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Abstract

Intensity-based likelihood functions in crystallographic applications have the poten-

tial to enhance the quality of structures derived from marginal diffraction data. Their

usage however is complicated by the ability to efficiently compute these targets func-

tions. Here a numerical quadrature is developed that allows for the rapid evaluation

of intensity-based likelihood functions in crystallographic applications. By utilizing a

sequence of change of variable transformations, including a non-linear domain com-

pression operation, an accurate, robust and efficient quadrature is constructed.
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1. Introduction

The estimation of model parameters from experimental observations plays a central

role in the natural sciences, and the use of likelihood-based methods have shown to

yield robust estimates of ’best guess’ values and their associated confidence inter-

vals (Rossi, 2018). Maximum-likelihood estimation goes back to sporadic use in the

early 1800s by Gauss (Gauss, 1809; Gauss, 1816; Gauss, 1823) and Hagen (1867),

and was further developed by Fisher (1915), Wilks (1938) and Neyman and Pearson

(Neyman et al., 1948; Pearson, 1970). In the crystallographic community, Beu et al.

(1962) were the first to explicitly use maximum likelihood estimation, applying it on

lattice parameter refinement in powder diffraction. In a late reaction to this work,

Wilson (1980) states that ”the use of maximum likelihood is unnecessary, and open

to some objection”, and subsequently recasts the work of Beu et al. (1962) into a

more familiar least-squares description. The use of maximum likelihood based meth-

ods in structural sciences really took off after making significant impacts in the anal-

ysis of macromolecules. For these type of samples structure solution and refinement

problems were often problematic due to very incomplete and/or low quality starting

models, making standard least squares techniques under perform. In the 1980’s and

1990’s, likelihood based methods became mainstream, culminating in the ability to

routinely determine and refine structures that were previously thought of as problem-

atic (Lunin & Urzhumtsev, 1984; Read, 1986; Bricogne & Gilmore, 1990; de La Fortelle

& Bricogne, 1997; Pannu & Read, 1996; Murshudov et al., 1997). A key ingredient to

the success was the development of cross-validation techniques to reduce bias in the

estimation of hyper parameters that govern behavior of the likelihood functions (Lunin

& Skovoroda, 1995; Pannu & Read, 1996). In the beginning of the 21st century, Read

and coworkers extended the likelihood formalism to molecular replacement settings

as well, resulting in a significant improvement in the ability to solve structures from
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marginal starting models (McCoy et al., 2005; Storoni et al., 2004; Read, 2001). The

first use of approximate likelihood methods for the detection of heavy atoms from

anomalous or derivative data originates from Terwilliger & Eisenberg (1983) who

used an origin removed Patterson correlation function for substructure solution, an

approach that is equivalent to a second-order approximation of a Rice-based likelihood

function (Bricogne, 1997). A more recent development is the use of a more elaborate

likelihood formalism in the location of substructures (Bunkóczi et al., 2015), showing

a dramatic improvement in the ability to locate heavy atoms.

As the above examples illustrate, impressive progress has been made by the applica-

tion of likelihood based methods to a wide variety of crystallographic problems. In all

scenarios described, key advances were made by deriving problem-specific likelihood

functions and applying them on challenging structure determination problems. In the

majority of those cases though, a thorough treatment of experimental errors have

taken only a secondary role, resulting in approximations that work well in cases of

medium or low noise settings. The principal challenge in the handling of random noise

in crystallographic likelihood functions, is how to efficiently convolute Rice-like distri-

bution functions modeling the distribution of a structure factor from an incomplete

model with errors with a normal-like distribution that models experimental noise.

In this manuscript we develop quadrature approaches to overcome said difficulties.

The approach derived has direct applications in structure refinement and molecular

replacement, while the general methodology can be extended to other crystallographic

scenarios as well. In the remainder of this paper we will provide a general introduc-

tion into likelihood based methods, list relevant background into numerical integration

techniques, develop a adaptive quadrature approach, apply it to a Rice-type likelihood

functions and validate its results.
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1.1. Maximum Likelihood Formalism

The estimation of model parameters θθθ given some data set X = {x1, · · · , xj , · · · , xN}

via the likelihood formalism is done in the following manner. Given the probability

density function (PDF) f(xj |θθθ) of a single observation xj given a model parameter θθθ,

the joint probability of the entire data set is, under the assumption of independence

of the observations, equal to the product of the individual PDFs:

f(X|θθθ) =
N∏
j=1

f(xj |θθθ) (1)

The probability of the data X given the model parameters θθθ is known as the likelihood

of the model parameters given the data:

L(θθθ|X ) = f(X|θθθ) (2)

A natural choice for the best estimate of the model parameters is done by finding

that θθθ that maximizes the likelihood function. This choice is called the maximum

likelihood estimate (MLE). The likelihood function itself L(θθθ|X ) can be seen as a

probability distribution, allowing one to obtain confidence limit estimates on the MLE

(Rossi, 2018). The determination of the MLE is typically performed by optimizing the

log-likelihood, as this is numerically more stable:

logL(θθθ|X ) =
N∑
j=1

log f(xj |θθθ) (3)

Often, the distribution needed for the likelihood function has to be obtained via a pro-

cess known as marginalization, in which a so-called nuisance parameter is integrated

out:

f(x|θθθ) =

∫ ∞
−∞

f(x, y|θθθ)dy (4)

where

f(x, y|θθθ) = f(x|θθθ)f(y|x) (5)
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Depending on the mathematical form of the distributions involved, this marginal-

ization can range from anywhere between a trivial analytical exercise, to a numeri-

cally challenging problem. In likelihood functions in a crystallographic setting, this

marginalization is required to take into account the effects of experimental noise, and

its efficient calculation the focus of this communication.

1.2. Motivation

The most common likelihood function used in crystallographic applications specifies

the probability of the true structure factor amplitude given the value of a calculated

structure factor originating from a model with known imperfections (Sim, 1959; Luz-

zati, 1952; Woolfson, 1956; Lunin & Urzhumtsev, 1984):

fa(F |FC , α, β) =
2F

εβ
exp

[
−F

2 + α2F 2
C

εβ

]
I0

(
2αFFC
εβ

)
(6)

fc(F |FC , α, β) =

(
2

επβ

)1/2

exp

[
−F

2 + α2F 2
C

2εβ

]

× cosh

(
2αFFC

2εβ

)
(7)

fa and fc are the distributions for acentric and centric reflections, ε is a symme-

try enhancement factor, F the true structure factor amplitude, FC is the current

model structure factor amplitude, while α and β are likelihood distribution parame-

ters (Lunin & Urzhumtsev, 1984). For the refinement of structures given experimental

data, the likelihood of the model-based structure factor amplitudes given the experi-

mental data is needed, and can be obtained from a marginalization over the unknown,

error-free structure factor amplitude:

L(FC |Io) = f(Io|FC , α, β, σ2I )

=

∫ ∞
0

f(Io|σ2I , F )f(F |FC , α, β)dF (8)

where f(F |FC , αβ) is given by expressions (6) or (7) and f(Io|σ2I , F ) is equal to a

normal distribution with mean F 2 and variance σ2I . This integral is equivalent to
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the MLI target function derived by Pannu & Read (1996). Because there is no fast

converging series approximation or simple closed form analytical expression for this

integral, various approaches have been developed, excellently summarized by Read

& McCoy (2016), including a method-of-moments type approach to find reasonable

analytical approximations to the intensity-based likelihood function.

In this work, we investigate the use of numerical integration methods to obtain

high-quality approximations of integral (8), in the hope that these target functions

can provide an additional performance boost when working with very marginal data,

such as obtained from time-resolved serial crystallography or Free Electron Laser

data in which experimental errors are typically worse than obtained using standard

rotation-based methods (Brewster et al., 2019). Furthermore, high-quality datasets

are rarely resolution limited by the diffraction geometry alone, indicating that a lot

more marginal data is readily available that can potentially incredase the quality of

the final models if appropriate target functions are available. In the remainder of

this manuscript, we develop and compare a number of numerical integration schemes

aimed at rapidly evaluating an intensity based likelihood functions and its derivatives

that take into account the presence of experimental errors.

2. Methods

In order to evaluate a variety numerical integration schemes and approximation meth-

ods, the integration is first recast into a normalized structure factor amplitudes E and

normalized intensities Z framework, and the use of the σA formulation of the dis-

tributions involved, assuming a P1 space group, such that ε = 1 (Read, 1997). The

joint probability distribution of the error-free structure factor amplitude E and exper-

imental intensity Zo, given the calculated normalized structure factor EC , the model
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quality parameter σA and the standard deviation of the observation σZ reads:

fa(E,Zo|EC , σA, σ2Z) =
2E

1− σ2A
exp

[
−E

2 + σ2AE
2
C

1− σ2A

]

× I0

(
2σAEEC
1− σ2A

)

× 1√
2πσ2Z

exp

[
−(E2 − Zo)2

2σ2Z

]
(9)

for acentric reflections, and

fc(E,Zo|EC , σA, σ2Z) =

(
2

π(1− σ2A)

)1/2

exp

[
−E

2 + σ2AE
2
C

2− 2σ2A

]

× cosh

(
αEEC
1− σ2A

)

× 1√
2πσ2Z

exp

[
−(E2 − Zo)2

2σ2Z

]
(10)

for centrics. The above joint probability distributions need to be marginalized over E

in R+ to obtain the distribution of interest:

f·(Zo|EC , σA, σ2Z) =

∫ ∞
0

f·(E,Zo|EC , σA, σ2Z)dE (11)

2.1. Variance inflation

A common approach to avoid performing the integration specified above, is to inflate

the variance of the Rice function (1− σ2A) by the variance of the ”observed structure

factor amplitude” (Green, 1979). This approach circumvents the need to perform

an integration, but is suboptimal in a number of different ways. First of all, one

doesn’t observe amplitudes and we are thus required to estimate it and its variance

from observed intensity data. A common way to perform the intensity to amplitude

conversion is via a Bayesian estimate (French & Wilson, 1978) under the assumption

of a uniform distribution of atoms throughout the unit cell. Although this so-called

Wilson prior is used in most cases, it requires a number of additional numerical steps

and assumptions as compared to the approach take here. Here we assume a constant,

IUCr macros version 2.1.11: 2019/01/14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903690


8

improper prior on the possible values of the structure factor amplitudes on the positive

half-line (Sivia & David, 1994), which results in an intensity to amplitude conversion

that is unaffected by effects of pseudo-symmetry, diffraction anisotropy or twinning,

all while fitting within a single tweet:

Eo =

(
1

2

(
Zo +

√
Z2
o + 2σ2Z

))1/2

(12)

σ2E =

Zo + 3
√
Z2
o + 2σ2Z

σ2Z
+

2(
Zo +

√
Z2
o + 2σ2Z

)

−1

(13)

Further details are listed in E. While this procedure allows for a straightforward

intensity to amplitude conversion, even when intensities are negative, and can be

subsequently used to inflate the variance of the Rice function, it is no substitute for

the full integration. Given the simplicity of variance inflation approach and its wide

usage in a number of crystallographic applications, it will be used here as a benchmark.

2.2. Approaches to numerical integration

Several conventional numerical integration approximations exist for improper inte-

grals such as expression (8). Standard methods include trapezoidal based methods

with a truncated integration range, the use of Laplace’s Method or Monte Carlo based

methods or approaches based on orthogonal polynomials (Davies & Rabinowitz, 1984).

Whereas a straightforward use of a trapezoidal integration scheme is tempting, the

shape of the integrand for certain combinations of distribution parameters will result

in a fair chance of missing the bulk of the mass of the function, unless a very fine

sampling grid is used. When using the Laplace approximation, where the integrand is

approximated by an appropriately scaled and translated Gaussian function, the inte-

grand can deviate significantly from a Gaussian, also resulting in a poor performance.

These challenges are summarized in Fig.1 where a number of typical integrand shapes

are visualized for different parameter choices. A number of numerical integration and
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approximation methods will be outlined below, including a discussion on how ground

truth is established as a basis for comparison.

2.3. Change of variables.

Analytical and numerical integration is often greatly simplified by a change of vari-

ables of the integrand (Davies & Rabinowitz, 1984). The change of variable theorem

relates the integral of some function g(u) under a change of variables u = ψ(x):

∫ b

a
g(u)du =

∫ ψ−1(b)

ψ−1(a)
g(ψ(x))

dψ(x)

dx
dx (14)

Considering for example the function exp(−Z) and the change of variables

Z = T γ (15)

One obtains ∫ b

a
exp(−Z)dZ =

∫ b1/(γ)

a1/(γ)
γT γ−1 exp[−T γ ] (16)

Although the functional form of the integrand in this example suits itself for an ana-

lytical evaluation, a visual inspection indicates that different choices of γ drastically

change the shape of the function to the point that a local normal approximation has

a reasonable fit, Fig 2.

2.4. The Laplace approximation.

The modified shape of the integrand by the change of variable theorem make the

use of the so-called Laplace approximation appealing. In a Laplace approximation,

the integrand is approximated by a scaled squared exponential function with suitably

chosen mean and length scale (Peng, 2018). The Laplace approximation can be derived
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from truncated Taylor expansion of the logarithm of the integrand:

∫ b

a
f(x)dx ≈

∫ ∞
−∞

eg(x)dx

=

∫ ∞
−∞

exp

[ ∞∑
n=0

g(n)(x0)

n!
(x− x0)n

]
dx

≈
∫ ∞
−∞

eg(x0)e−
1
2
|g′′(x0)|(x−x0)2dx (17)

where g(x) = log(f(x)) and x0 is the maximum of f such that g′(x0) = 0. This yields

∫ b

a
f(x)dx ≈ f(x0)

√
2π

−g′′(x0)
(18)

The effectiveness of this approximation hinges on the location of x0 (it should be

contained within the original integration domain), the magnitude of g′′(x0) and how

rapidly higher order derivatives of g(x) vanish around x0. The change of variable strat-

egy outlined above can aid in a rapid and high-quality approximation of expression

(8).

2.5. Quadrature methods

Even though the change of variables approach combined with the Laplace approxi-

mation has the potential to yield accurate integral approximations, obtaining reason-

able estimates of the derivative of the log-likelihood, as needed for difference maps

or first or higher-order optimization methods, is less straightforward. The difficulty

arises in the need to obtain the derivative of the location of the maximum of integrand.

For this reason, the use of a quadrature approach is of interest, which provides a way

to increase the precision of integral and the associated derivatives by increasing the

number of sampling points. Quadrature approaches have however been assumed to

need a large number of terms to get sufficient precision (Read & McCoy, 2016), mak-

ing them an unattractive target for practical crystallographic applications. In order

to combine the benefits from a Laplace approximation and a numerical quadrature

IUCr macros version 2.1.11: 2019/01/14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903690


11

and overcome drawbacks associated with both approaches, an adaptive integration

scheme is developed. Here we construct a quadrature on the basis of a power trans-

form followed by a logistic transform of the integrand, that maps the domain from

[0,∞) onto [0, 1], non-linearly compressing low-mass integrand regions on relatively

small line segments, while approximately linearly transforming high-mass areas of the

integrand to the middle of the new integration domain, Fig. 2. Once a quadrature has

been established, the logarithm of the integral can be recast as the log of the sum of

weighted Rice functions as outlined in Appendix D:

Q(EC |Zo, σA, σ2Z) = logL·(EC |Zo, σA, σ2Z)

= log

 N∑
j=1

wjf·(Ej |EC , σA)

 (19)

where Ej are the quadrature sampling points and wj the associated weights and are

dependent on Ec, Zo, σA and σZ . The quadrature sampling used can either be an N-

point power-transformed hyperbolic quadrature, or a single-point quadrature on the

basis of a (power transformed) Laplace approximation. Further details are given in

Appendix A–D.

2.6. Derivatives

The practical use of a likelihood based target function requires the calculation of

its derivatives so that it can be used in gradient-based optimization methods. From

expression 19, derivates with respect to Y ∈ {EC , σA} can be obtained as follows:

Q′Y (EC |Zo, σA, σ2Z) =
d

dY
Q(EC |Zo, σA, σ2Z)

= exp
[
−Q(EC |Zo, σA, σ2Z)

]
×

N∑
j=1

dwjfa(Ej |EC , σA)

dY
(20)

The derivatives of f·(Ej |EC , σA) with respect to Y are readily obtained if one assumes

that the derived quadrature derived simultaneously samples the high-mass regions of
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f·(E,Zo|EC , σA, σZ) and its derivative with respect to Y . Given that the Laplace

approximation only samples f·(E,Zo|EC , σA, σZ) at its maximum, it is unlikely that

decent derivatives Q′Y (EC |Zo, σA, σ2Z) can be obtained in cases where the mass of the

integrand is spread widely, as is the case when σZ is large. The derivatives of the Rice

components with respect to EC are listed in Appendix C.

3. Results and Discussion

The first step to evaluate the proposed integration methods is to establish ground

truth of the integral we wish to approximate. To this extend, an equispaced, non

power-transformed trapezoidal quadrature was constructed integrating the function

from E = 0 to E = 6 using 50000 sampling points using all combination of distribution

parameters as listed in Table 1. A number of different integration schemes were tested,

comparing results using the mean relative error in the log-integrand over all parameter

settings. Zero integrand values are set to machine precision so that a logarithm can

be taken. Because the variance inflation approximation doesn’t actually perform a

marginalization, but performs a more ad hoc correction to low fidelity measurements,

its relative error against the log likelihood is not a fair measure of its performance,

nor does it provide insights in its strengths and drawbacks. Instead, we will compare

gradients with respect to EC for all approximations, as this is more indicative of the

quality of difference maps and possible progress in refinement.

3.1. Comparing integration methods

Results of the calculation of the intensity based likelihood function with experimen-

tal error are summarized in Tables 2 and 3, where the mean and standard deviation of

the relative error in the log integrant are reported (in percent). The Laplace approxi-

mation behaves relative poorly for the centric case, where without the use of a power
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transform a large spread of relative errors is observed. The Laplace approximation for

the non-power transformed acentric case (γ = 1) yields both a mean error and stan-

dard deviation below 1%. In order to obtain a similar level of accuracy and precision

in the centric case, a 5-point hyperbolic quadrature on a power-transformed likelihood

function with γ set to 2 is required.

3.2. Comparing log-likelihood gradients

In order to obtain basic insights in the behavior of the derived likelihood function, we

directly compare the gradients of log likelihood functions using the different approx-

imations derived above for a selected set of parameter combinations only. Numerical

tests indicate that gradients computed using an 1500-point hyperbolic quadrature of

the power-transformed function (with gamma set to 1 and 2 for acentric and centric

distributions respectively) are indistinguishable from finite difference gradients com-

puted with an fifty-thousand point trapezoidal approach. In order to investigate the

quality of the various approximations under common refinement scenarios, we con-

struct a dataset consisting of triplets of Etrue, EC and Zo for a given value of σA

and a fixed E2
true/σZ ratio, using random sampling techniques. Etrue was drawn from

the acentric and centric amplitude distributions, from which a Zo was generated by

adding Gaussian noise to E2
true at the specified level. For the acentric case, EC values

were generated by adding noise in the complex plane on a complex vector of length

Etrue, and subsequently computing the resulting vector length. A similar procedure

was followed for the centric test set, only considering perturbations along the real line.

This approach allows us to construct a synthetic dataset with a given experimental

noise level (Z0/σZ = constant) and model quality (σA). The quality of the gradients

are gauged by the ratio

Rmethod = 100× 〈|Q
′
method −Q′true|〉
〈|Q′true|〉

(21)
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The averaging in the above expression is carried out over ten-thousand simulated data

points for a 5 and 11 point hyperbolic quadrature, the power-transformed Laplace

and variance inflation approximations. The results are shown tables 4–5 and Fig 3.

They indicate that for strong data, all gradients calculation methods converge to

those obtained using the full intensity-based likelihood function with experimental

errors, but that for high and intermediate noise, both the Laplace approximation and

the variance inflation method behave poorly. A considerable better performance is

obtained when using a quadrature approach.

4. Conclusions

Numerical procedures for efficient determination of the intensity based likelihood func-

tion and its gradient are developed and compared. Whereas the Laplace approximation

behaves reasonably well for the estimation of the likelihood function itself, our results

show that the associated gradients of this approach can be significantly improved by

using a numerical quadrature. Given that the derivative of the log-likelihood function

are the key ingredient in gradient-based methods and are used to compute difference

maps for structure completion, the proposed approach could improve the convergence

of existing refinement and model building methods. Although it is unclear what the

optimal quadrature order should be in a practical case, our results suggest that it

is likely below 15 sampling points, and that it can be tailored to the noise level of

an observation. Algorithmicly, the most costly operation is the iterative procedure

for finding the maximum of the integrant. The proposed Newton-based method typi-

cally converges well within 50 function evaluations, even in absence of predetermined

good starting point of the line search. The construction of the hyperbolic quadrature

doesn’t require any optimization, nor does the subsequent calculation of associated

gradient and function values. Given the large additional overhead in refinement or
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other crystallographic maximum-likelihood applications, the use of this target func-

tion will likely only have a minimal impact on the total runtime of the workflow, while

providing a fast converging approximation to the full intensity-based likelihood that

takes experimental errors into account. Although only a full integration into a crys-

tallographic software package can determine under what situations a practical benefit

can be obtained from using these target functions, their computation should no longer

be seen as a limiting factor.

The above algorithms are implemented in a set of python3 routines, and are available

upon request. Some parts of this work was prepared in partial fulfillment of the require-

ments of the Berkeley Lab Undergraduate Research (BLUR) Program, managed by

Workforce Development & Education at Berkeley Lab. This research was supported,

in part, by the Advanced Scientific Computing Research and the Basic Energy Sci-

ences programs, which are supported by the Office of Science of the US Department

of Energy (DOE) under Contract DE-AC02-05CH11231. Further support originates

from the National Institute Of General Medical Sciences of the National Institutes of

Health (NIH) under Award 5R21GM129649-02. The content of this article is solely

the responsibility of the authors and does not necessarily represent the official views

of the NIH.

Appendix A
A hyperbolic quadrature

Given a function g(x), with x ≥ 0, we seek to compute its integral over the positive

half line:

G =

∫ ∞
0

g(x)dx (22)
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Set

h(x) = log g(x) (23)

h′(x) =
d

dx
h(x) (24)

h′′(x) =
d2

dx2
h(x) (25)

Define the supremum of g(x) by x0 such that h′(x0) = 0. For the class of functions we

are interested in, g(0) is equal to 0, for instance due to the power transform outlined

in in the main text, and lim
x→∞

g(x) is 0 as well. Define the following change of variables

on the basis of a shifted and rescaled logistic function:

t =
exp[kx]− 1

exp[kx] + exp[kx0]
(26)

Note that t(x = 0) = 0, and lim
x→∞

t(x) = 1. The inverse function is

x(t) = x0 −
1

k
log

[
exp(x0k)(1− t)
1 + t exp(kx0)

]
(27)

and has a derivative with respect to t equal to

x′(t) =
dx(t)

dt
=

exp(−kt)(exp(kx0) + exp(kt))2

k(exp(kx0) + 1)
(28)

An N-point quadrature can now be constructed by a uniform sampling between 0 and

1:

tj =
j

N + 1
(29)

for 1 ≤ j ≤ N . Given that both g(0) and lim
x→∞

g(x) are zero, the integral G can now

be computed via a trapezoidal integration rule:

G =
1

N + 1

N∑
j=1

g(x(tj))x
′(tj) (30)

If k is chosen to be

k =

√
−2h′′(x0)

π
(31)
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the above quadrature for N = 1 yields the Laplace approximation when x0|h′′(x0)|1/2

is large, as |x0 − x(1/2)| goes to zero. If a hyperbolic quadrature is constructed on

a distribution of power-transformed variable, these derived weights can be multiplied

by the Jacobian of that transformation, so that the final numerical evaluation can be

carried out in the original set of variables.

Appendix B
Finding x0

As outlined in the main text, the numerical integration via the hyperbolic quadrature

is greatly assisted by the change of variables

E = xγ (32)

with Jacobian

dE(x)

dx
= γxγ−1 (33)

The location of the maximum value of the integrand, x0, is found using a straightfor-

ward application of Newton root finding algorithm. The logarithm and the derivatives

of the integrant are for the acentric case equal to

ha(E|EC , σA, Z0, σz) = log 2 + logE − log(1− σ2A)

− (E − σAEC)2

1− σ2A

+ log

[
eI0

(
2σAEEC
1− σ2A

)]

− 1

2
log 2π − log σZ

−
(
E2 − Zo

)2
2σ2Z

(34)
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h′a(E|EC , σA, Z0, σz) =
1

E
− 2(E − σAEC)

1− σ2A

+
2ECσA
1− σ2A

I1
[
2EECσA
1−σ2

A

]
I0

[
2EECσA
1−σ2

A

] − 1


− 2E(E2 − Zo)

σ2Z
(35)

h′′a(E|EC , σA, Z0, σz) = − 1

E2
− 2

1− σ2A

+
2Zo − 6E2

σ2Z

+

(
2ECσA
1− σ2A

)2

−
(

2ECσA
1− σ2A

)2

I1
[
2EECσA
1−σ2

A

]
I0

[
2EECσA
1−σ2

A

]


2

− 2ECσA
E(1− σ2A)

I1
[
2EECσA
1−σ2A

]
I0

[
2EECσA
1−σ2A

]


(36)

and for the centric case

hc(E|EC , σA, Z0, σz) =
1

2
log (2)− 1

2
log(π(1− σ2A))

− E2 + (σAEC)2

2(1− σ2A)

+ log cosh

[
σAEEC
(1− σ2A)

]

− 1

2
log 2π − log σZ

−
(
E2 − Zo

)2
2σ2Z

(37)
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h′c(E|EC , σA, Z0, σz) =
σAEC
1− σ2A

tanh

[
σAEEC
1− σ2A

]

− E

1− σ2A

− 2E(E2 − Zo)
σ2Z

(38)

h′′c (E|EC , σA, Z0, σz) =
1

σ2A − 1

+

(
σAEC
1− σ2A

)2

−
(
σAEC
1− σ2A

)2(
tanh

[
σAEcE

1− σ2A

])2

+
2Zo − 6E2

σ2Z
(39)

Because we are interested in finding the maximum of the integrand after the power

transform, we need derivatives with respect to x:

ĥ·(x|EC , σA, γ) = log γ + (γ − 1) log x+ h·(E = xγ |EC , σA)

ĥ′·(x|EC , σA, γ) =
(γ − 1)

x
+ γxγ−1h′·(E = xγ |EC , σA)

ĥ′′· (x|EC , σA, γ) =
(1− γ)

x2

+ γ2x2γ−2h′′· (E = xγ |EC , σA)

+ γ(γ − 1)xγ−2h′·(E = xγ |EC , σA) (40)

Decent starting values for the Newton search can be found by performing a single

Newton-based update on a set of (say) 15 equispaced values of x, sampled between 0

and x = 61/γ . The integrand-weighted mean of the resulting updated sampling points

is typically refines within 10 iterations to the supremums.

Appendix C
The Rice function and its derivatives
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Given the individual Rice function

fa(E|EC , σA) =
2E

1− σ2A
exp

[
−E

2 + σ2AF
2
C

1− σ2A

]

× I0

(
2σAEEC
1− σ2A

)
(41)

fc(E|EC , σA) =

(
2

π(1− σ2A)

)1/2

exp

[
−E

2 + σ2AE
2
C

2(1− σ2A)

]

× cosh

(
σAEEC
1− σ2A

)
(42)

the derivatives with respect to EC are equal to

f ′a,EC (E|EC , σA) =
4EσA(

1− σ2A
)2 exp

[
−E

2 + σ2AE
2
C

1− σ2A

]

×
[
EI1

(
2σAEEC
1− σ2A

)
(43)

− σAECI0

(
2σAEEC
1− σ2A

)]

f ′c,EC (E|EC , σA) =

(
2

π(1− σ2A)3

)1/2

σA exp

[
−E

2 + σ2AE
2
C

2(1− σ2A)

]

×
[
E sinh

(
σAEEC
1− σ2A

)

− σAEC cosh

(
σAEEC
1− σ2A

)]
(44)

These functions can be used to compute the derivatives of the intensity-based likeli-

hood function with experimental errors. Derivatives with respect to σA can be derived

analogously if desired.

Appendix D
Likelihood synthesis

Using the above approaches, the full likelihood function can be expressed as a sum

of weighted Rice functions (41,42), where E is sampled on the basis of a quadrature

derived from a power transformed variable E = xγ using the hyperbolic sampling
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scheme outlined above. Taking into account the combination of the power transform

and the hyperbolic quadrature, the sampling nodes of the quadrature are equal to

Ej = xγj (45)

xj = x0 −
1

k
log

[
exp(x0k)(1− tj)
1 + tj exp(kx0)

]
(46)

where tj , x0 and k are defined and computed as outlined in Appendices A and B and

1 ≤ j ≤ N . The quadrature weights can be now set to absorb the the hyperbolic

sampling, the power transform and the observed intensity and its associated standard

deviation

wj = γxγ−1j

× exp(−ktj)(exp(kx0) + exp(ktj))
2

k(exp(kx0) + 1)

× 1√
2πσ2Z

exp

−
(
E2
j − Zo

)2
2σ2Z


× 1

N + 1
(47)

which yields a sum of weighted Rice functions that approximates the full likelihood

function:

L·(EC |Zo, σA, σ2Z) =
N∑
j=1

wjf·(EC |Ej , σA) (48)

where f·(· · ·) is defined in Appendix C.

When the likelihood function is approximated using the power-transformed Laplace

approximation instead of using the quadrature approach, we get a weighted Rice

function

L·(EC |Zo, σA, σ2Z) = w0f·(EC |E0, σA) (49)
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with the weight given by

w0 = γxγ−10

× 1√
2πσ2Z

exp

[
−(E2

0 − Z0)
2

2σ2Z

]

×
√

2π

ĥ′′· (x0)
(50)

where E0 = xγ0 , and ĥ′′· (x0) is defined in expression (40).

Appendix E
Bayesian estimation of structure factor amplitudes

In order to use an inflated variance modification as an approximation to the full

numerical integration, we need to be able to estimate reflection amplitudes and their

standard deviations from observed intensities and their standard deviation. While this

process is normally performed using a standard French-Wilson estimation procedure,

an other route can be adopted following an approach developed by Sivia & David

(1994). Assume a uniform, improper prior on E, such that

f(E) =

{
1 E ≥ 0

0 E < 0
(51)

resulting in a conditional distribution

f(E|Zo, σ2Z) ∝ E exp

(
−(E2 − Zo)2

2σ2Z

)
(52)

A normal approximation to this distribution can be obtained by the method of moments

or, as done here, by a maximum a-posteriori approximation with a mean equal to the

mode of the above distribution and a standard deviation estimated on the basis of the

second derivative of the log likelihood at the location of the mode:

Eo = sup
E

log
[
f(E|Zo, σ2Z)

]
(53)

σ2E = −
[
d2

dE2
log

[
f(E|Zo, σ2Z)

]]−1
E=Eo

(54)
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An analytic expression is readily obtained, resulting in

Eo =

(
1

2

(
Zo +

√
Z2
o + 2σ2Z

))1/2

(55)

σ2E =

Zo + 3
√
Z2
o + 2σ2Z

σ2Z
+

2(
Zo +

√
Z2
o + 2σ2Z

)

−1

(56)
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Table 1. Parameter bounds for comparing integration methods.

Parameter Start End Sampling points
EC 0.1 6.0 20
σA 0.0 0.95 10
Zo -5.0 50.0 20
Z/σZ 0.5 10.0 20

Table 2. Integration results: acentric distribution. Reported are the mean error and standard

deviation of the relative log-likelihood over the full parameter range (in percent).

Method γ = 1 γ = 2 γ = 3
Laplace approximation -0.142 / 0.874 0.294 / 0.971 0.485 / 1.135
Quadrature (N = 3) 0.191 / 0.778 0.152 / 0.831 0.281 / 1.058
Quadrature (N = 5) 0.130 / 0.377 0.126 / 0.481 0.196 / 0.627
Quadrature (N = 7) 0.085 / 0.218 0.074 / 0.309 0.116 / 0.428

Table 3. Integration results: centric distribution. Reported are the mean error and standard

deviation of the relative log-likelihood over the full parameter range (in percent). Quadrature

results for γ = 1 are absent because the function is not guaranteed to be zero at the origin as

required by the hyperbolic quadrature scheme.

Method γ = 1 γ = 2 γ = 3
Laplace approximation -1.766 / 8.170 0.357 / 1.729 0.738 / 1.841
Quadrature (N = 3) – 0.30 / 1.617 0.725 / 1.850
Quadrature (N = 5) – 0.391 / 0.990 0.438 / 1.183
Quadrature (N = 7) – 0.269 / 0.750 0.311 / 0.943

Table 4. Comparing likelihood gradients for acentric distribution via Rmethod as outlined in

main text. The value of σA was set to 0.7 as a representation of an intermediate quality

structure. For the hyperbolic quadrature and the Laplace approximation, γ was set to 1.

Method Z/σZ = 1 Z/σZ = 3 Z/σZ = 7
Variance inflation 67.3 24.6 4.50

Laplace approximation 17.9 11.4 2.24
Quadrature (N = 5) 6.45 2.71 0.19
Quadrature (N = 11) 1.83 0.91 0.01

Table 5. Comparing likelihood gradients for centric distribution via Rmethod as outlined in

main text. The value of σA was set to 0.7 as a representation of an intermediate quality

structure. For the hyperbolic quadrature and the Laplace approximation, γ was set to 2.

Method Z/σZ = 1 Z/σZ = 3 Z/σZ = 7
Variance inflation 71.24 23.39 3.24

Laplace approximation 41.18 19.5 2.89
Quadrature (N = 5) 15.2 7.18 0.34
Quadrature (N = 11) 7.10 4.24 0.05
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Fig. 1. Integrant shapes for the acentric and centric distribution for different parameter
settings show the variety of function shapes that occur when computing marginal
likelihood. When the error on the experimental data is relative small, the bulk of
the integrants mass if concentrated in a small area (a). When the experimental
errors are larger, the resulting integrands display a large variety of shapes (b–d).
The variety of these shapes make the uniform application of a standard quadrature
or Laplace approximation inefficient and suboptimal.IUCr macros version 2.1.11: 2019/01/14
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Fig. 2. A change of variables of an integrand drastically changes the shape of the func-
tion such that it is more amenable to standard approximation methods such as the
Laplace approximation. Using the transformation as outlined in expression 15 with γ
equal to 2 (a-1) and 6 (b-1), yields progressively more Gaussian-shaped integrands.
The influence of change of variable on the quality of the Laplace approximation
is significant as seen from the difference (green) between the true function (blue)
and the Gaussian approximation (orange) and the relative error of the integral as
obtained using the Laplace approximation. The quadrature approach to evaluate
this integral via the outlined nonlinear domain compression (b-2,c-2) method results
in a non-uniform sampling of the integrand (red stars) in areas where the integrand
contains significant mass.
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Fig. 3. A comparison of gradients computed using different approximation schemes.
Plots a–c and d–f depict the behavior of the gradient approximations with a
decreasing noise level for acentric and centric reflections respectively. While modest
improvements in the gradients are obtained at Z0/σZ = 3 using the quadrature
approach, a significant performance enhancement is seen at less favorable signal to
noise levels.

References

Beu, K. E., Musil, F. J. & Whitney, D. R. (1962). Acta Crystallographica, 15(12), 1292–1301.

IUCr macros version 2.1.11: 2019/01/14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.12.903690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.12.903690


28

Brewster, A. S., Bhowmick, A., Bolotovsky, R., Mendez, D., Zwart, P. H. & Sauter, N. K.
(2019). Acta Crystallogr D Struct Biol, 75(Pt 11), 959–968.

Bricogne, G. (1997). Proceedings of the CCP4 Study Weekend.

Bricogne, G. & Gilmore, C. J. (1990). Acta Crystallographica Section A, 46(4), 284–297.
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Synopsis

A quadrature is developed that allows for the efficient evaluation of an intensity-based likeli-
hood target function that includes experimental errors.
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