed-up. The 202

January 12, 2020 5/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


speed-up will be discussed in more detail in Section 3.2. 203

To further elaborate on our memory management, we originally started with a 204

simple strategy; copy everything to the device that was needed immediately before the 205

loop starts, and then copy everything back to the CPU that will be needed elsewhere. 206

This strategy proved to perform badly as much of the data needed on the device was 207

being moved multiple times unnecessarily. We changed this to instead transfer the data 208

after the code’s preprocessing; before any of the main computation happens. Then, we 209

transfer the computation results results back to the host so that it can then be printed 210

to files. 211

Target Functions for Acceleration 212

Each of the functions we have identified are important to the overall chemical shift 213

prediction algorithm that PPM One implements. get contact() is one of the most 214

important functions in the PPM One algorithm due to the fact that it serves as the 215

principle interface between the input coordinates and secondary structure contact data. 216

get contact() iterates over all atomic positions, given in the molecule, and computes a 217

distance between each atom index and the successive atom index. Next, for each atom 218

in each residue in the PPM One input structure, the random-coil chemical shift for 219

atoms in that residue is applied as a fit parameter to normalize the calculated chemical 220

shift, ultimately ascertaining local flexibility given that more disordered structures (or 221

regions of the structure) will have chemical shifts tending towards the random-coil 222

chemical shift value. Since this procedure must be carried out exhaustively over the 223

entire structure and manages data from individual function calls and parameter tables, 224

it takes up a proportionally large piece of the total runtime. Adequate parallelization of 225

this function is of high importance as otherwise it poses a large sequential-bottleneck in 226

the total runtime of the program. 227

gethbond() computes the effect that backbone hydrogen bonding has on chemical 228

shift. PPM One describes this effect in terms of the inverse of donor-acceptor distance, 229

and applies a descriptor based on the angle formed between two different atom triples, 230

NHO and HOC ′. Since every amino acid has donor-acceptor pairs, this function gets 231

called with high frequency and involves distance and angle calculations for each donor 232

and acceptor relative to the specified atom triples, making gethbond() a meaningful 233

target for parallelization and performance-gain despite its relatively simple formulation. 234

The function getani() represents the compute region for calculating the chemical 235

shift due to magnetic anisotropy. Magnetic anisotropy quantifies the 236

directionally-dependent electromagnetic interactions between atoms. PPM One employs 237

this calculation for interactions between protons and peptide-amide groups consisting of 238

Oxygen (O), Carbon prime (C ′) and Nitrogen (N ). Additional calls are made to 239

getani() for side-chain OCN groups of Asparagine and Glutamine, OCO side-chain 240

groups of Glutamate and Aspartate, and the NCN side-chain of Arginine. The 241

formulation for the calculation used by PPM One is known as the “axially symmetric 242

model” [19], in accordance with McConnell’s characterization of anisotropy of peptide 243

groups [20]. At each function call, the distance between the queried proton and the 244

peptide-amide group is calculated. This, the vectors pointing from the proton to the 245

peptide-amide group, and from the proton to the normal vector of the peptide-amide 246

are used to compute an angle to pass into the magnetic anisotropy expression. 247

getring() encompasses two different functions in the PPM One program that 248

calculate the chemical shift due to ring-current effects; one function calculates 249

ring-current effects felt by Hydrogen atoms with respect to an aromatic residue, and the 250

other calculates the effect felt by backbone atoms adjacent to an aromatic residue. 251

PPM One considers the aromaticity of amino acids Phe, Tyr, His, Trp-5 and Trp-6. 252

The aromatic rings of these residues have important structural implications due to 253

January 12, 2020 6/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


electrostatic induction, as the circular movement of delocalized electrons (ie, current) in 254

conjugated Pi-bonding orbitals induces a magnetic field vector orthogonal to the plane 255

described by the atoms of the ring. To quantify this effect, the queried atom’s position 256

in cartesian space must be projected to a position on the 2D subspace defined by the 257

plane of the aromatic ring. Additionally, distances between all atoms in the ring are 258

calculated in this function each time it is called, making it costly to compute even 259

though its application is limited to only aromatic residues and atoms in their local 260

environment. 261

Results 262

This section will elaborate on the experimental setup and the results obtained. 263

Experimental Setup 264

For the multicore, V100 and P40 results shown in both the tables, we use the PSG 265

DGX-1b compute node consisting of Intel Xeon e5-2698 v4 20 cores and a single 266

NVIDIA Volta V100 card and another compute node that has a single P40. For the 267

serial runs shown in both the tables, since we could not get time on the PSG system, we 268

have used our internal University of Delaware’s local system that has an Intel x990 core. 269

Table 1. Results for Small to Large Dataset

100k atoms 1.5m atoms 5m atoms 6.8m atoms 11.3m atoms
Serial (Unoptimized) 167.11s 572.01s 3547.07s 7 hrs (esimate) 14 hrs (estimate)
Serial (Optimized) 53.57s 196.12s 2003.6s 1510.71s 2614.4s
Multicore 4.67s 32.82s 116.66s 153.8s 146.06s
P40 3.47s 17.15s 56.2s 78.57s 72.55s
V100 3.11s 13.62s 39.79s 49.63s 46.71s

Table 2. Results for Small Dataset

5m atoms Total Runtime get contact getani getring gethbond
Serial (Optimized) 2003.60 1177.61s 58.95s 22.53s 708.07s
Multicore 116.66s 51.73s 2.4s 0.6s 25.39s
P40 56.2s 1.69s 1.06s 0.5s 17.05s
V100 39.79s 0.2s 0.24s 0.18s 2.35s

Datasets 270

Fig 2 shows the different datasets used for our experiments, represented to scale. The 271

first tested dataset constitutes 100,000 atoms, roughly a quarter-turn, of the Dynamin 272

GTPase (structure E) extracted and written to their own Protein Database (PDB) file. 273

The next dataset tested, structure B, was the HIV-1 capsid assembly (CA) without 274

Hydrogens. This structure was tested without Hydrogens for two reasons: 1) to limit 275

the number of atoms for this test case and 2) to create a variety in the swath of tested 276

structures. In regard to the latter, this directly affects the PPM One algorithm’s 277

treatment of Hydrogen bond effects, tabulated through the gethbond() function. 278

Structures C and D correspond to two variants of the HIV-1 CA, Hydrogens included. 279

Structure C is the HIV-1 CA decorated with Cyclophilin A (CypA), structure D is the 280

same HIV-1 CA decorated with Myxovirus resistance protein B (MxB). These two 281

January 12, 2020 7/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


datasets, 5.1 and 5.9 million atoms respectively, were chosen as test cases of 282

heterogenous systems in addition to their increased atom counts compared to the 283

undecorated HIV-1 CA. The HIV-1 CA test-structures are shown next to their dimeric 284

building block 2KOD (structure A), illustrating the ranging scale and complexity of 285

atomistic representations of biomolecules. Finally, the largest two test systems were 286

built from the Dynamin GTPase. Structure E is a 6.8 million atom model, 14 turns, of 287

the GTPase. The largest structure, containing 13.6 million atoms, constitutes 28 turns 288

of the Dynamin GTPase. The secondary-structure of 2KOD was calculated using 289

Stride [21]. All images were rendered using VMD 1.9.4 and the co-distributed, Tachyon 290

parallel ray-tracing library [22,23]. 291

Fig 2. Datasets.

When running the PPM One application we noticed that the total runtime is 292

proportional to the number of atoms contained in the molecule. However, this is not the 293

only deciding factor. To accommodate for this we are mostly concerned with 294

performance increase of a molecule on different platforms and less concerned with 295

comparing different molecules to each other. 296

When observing Table 1 we see a significant decrease in total runtime when 297

comparing the serial (optimized) run to any of the accelerators. The multicore 298

performance was 18x faster than the single core results. The Volta V100 results were 299

56x faster than single core, and 3.1x faster than multicore. 300

When observing individual function performance we see more significant speedup 301

numbers as shown in Table 2. Comparing V100 results to the multicore results, the 302

get contact() function was sped up by 258x, gethbond() by 11x, getani() by 10x and 303

getring() by 3x. Such a high speed up is common for functions that are purely compute 304

intensive and hence can be easily optimized for GPUs. Since our major computational 305

functions are seeing this amount of increase, we predict that much of the remaining 306

total runtime is bound by other portions of the code such as file I/O or preprocessing. 307

We have improved these parts of the code significantly since the start of this project (as 308

seen when comparing the serial unoptimized numbers against the serial optimized). We 309

do not believe that too much more could be done to improve these aspects without 310

rewriting large portions of the code. 311

Validation of Results: Calculation RMSE 312

To calculate the Root Mean Square Error (RMSE), we ran the unaltered code on a 313

single core of a single CPU on 299 different PDB files. Then we reran each file with the 314

developed OpenACC code on the same CPU core, but now with GPU offloading. The 315

following numbers shown in Fig ?? are collected by using the RMSE formula on every 316

prediction of every file comparing the CPU and GPU output. 317

RMSE =

√∑n
i=1(Pi −Oi)2

n

Fig 3. RMSE calculation

Source code and Datasets 318

The PDB files have been previously published and can be found here [24]. The code 319

used for this manuscript is available via our GitHub 320

https://github.com/UD-CRPL/ppm one. 321

January 12, 2020 8/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion 322

PPM One is a code base that is not written with parallel processors and accelerators in 323

mind. The code base focuses on the chemical shift algorithm. This paper studies the 324

algorithm, profiles the serial code, identifies the hotspots to offload them to multicore 325

and accelerators that make a heterogeneous system. As the model allows the 326

programmer to insert hints to the code, it helps preserve the original code base to a 327

large extent. Such an approach is highly appreciated by domain experts who do not 328

need to learn to nitty-gritties of the architecture before applying such directive-based 329

model, OpenACC. 330

Scientifically, obtaining these predicted chemical shift values are important for 331

researchers, and if they must wait hours or even days to obtain this information, it can 332

not be used efficiently as a lab utility. Accelerating this program allows users to receive 333

chemical shift information on extremely large data sets. Most importantly, it enables 334

researchers to run these simulations several times every hour, greatly expanding the 335

practical use of this algorithm. The accelerated code can also be called within large 336

molecular dynamics packages allowing the algorithm to be expanded into other codes 337

and applications. 338

Acknowledgments 339

We gratefully acknowledge the support of NVIDIA PSG Cluster with the donation of the
P100 and V100 GPUs used for this research. We are grateful to NVIDIA Corporation
for the donation of NVIDIA GPU such as Tesla K40 and a GTX Titan X (Maxwell)
GPU cards via the NVIDIA hardware grant program. This material is based upon work
supported by the National Science Foundation (NSF) under Grant No. 1814609. The
work is also supported by the NIGMS and NIAID (P50GM082251 and P30GM110758).
This work used the Extreme Science and Engineering Discovery Environ- ment(XSEDE),
which is supported by the National Science Foundation (NSF grant OCI-1053575).

References

1. Chapman B, Jost G, Van Der Pas R. Using OpenMP: portable shared memory
parallel programming. vol. 10. MIT press; 2008.

2. Van der Pas R, Stotzer E, Terboven C. Using OpenMP?The Next Step: Affinity,
Accelerators, Tasking, and SIMD. MIT Press; 2017.

3. Chandrasekaran S, Juckeland G. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional; 2017.

4. Clay MP, Buaria D, Yeung PK. Improving Scalability and Accelerating Petascale
Turbulence Simulations Using OpenMP; 2017.
http://openmpcon.org/conf2017/program/.

5. Richards DF, Bleile RC, Brantley PS, et al. Quicksilver: A Proxy App for the
Monte Carlo Transport Code Mercury. In: IEEE Cluster. IEEE; 2017. p. 866–873.

6. Sathe S. Accelerating the ANSYS Fluent R18.0 Radiation Solver with OpenACC;
2016. https://bit.ly/2Pk0Nea.

7. Gomperts R. Quantum Chemistry on GPUs; 2016. https://bit.ly/2Pc84wB.

January 12, 2020 9/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

http://openmpcon.org/conf2017/program/
https://bit.ly/2Pk0Nea
https://bit.ly/2Pc84wB
https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. Searles R, Chandrasekaran S, Joubert W, Hernandez O. Abstractions and
Directives for Adapting Wavefront Algorithms to Future Architectures. In: 5th
PASC. ACM; 2018.

9. Sawyer W, Zaengl G, Linardakis L. Towards a multi-node OpenACC
Implementation of the ICON Model. In: EGU General Assembly Conference
Abstracts. vol. 16; 2014.

10. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for
predicting protein backbone torsion angles from NMR chemical shifts. Journal of
Biomolecular NMR. 2009;44(4):213–223. doi:10.1007/s10858-009-9333-z.

11. Shen Y, Bax A. In: Cartwright H, editor. Protein Structural Information Derived
from NMR Chemical Shift with the Neural Network Program TALOS-N; 2015. p.
17–32.

12. XP X, Case D. Automated prediction of 15N, 13Calpha, 13Cbeta, and 13C’
chemical shifts in proteins using a density functional database. Journal of
Biomolecular NMR. 2001; p. 321–333.

13. Seavey BR, Farr EA, Westler WM, Markley JL. A relational database for
sequence-specific protein NMR data. Journal of Biomolecular NMR.
1991;1(3):217–236. doi:10.1007/BF01875516.

14. Shen Y, Bax A. Protein backbone chemical shifts predicted from searching a
database for torsion angle and sequence homology. Journal of Biomolecular NMR.
2007;38(4):289–302. doi:10.1007/s10858-007-9166-6.

15. Kohlhoff KJ, Robustelli P, Cavalli A, et al. Fast and Accurate Predictions of
Protein NMR Chemical Shifts from Interatomic Distances. Journal of the
American Chemical Society. 2009;131(39):13894–13895. doi:10.1021/ja903772t.

16. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al.
BioMagResBank. Nucleic Acids Research. 2007;36:D402–D408.

17. Li DW, Brüschweiler R. PPM: a side-chain and backbone chemical shift predictor
for the assessment of protein conformational ensembles. Journal of Biomolecular
NMR. 2012;54(3):257–265. doi:10.1007/s10858-012-9668-8.

18. Li D, Brüschweiler R. PPM One: a static protein structure based chemical shift
predictor. Journal of Biomolecular NMR. 2015;62(3):403–409.
doi:10.1007/s10858-015-9958-z.

19. Osapay K, Case DA. A new analysis of proton chemical shifts in proteins.
Journal of the American Chemical Society. 1991;113(25):9436–9444.

20. McConnell HM. Theory of Nuclear Magnetic Shielding in Molecules. I.
Long-Range Dipolar Shielding of Protons. The Journal of Chemical Physics.
1957;27(1):226–229.

21. Frishman D, Argos P. Knowledge-based secondary structure assignment.
Proteins: structure, function and genetics. 1995;23:566–579.

22. Humphrey W, Dalke A, Schulten K. VMD. Journal of Molecular Graphics.
1996;14:33–38.

23. Stone J. An Efficient Library for Parallel Ray Tracing and Animation. Computer
Science Department, University of Missouri-Rolla; 1998.

January 12, 2020 10/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


24. Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, et al.
Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature.
2018;560(7717):258.

References

1. Chapman B, Jost G, Van Der Pas R. Using OpenMP: portable shared memory
parallel programming. vol. 10. MIT press; 2008.

2. Van der Pas R, Stotzer E, Terboven C. Using OpenMP?The Next Step: Affinity,
Accelerators, Tasking, and SIMD. MIT Press; 2017.

3. Chandrasekaran S, Juckeland G. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional; 2017.

4. Clay MP, Buaria D, Yeung PK. Improving Scalability and Accelerating Petascale
Turbulence Simulations Using OpenMP; 2017.
http://openmpcon.org/conf2017/program/.

5. Richards DF, Bleile RC, Brantley PS, et al. Quicksilver: A Proxy App for the
Monte Carlo Transport Code Mercury. In: IEEE Cluster. IEEE; 2017. p. 866–873.

6. Sathe S. Accelerating the ANSYS Fluent R18.0 Radiation Solver with OpenACC;
2016. https://bit.ly/2Pk0Nea.

7. Gomperts R. Quantum Chemistry on GPUs; 2016. https://bit.ly/2Pc84wB.

8. Searles R, Chandrasekaran S, Joubert W, Hernandez O. Abstractions and
Directives for Adapting Wavefront Algorithms to Future Architectures. In: 5th
PASC. ACM; 2018.

9. Sawyer W, Zaengl G, Linardakis L. Towards a multi-node OpenACC
Implementation of the ICON Model. In: EGU General Assembly Conference
Abstracts. vol. 16; 2014.

10. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for
predicting protein backbone torsion angles from NMR chemical shifts. Journal of
Biomolecular NMR. 2009;44(4):213–223. doi:10.1007/s10858-009-9333-z.

11. Shen Y, Bax A. In: Cartwright H, editor. Protein Structural Information Derived
from NMR Chemical Shift with the Neural Network Program TALOS-N; 2015. p.
17–32.

12. XP X, Case D. Automated prediction of 15N, 13Calpha, 13Cbeta, and 13C’
chemical shifts in proteins using a density functional database. Journal of
Biomolecular NMR. 2001; p. 321–333.

13. Seavey BR, Farr EA, Westler WM, Markley JL. A relational database for
sequence-specific protein NMR data. Journal of Biomolecular NMR.
1991;1(3):217–236. doi:10.1007/BF01875516.

14. Shen Y, Bax A. Protein backbone chemical shifts predicted from searching a
database for torsion angle and sequence homology. Journal of Biomolecular NMR.
2007;38(4):289–302. doi:10.1007/s10858-007-9166-6.

15. Kohlhoff KJ, Robustelli P, Cavalli A, et al. Fast and Accurate Predictions of
Protein NMR Chemical Shifts from Interatomic Distances. Journal of the
American Chemical Society. 2009;131(39):13894–13895. doi:10.1021/ja903772t.

January 12, 2020 11/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

http://openmpcon.org/conf2017/program/
https://bit.ly/2Pk0Nea
https://bit.ly/2Pc84wB
https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al.
BioMagResBank. Nucleic Acids Research. 2007;36:D402–D408.

17. Li DW, Brüschweiler R. PPM: a side-chain and backbone chemical shift predictor
for the assessment of protein conformational ensembles. Journal of Biomolecular
NMR. 2012;54(3):257–265. doi:10.1007/s10858-012-9668-8.

18. Li D, Brüschweiler R. PPM One: a static protein structure based chemical shift
predictor. Journal of Biomolecular NMR. 2015;62(3):403–409.
doi:10.1007/s10858-015-9958-z.

19. Osapay K, Case DA. A new analysis of proton chemical shifts in proteins.
Journal of the American Chemical Society. 1991;113(25):9436–9444.

20. McConnell HM. Theory of Nuclear Magnetic Shielding in Molecules. I.
Long-Range Dipolar Shielding of Protons. The Journal of Chemical Physics.
1957;27(1):226–229.

21. Frishman D, Argos P. Knowledge-based secondary structure assignment.
Proteins: structure, function and genetics. 1995;23:566–579.

22. Humphrey W, Dalke A, Schulten K. VMD. Journal of Molecular Graphics.
1996;14:33–38.

23. Stone J. An Efficient Library for Parallel Ray Tracing and Animation. Computer
Science Department, University of Missouri-Rolla; 1998.

24. Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, et al.
Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature.
2018;560(7717):258.

January 12, 2020 12/11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903468
http://creativecommons.org/licenses/by-nc-nd/4.0/

