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Abstract 
Plant specialized metabolites mediate interactions between plants and the environment 

and have significant agronomical/pharmaceutical value. Most genes involved in specialized 
metabolism (SM) are unknown because of the large number of specialized metabolites and the 
challenge in differentiating SM genes from general metabolism (GM) genes. We employed 
transfer learning, a machine learning strategy in which information from one species with 
substantially more experimentally derived function data (Arabidopsis thaliana) is used to build a 
model to predict gene functions in another species (Solanum lycopersicum). Using machine 
learning to integrate heterogenous gene features, we built models distinguishing tomato SM and 
GM genes. Although SM/GM genes can be predicted based on tomato data alone (F-
measure=0.74, compared with 0.5 for random and 1.0 for perfect predictions), using information 
from Arabidopsis to filter likely misannotated genes significantly improves prediction (F-
measure= 0.92). This study demonstrates that SM/GM genes can be better predicted by 
leveraging cross-species information.  
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Significance 
 With the increase of sequenced non-model species, a major challenge in plant biology is 
to ascertain gene function. Model species such as Arabidopsis thaliana have large amounts of 
experimentally-backed annotations that non-model species lack. We show how to use a model 
species to better annotate the function of genes in a non-model species using a technique called 
transfer learning. In particular, we focus on genes involved in specialized metabolism (SM), or 
metabolism specific to a certain plant lineage, which are not well known because of the sizeable 
diversity of specialized metabolites (SMs) among plant species. We use Arabidopsis to predict 
SM genes in tomato, a species with many SMs of interest but with a poorer annotation than 
Arabidopsis. 
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Introduction 
 As more genome sequences become available, a major challenge in biology is to connect 
genotype to phenotype (1). At the molecular level, phenotypes can be defined as products 
derived from genomic sequences, including transcripts, proteins, and/or metabolites. Plants 
produce a diverse array of specialized metabolites, with estimates upwards of 200,000 
structurally unique compounds (2, 3), many of which are important in medicine, nutrition, and 
agriculture (4–6). Plant metabolic activities are broadly classified into two categories. The first is 
general (or primary) metabolism (GM), which involves the production of metabolites essential 
for survival, growth, and development in most, if not all, plant species (3, 7).  In contrast, 
specialized (or secondary) metabolism (SM) leads to the accumulation of lineage-specific 
metabolites that may confer a fitness advantage in particular environments (2, 3, 8, 9). For 
example, some plant specialized metabolites such as glucosinolates and terpenoids confer 
resistance against insects and pathogens (6, 10). Another difference between general and 
specialized metabolites is that the later tend to accumulate in specific tissues such as in trichomes 
or fruit (11, 12). In addition to their ecological and evolutionary importance, specialized 
metabolites are important for human health; ~25% of medicinal compounds are derived from 
plant metabolites (5, 13). For example, members of the Solanaceae family, Solanum nigrum and 
S. lyratum, produce glycosides that have anti-tumor activity in cancer cell lines (14). Atropa 
belladonna, also in the Solanaceae family, produces the tropane alkaloids hyoscyamine and 
scopolamine. This plant is named ‘beautiful woman’ because in Roman times women used its 
extract to dilate their pupils (15). The plant also has anticholinergic activity and are used to treat 
parasympathetic nervous system disorders and asthma(16, 17).  Furthermore, specialized 
metabolites contribute to desirable agronomic traits such as the aromas and flavors of fruits (11) 
and defense against agricultural pests (18). 
 Tomato is a model crop species that has emerged as a system for investigating SM 
pathways. For example, the production of acylsugars, a specialized metabolite, in tomato and its 
wild relatives is important for repelling herbivores (19–21). Some specialized metabolites found 
in the tomato fruit also confer health benefits by, for example, reducing risk of cancers and 
coronary heart diseases (4, 22, 23). Despite recent progress in elucidating tomato SM pathways, 
our understanding of many of the steps in these pathways are incomplete due to the diversity of 
specialized metabolites within the tomato lineage. Many genes that underlie the production of 
specialized metabolites belong to the same gene families as genes involved in GM (8, 24–26), 
which makes them difficult to distinguish. Currently, genetic approaches are used to identify SM 
genes in tomato, including gene silencing (27), genetic mapping (28), and the use of 
introgression lines (29). In addition, genes involved in SM or belonging to a particular pathway 
can be predicted computationally. For example, protein sequence information can be used to 
predict enzymatic functions and assign genes to pathways (30–32). However, inferring gene 
functions using sequence information alone can lead to high error rates (33). In addition to 
sequence similarity, gene co-expression networks have been used to classify genes into specific 
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metabolic pathways (34). Similarly, involvement of genes in a pathway can also be hypothesized 
using correlation of gene expression with the production of specific metabolites (35–37). Finally, 
heterogenous gene features including gene duplication status, evolutionary properties, expression 
levels, placement in co-expression networks, and protein domain content have been integrated 
using supervised machine learning to make SM/GM gene predictions in Arabidopsis (38).  

 Supervised learning approaches leverage examples or instances (e.g., genes) with known 
labels (SM or GM) to learn how the properties (features) of those instances can be best used to 
distinguish instances with different labels in the form of a predictive model (Figure 1). There are 
two factors limiting computational predictions of SM/GM genes. First, although supervised 
learning methods for SM/GM prediction are effective in Arabidopsis, it remains unclear how 
these methods may work in species with less complete gene and pathway annotations. Second, as 
sequence similarity-based approaches have high error rates, it is challenging to transfer 
annotation information across species (39). The goal of this study is to address these limitations 
by improving computational approaches for distinguishing genes with SM and GM functions. To 
determine if the supervised learning approach to identify SM/GM genes developed for 
Arabidopsis can be used in another species (e.g., tomato), we first identified gene features (e.g., 
how a gene is expressed, what protein domains it contains) that were the most important for 
distinguishing SM genes from GM genes in tomato. Next, we assessed the ability to leverage 
annotation information from Arabidopsis to make predictions in tomato using an approach called 
"transfer learning" (40), where knowledge of SM/GM annotations from Arabidopsis was applied 
to models for tomato.  

 

Results and Discussion 
 

Identifying specialized metabolism genes in tomato using machine learning approaches 
To predict SM and GM genes in tomato and to understand what gene features are most 

important for driving the distinction between these genes, a supervised learning approach was 
used to build a model capable of classifying a gene as either an SM or GM gene. We focused 
solely on genes predicted to encode metabolic enzymes rather than regulatory genes such as 
transcription factors. The first step in building a machine learning model was to select the genes 
on which to train the model (Figure 1A). We based the training data on TomatoCyc annotated 
genes (referred to as "annotated genes", see Methods, for annotation information see Table S1), 
where genes in pathways under the category “secondary metabolism biosynthesis” were 
considered SM genes (538 genes). Genes in any other pathway not under this category were 
considered to be GM genes (2,313 genes). Genes found in both SM and GM pathways (158 
genes) were excluded from feature analysis and model building. The remaining annotated genes 
were divided into two sets; 90% of genes were used as the training set, which was used for 
training the model. The remaining 10% of annotated genes were withheld from the model and 
used as an independent testing set to evaluate the performance of the model. For all annotated 
SM and GM genes (2,861), we collected and processed five general categories of tomato gene 
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features (Figure 1A): evolutionary properties, gene duplication mechanism, protein domain 
content, expression values, and co-expression patterns (7,286 total features, see Methods, for 
feature values see Dataset S1). The values of these features for genes in the training set were 
then used to train models for predicting whether a gene is likely an SM or GM gene (see 
Methods, Figure 2A).  

Multiple models were built using two machine learning algorithms, as well as different 
numbers of features (see Methods) to determine the best performing model for predicting SM 
and GM genes. We determined model performance by calculating precision (proportion of 
predictions that are correct) and recall (proportion of instances correctly predicted). The best 
performing model had a precision of 0.70 at a recall of 0.78. To jointly consider precision and 
recall, the harmonic mean of precision and recall (F-measure) was determined. The F-measure of 
the best performing model was 0.74 (highlighted in pink and labeled Model 1 in Figure S1A) 
compared with the first 9 models in Figure S1A which use the same training set but different 
algorithms or numbers of features (for other measure of model performance see Table S2). This 
model score is significantly better than a random guess (F-measure = 0.5) but is not perfect (F-
measure = 1). Using this model, referred to as Model 1, 76.6% of annotated SM genes and 71.0% 
of annotated GM genes had predictions consistent with their TomatoCyc annotations (Figure 
2B). To provide an independent validation, the model was then applied to the test set, which 
resulted in a similar F-measure of 0.73 (Figure 2C, Table S2). Because the test set was withheld 
completely from the model, this indicated the model could be applied to genes with no 
annotation and provide reasonable predictions. In addition to model performance, each gene was 
given a likelihood score, referred to as the SM score (see Methods), which indicates how likely a 
particular gene is to be an SM gene (Figure 2B). For SM scores and SM/GM predictions for all 
tomato enzymatic genes for all models, see Table S3. 
 

Important features for predicting tomato SM genes 
To better understand what gene features are important for predicting SM and GM genes, 

we identified features with the top 50 importance scores from Model 1 (Figure S1B, for feature 
importance for each model, see Table S4). The importance score for a feature is a measurement 
of how much information is gained by including it in the model (see Methods); the higher the 
importance score, the better the feature is at separating SM and GM genes. Nine out of the top 10 
important features are in the evolutionary property and duplication categories (Figure S1B). 
Gene family size, i.e., the number of paralogs of a gene, was the most important feature for the 
tomato SM/GM prediction Model 1. This is consistent with an earlier study in Arabidopsis (38); 
similar to SM genes in Arabidopsis, tomato SM genes tend to be in larger gene families (median 
= 8) compared with GM genes (median = 3, Figure 3A, for test statistics between all SM and 
GM gene features, see Table S5). Thus, SM genes tend to have a higher rate of duplication 
and/or duplicate retention than GM genes. SM genes are also more likely to be tandem duplicates 
(37%) than GM genes (13%). In addition, a lower proportion of SM genes have syntenic 
duplicates (17%), which are likely derived from whole genome duplication, compared with GM 
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genes (25%, Figure 3B). This is consistent with the previous finding that genes that respond to 
environmental stimuli tend to be retained after duplication, particularly if they occur in tandem 
(41, 42).   

It was determined previously that Arabidopsis SM genes tend to experience more relaxed 
selection pressure relative to GM genes (38). Consistent with this, 6 out of the top 10 most 
important features for tomato Model 1 are maximum or median non-synonymous/synonymous 
substitution rates (dN/dS) from comparisons of tomato genes to homologs in six other land plant 
species (Figure 3C, Figure S2A-H). The lower the dN/dS value, the stronger the negative 
selective pressure a gene has experienced. Similar to Arabidopsis, we found that SM genes in 
tomato tend to have a higher median or maximum dN/dS rate relative to between-species 
homologs compared with GM genes (Figure S2A-H). In addition, within-species maximum 
dN/dS values between tomato paralogs were also important (ranked 4th, Figure 3D, Table S4). 
This is likely because GM genes are conserved among plant species and are therefore under 
stronger negative selection while many SM genes are derived from homologous GM genes but 
have experienced less stringent negative selective pressure. One possible reason for the elevated 
dN/dS is that SM genes may be under positive selection for producing specialized metabolites. 
Another possibility is that some SM genes are no longer under strong purifying selection because 
of environmental changes and are becoming pseudogenes. These explanations are supported by 
the observation that many more homologs of SM genes exist within species or in closely related 
species than in distantly related species (Figure 3E). It has also been shown that more recent 
duplicates tend to have higher dN/dS values (43). Considering that SM genes tend to belong to 
large gene families with a high duplication rate, recent duplication events are also likely a 
contributor to the higher dN/dS values of SM genes compared with GM genes.   
  Variation in transcriptional levels and patterns between genes may represent differences 
in their functions and can therefore also be key features distinguishing SM and GM genes. To 
assess how expression data may be used to distinguish SM and GM genes in tomato, we 
compiled 47 transcriptome studies (for details on the datasets, see Table S6) spanning a range of 
environmental conditions, hormone treatments, and developmental stages, mostly in wild-type 
genetic backgrounds. In Model 1, 147 out of the top 200 most informative features were related 
to expression (Table S4). Among the top expression features (ranked between 12-30) were 
maximum log fold change between developmental stages, circadian time points, mutants vs. wild 
type, or hormone treatments vs. controls (Figure S1B, Table S4), where SM genes tended to 
have higher maximum fold change values than GM genes (Figure 3F-I, Table S5, S6), in 
contrast to absolute expression values where GM genes had higher expression levels than SM 
genes (Figure S2I-J). Thus, when considering gene transcription, SM gene expression tends to 
differ between developmental stages, varying times of day, and in response to different 
environments (stress or hormone treatment) to a more extreme extent than that of GM genes. 
Consistent with this, expression variation (median absolute deviation, see Methods) is also an 
important feature (Table S4). Examples include expression variation among fruit ripening 
samples (ranked 46 out of 200) and between the mutant late termination (44) and wild-type 
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plants (ranked 44 out of 200, Figure 3J-K). Higher expression variation indicates that SM genes 
are expressed at higher levels in certain development stages and/or environments. For example, 
many specialized metabolites important for fruit flavor and color are produced during tomato 
fruit development (11). Aside from gene expression, the enrichment of specific protein domains 
such as the p450 domain among SM genes (Figure S2K) is an additional feature that 
differentiates them from GM genes. 

 

Characteristics of genes with inconsistent annotations and predictions 
Although the tomato SM/GM prediction model F-measure (0.74) was significantly better 

than a random guess (0.5), 29% of GM genes were mis-predicted as SM and 23% of SM genes 
were mis-predicted as GM when using an SM score threshold determined based on the optimal 
F-measure (Figure 2B). In addition, the tomato model did not perform as well as an earlier 
model for predicting Arabidopsis SM/GM genes (F-measure = 0.79, Moore et al., 2019). Note 
that the tomato model is trained on TomatoCyc annotations, which can be of poorer quality than 
those of AraCyc (Arabidopsis annotations)—there are only 16 experimentally verified 
TomatoCyc SM/GM genes compared to 1,652 in AraCyc. To understand why we obtained a high 
rate of mispredictions, we assessed what features may cause a gene to be mis-predicted. For 
example, SM genes in general tend to be in larger gene families than GM genes, and genes 
annotated as GM but predicted as SM (annotated�predicted: GM�SM) tended to belong to 
larger gene families (median = 5) than those having consistent GM annotations/predictions 
(GM�GM, median = 3, Figure 4A). Similarly, annotated SM genes predicted as GM 
(SM�GM) belonged to smaller families (median = 3) compared with correctly 
annotated/predicted SM genes (SM�SM, median = 10, Figure 4A). Additionally, we found that 
GM�SM genes tended to be tandem duplicates, similar to SM�SM genes and in contrast to 
GM�GM and SM�GM genes (Figure 4B). These findings indicate that mis-predicted genes 
tend to possess feature values that are deviated from the norms. 

Another example where GM�SM and SM�GM genes defied the general trend was in 
maximum dN/dS value, having higher and lower dN/dS values, respectively, compared with 
those genes with consistent annotations/predictions (Figure 4C,D, Figure S3A-H). For example, 
one of the GM�SM genes, XP_010323708 (Solyc07g054880.3.1), has a maximum dN/dS of 
0.25 relative to its Coffea canephora homolog, which is much higher than that observed for 
GM�GM genes (dN/dS of 0.10) (Dataset S1, Table S5). This high dN/dS value likely 
contributed to the prediction of this gene as SM. When looking more closely at XP_010323708, 
we found that this gene was previously reported to encode a methylketone synthase that produces 
specialized methyl ketones specific to the Solanum genus (45), and should be annotated as an 
SM gene. Other GM genes with high dN/dS values from comparisons to their tomato paralogs 
were also predicted as SM genes. For example, three Glycoalkaloid metabolism (GAME) genes 
involved in steroidal glycoalkaloids production – GAME4, GAME12, and GAME17 – stand out 
as SM genes in our model while TomatoCyc incorrectly annotated them as GM genes. GAME4 
and GAME12 both have high maximum dN/dS values relative to tomato paralogs (0.30 and 0.26, 
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respectively), a feature that many other SM genes share (SM median = 0.27, GM median= 0.15). 
GAME17 belongs to a large protein family (30), another feature common to SM genes (SM 
median = 8, GM median = 3) and the most important feature for Model 1. In contrast to 
GM�SM genes, SM�GM genes have a maximum dN/dS score (median = 0.27) from 
comparisons to tomato paralogs that is significantly below that for SM�SM genes (median= 
0.33, Figure 4C, Table S5). Aside from evolutionary properties and duplication features, 
compared with SM�SM genes, GM�SM genes also had similar maximum expression fold 
differences (Figure 4E-H), expression variation values (Figure 4I, J), median expression levels 
(Figure S3I, J), and protein domain compositions (Figure S3K).  

In summary, we found that the distributions of feature values for mis-predicted GM�SM 
genes mirrored those for annotated SM genes. Likewise, the feature values distributions for 
SM�GM genes were similar to the overall distributions for annotated GM genes. These 
observations indicated that some SM genes in TomatoCyc looked more like GM genes and some 
GM genes looked more like SM genes which contributed to the discrepancies between 
annotation and prediction. An open question is whether these mis-predicted genes were 
misannotated in the first place or if they were correctly annotated but incorrectly predicted by a 
faulty model. This prompted us to look more closely at mis-predicted genes to see if their 
annotations were supported by compelling experimental evidence. 
 

Manual curation of SM/GM genes to obtain a benchmark set 
Based on comparison of feature value distributions, mis-predicted genes tend to possess 

properties more similar to the class (GM or SM) they were mis-predicted as. This is not a 
surprising outcome because our explicit goal was to learn about generalizable differences 
between annotated GM and SM genes. The unresolved question is why mis-predictions occur. 
Three factors may account for mis-predictions: (1) the genes were annotated correctly, and 
Model 1 was incorrect, (2) Model 1 made correct predictions, but the annotations were incorrect, 
and (3) both annotations and predictions were correct, because these genes have roles in both 
GM and SM, i.e., they have dual functions (DF). To assess these possibilities, we manually 
curated a set of 88 tomato genes (83 with annotations in TomatoCyc) encoding enzymes 
classified as SM, GM, or DF based on published evidence of in vitro enzyme activity and/or in 
planta characterization (see Methods). These 88 genes are collectively referred to as the 
benchmark set, and the curated evidence supporting their SM/GM/DF designations are shown in 
Table S1.  

 Out of 31 TomatoCyc-annotated GM genes analyzed, 24, 5 and 2 were manually curated 
as GM, SM and DF genes, respectively. Among the five annotated GM genes that were manually 
curated as SM, all five were predicted by Model 1 as SM. Four are the aforementioned genes 
Methylketone synthase (XP_010323708), GAME4, GAME12 and GAME17. The three GAME 
genes contribute to glycoalkaloid biosynthesis in several Solanaceae species (27). The fifth gene 
correctly predicted by Model 1 is the neofunctionalized gene Isopropylmalate synthase 3 
(IPMS3), which acquired a role in an SM pathway after the duplication of an ancestral IPMS 
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gene involved in amino acid metabolism (GM pathway). IPMS3 is a tissue-specific SM gene 
involved in acylsugar production in glandular-trichome tip cells and is curated as an SM gene 
based on empirical evidence (46). Thus, in these cases, Model 1 made the correct predictions, but 
the annotations were incorrect. Two Geranylgeranyl diphosphate synthases (GGPS, 
NP_001234087 and NP_001234302) are manually curated as DF genes, but annotated by 
TomatoCyc as GM and predicted by Model 1 as SM. The challenge in classifying these genes 
might arise from the fact that GGPS enzymes catalyze core reactions in isoprenoid biosynthesis, 
an ancient and diverse pathway that leads to the synthesis of both GMs and lineage-restricted 
SMs (47).  

Manual curation of 45 TomatoCyc-annotated SM genes revealed that 3 were likely GM 
genes and 5 were likely DF genes. We chose to look in detail at the three manually curated GM 
genes that were annotated as SM: two carotenoid biosynthesis genes, PHYTOENE 
DESATURASE and TANGERINE (48, 49), and a cytochrome P450, SlKLUH, that, when 
mutated, disrupts chloroplast homeostasis and has pleiotropic effects on plant growth and 
development (50). As carotenoid biosynthesis is conserved among all photosynthetic organisms 
(51), and disruptions in basic development processes, such as gametophyte and seed 
development, is an indicator of essentiality in all plants (52), these genes should be considered 
GM genes. In all three cases, Model 1 predictions agreed with the TomatoCyc SM annotations 
and, thus both the predictions and annotations were incorrect.  

Next, we focused on comparing the manually curated benchmark set to Model 1 
predictions. We found that 17 out of 29 (58.6%) total benchmark GM genes, and 13 of the 24 
benchmark GM genes that were annotated as GM by TomatoCyc (54%), were incorrectly 
predicted as SM by Model 1 (Figure S4A; Table S3). Thus, Model 1 tended to mis-predict 
benchmark GM genes as SM genes. In contrast, of the 51 total benchmark SM genes, 45 (88.2%) 
were correctly predicted by Model 1 (Figure S4A; Table S3). Taken together, our Model 1 
predictions were mostly consistent with the SM benchmark classifications. However, the model 
clearly had trouble predicting known GM genes. With regard to TomatoCyc-annotated genes, the 
opposite was true – 24 of 29 (82.8%) benchmark GM genes were correctly annotated as GM, and 
37 of 47 (78.7%) benchmark SM genes were correctly annotated as SM. Therefore, for SM gene 
prediction, Model 1 has a lower error rate (11.8%) compared with the TomatoCyc annotation 
(21.3%), indicating that a higher proportion of benchmark SM genes were annotated in 
TomatoCyc than GM genes. However, for benchmark GM genes, Model 1 has a higher error rate 
(46% of benchmark GM genes predicted as SM genes) than the TomatoCyc annotation (14.3% 
of benchmark GM genes predicted as SM).  
 

Using transfer learning to make predictions across species 
Based on analysis of the benchmark data, there are two major sources for mis-

predictions. The first is that a subset of the TomatoCyc-annotated SM or GM genes were 
incorrectly annotated, and these mis-annotations were propagated into Model 1. The second is 
that Model 1 predict these genes correctly. These two explanations are not mutually exclusive, 
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and the extent to which each contributes to mis-predictions remains to be determined. To 
determine the most likely reason for the mis-predictions and to improve upon Model 1, we used 
both the benchmark gene set and the TomatoCyc annotations to build a new model (referred to as 
Model 2), but this did not improve the prediction accuracy (F-measure=0.74, same as Model 1, 
Figure S1A, Table S2). This was likely due to the small proportion of benchmark gene-inspired 
annotation corrections (30) relative to the large number of TomatoCyc-annotated genes (2,858).  

We next asked whether information from Arabidopsis, which diverged from the tomato 
lineage 83-123 million years ago (53, 54), could be used to improve gene predictions in tomato. 
We chose to use a machine learning approach called transfer learning (40) in which a base model 
is first built using data from Arabidopsis and then the learned features and/or the base model 
itself are used to make predictions in tomato using the tomato annotations and features. To 
accomplish this, a list of 4,197 similar features in Arabidopsis and tomato (referred to as shared 
features, see Methods) were identified. A model was built using previously defined AraCyc 
GM/SM annotations (38) and shared features. This model is referred to as Model 3 (Figure 5A). 
For comparison, we also built a model (Model 4) using TomatoCyc GM/SM annotations and 
tomato data for the same shared features as in Model 3 and to train the model (Figure 5B). 
Model 3 built with Arabidopsis shared feature data had an F-measure = 0.81 when it was used to 
predict Arabidopsis genes as GM/SM (Table S2). In comparison, Model 4 built with tomato 
shared feature data had an F-measure = 0.75 when used for predicting tomato annotations (Table 
S2). Additionally, more GM/SM genes in Arabidopsis are predicted correctly by Model 3 
(Figure 5C) than GM/SM genes in tomato by Model 4 (Figure 5D).The higher F-measure and 
better predictions for Model 3 are consistent with there being more experimentally based gene 
annotations for Arabidopsis than for tomato that likely contribute to the differences in model 
performance.  

We next applied Arabidopsis-based Model 3 to predict tomato SM and GM genes and 
obtained an F-measure of 0.69 (Figure 5E, Table S2). This was substantially lower than the F-
measure obtained when applying tomato-based Model 4 to tomato genes (0.75, Table S2), and 
fewer TomatoCyc annotated GM/SM genes were predicted correctly (Figure 5F). Based on SM 
scores for these models, 21.1% of TomatoCyc GM genes were predicted as GM genes by tomato 
Model 4 but predicted as SM genes by Arabidopsis Model 3 (lower right quadrant, Figure 6A, 
Table S3). However, Model 3 predicted 50% of benchmark tomato GM genes as GM (Figure 
S4B), which – although far from perfect – is substantially better compared with the percentage of 
benchmark GM genes correctly predicted by tomato Model 4 (25%, Figure S4C). Thus, 
Arabidopsis data (when used to train Model 3) led to improved tomato GM gene predictions 
compared with tomato annotation data. Based on our finding that annotated GM genes were 
more likely to be misannotated compared with annotated SM genes (Figure S4B, C), this 
indicates that the decline in model performance was due to mis-annotation of tomato genes.  

Next, we asked how well Model 3 and 4 predict benchmark SM genes. We found that 
benchmark tomato SM genes were less well predicted using Arabidopsis Model 3 (84% correctly 
predicted, Figure S4B), a substantial drop from the near perfect predictions (97%) using tomato 
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Model 4 (Figure S4C). This indicated that Arabidopsis data may provide more useful 
information about true GM genes in other species than about SM genes, likely because GM 
genes are conserved among plant species, and many have been studied using Arabidopsis as a 
model. Thus, it is more straightforward to transfer knowledge about Arabidopsis GM genes to 
tomato. SM genes, in contrast, are by definition lineage-specific and not all SM gene properties 
will be shared across species, which explains the drop in prediction accuracy in Model 3 
compared with Model 4. Nonetheless, the SM likelihood scores are largely consistent between 
Models 3 and 4 (Figure 6A, B; Figure S5A, B; Table S3), indicating there remain substantial 
similarities among SM genes across species. 

When we looked into the models in more detail, we found that the major reason why 
Arabidopsis Model 3 predicted genes differently from tomato Model 4 is because they have 
different important features (Figure 6C). Aside from the three most consistently important ones, 
which are gene family size, expression correlation between SM genes during development, and 
expression correlation between GM genes in the hormone dataset (Figure 6C), many features 
such as maximum dN/dS relative to C. canephora homologs are highly important in tomato 
Model 4 but much less important in Arabidopsis Model 3. Upon examination of feature value 
distributions, we found that, in general, the feature values of the tomato Model 4-based 
predictions more closely aligned with those of the annotated genes in the tomato training set than 
with Arabidopsis Model 3-based predictions (Figure 6D-F). For example, annotated tomato SM 
genes predicted as GM genes by Arabidopsis Model 3 but as SM genes by tomato Model 4 
(referred to as SM�GM3/SM4 genes, the plot in pink, Figure 6D) tend to be in large gene 
families like SM�SM3/SM4 genes (the orange plot, Figure 6D). In contrast SM�SM3/GM4 
genes (the brown plot, Figure 6D), tend to be in small gene families. This indicates that tomato 
Model 4 is more strongly influenced by gene family sizes when differentiating SM and GM 
genes than Arabidopsis Model 3. This general pattern is also true for expression-based and dN/dS 
features (Figure 6E, F; Figure S5C-F). For example, GM�GM3/SM4 genes are likely predicted 
as SM genes by tomato Model 4 (the second plot, Figure 6F) because they have high dN/dS 
values similar to those of the SM genes used to train the model (the eighth plot, Figure 6F). 
However, GM�SM3/GM4 genes (the third plot, Figure 6F) tend to have lower dN/dS values 
similar to those of the GM genes used to train the model (the first plot, Figure 6F). In the above 
example, the Arabidopsis Model 3 yields predictions contrasting with those from tomato Model 
4. Most notably, the Arabidopsis Model 3-based predictions have feature values that mostly defy 
the general trends of the GM and SM genes in the tomato training data. This indicates that there 
are differences between the training data for Arabidopsis Model 3 and tomato Model 4 that bias 
each model. 
 

Improving the tomato-based model by removing potentially mis-annotated genes identified 
based on the Arabidopsis model predictions  

We hypothesized that if the Arabidopsis Model 3-based predictions are correct, then the 
genes with contrasting predictions and annotations are mis-annotated and their removal from the 
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training data would lead to significantly improved predictions. This is because training the model 
from incorrect examples (i.e., mis-annotated entries) will lead to suboptimal models making 
erroneous predictions. On the other hand, if the Arabidopsis Model 3-based predictions are 
completely uninformative, the removal of genes from the training set would not improve the 
prediction. Thus, to further test the above hypotheses, we removed TomatoCyc-annotated GM 
and SM genes that had contradictory predictions from Arabidopsis-based Model 3 (i.e. 
GM�SM3 and SM�GM3) from the training set. Using this filtered training data set, a new 
tomato data-based model, Model 5, was generated using the same shared feature set between 
Arabidopsis and tomato for Model 3 and 4 (Figure 7A, see Methods).  

When we applied this filter to build tomato Model 5, there was a dramatic improvement 
in tomato GM/SM gene predictions (F-measure = 0.92, Figure S1A, Table S2) compared with 
predictions based on Model 3 (F-measure= 0.69, Figure S1A, Table S2) and Model 4 (F-
measure = 0.75, Figure S1A, Table S2). In particular, we were able to predict 90.9% of all 
annotated GM genes and 92.4% of all annotated SM genes in the filtered training data as GM 
and SM genes, respectively (Figure 7B, Table S2). Thus, Model 5, trained on a data set where 
GM�SM3 and SM�GM3 genes have been removed, is significantly improved compared with 
previous models. To validate Model 5 with an independent dataset, we applied it to a testing set 
of 159 SM and GM genes withheld from Model 5 during training. We found that 84% and 88% 
of the test set GM and SM genes, respectively, were predicted consistently with their annotations 
(Figure S6B).  

To test whether model improvement was due to the filtering out of a subset of 
misannotated genes from the tomato training data and not just to the removal of genes in general, 
we built 10 additional models (collectively referred to as Model 6) using the same number of 
tomato SM and GM training genes as used for training Model 5, except that the genes were 
removed randomly. We found the median F-measure to be the same as that from Model 4 (where 
no SM or GM genes were removed; Figure S1A, Table S2, see Methods), showing no model 
improvement. Thus, the improvement in model performance of tomato Model 5 could not be 
attributed to random gene removal and was likely achieved because the filtered tomato training 
data did not contain mis-annotated genes that would confuse the model.  

After showing that Model 5 performed significantly better on training data, we next asked 
how Model 5 faired in predicting benchmark GM genes. We found that 75% of benchmark GM 
genes were correctly predicted by Model 5 (Figure S6A, Table S3), compared with 25% for 
tomato Model 4 and 50% for Arabidopsis Model 3 (Figure S4F, G). In contrast, there was no 
improvement in benchmark SM predictions when comparing Model 4 (94% correct, Figure S4F, 
Table S3) to Model 5 (92% correct, Figure S6A, Table S3). These findings indicate that the 
improvement in Model 5 is likely due to its ability to determine true GM genes while 
maintaining true SM gene prediction performance. In addition, our results suggest that the 
filtering step mostly corrected for GM genes misannotated as SM genes in TomatoCyc. 
Consistent with this conclusion, 83.1% of the annotated SM genes that were removed from the 
Model 5 training data because Model 3 called them as GM, were predicted as GM genes by 
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Model 5 (Figure S6C). This indicates that introducing GM genes that were likely misannotated 
as SM genes into the training set led to a sub-optimal model. After their removal, the new model 
was able to better identify GM genes misannotated as SM. In contrast, among annotated GM 
genes removed from the training set because they were predicted as SM genes by Model 3, only 
6.1% were predicted by Model 5 as SM genes (Figure S6C). Furthermore, GM genes identified 
as SM genes by Model 3, were mostly still predicted as GM genes, indicating that the removal of 
these genes was relatively inconsequential, and the main issue was that a substantial number of 
GM genes were mis-annotated as SM genes.  

Additional models (Models 7 and 8) were trained using the same filtered gene set used in 
training Model 5 but with the full tomato feature data set (instead of just the shared features used 
in Models 3, 4, and 5; Figure S6D). The training set for Model 8 also included the benchmark 
gene annotations. Models 7 and 8 had similar performances (F-measure = 0.88 and 0.86 
respectively, Table S2, Figure S6E-G). Both Models 7 and 8 were significantly improved 
compared with Model 1 (F-measure = 0.74), particularly when predicting GM genes (similar to 
Model 5). Overall, using Arabidopsis Model 3 to remove potentially mis-annotated tomato 
genes, i.e. genes that were not good training examples, led to substantially improved models 
(Model 5 and 7), especially for predicting GM genes.  

While TomatoCyc provides annotations for many genes in SM pathways, the global SM 
gene content in tomato is unknown. To provide a genome-wide estimate of SM gene content in 
the tomato genome, we used Model 7 to classify 5,627 unannotated enzyme genes and found that 
2,865 are likely involved in SM pathways (Figure S6H). This indicates that substantially more 
SM genes are yet to be identified because only 696 genes are currently annotated in TomatoCyc. 
As noted earlier, each enzyme gene has an SM score from the model application, which can be 
interpreted as the probability that a gene is an SM gene (see Table S3 for scores for each gene); 
thus, those unannotated enzymes that are highly likely to be an SM gene can be prioritized for 
further investigation. 
 

Relationships between improved performance and feature rankings 
 Models 5 and 7 substantially improved gene predictions in tomato compared with all 
other models because mis-annotated genes, mostly genes annotated as SM but predicted as GM 
by Arabidopsis Model 3, were removed from the training data. To better understand the reasons 
for the improvement in GM gene predictions, we looked into three examples where Models 5 
and 7 predicted manually curated GM benchmark genes as GM genes, but where tomato-based 
Models 1 and 4 predicted the genes as SM genes: 1-aminocyclopropane-1-carboxylate oxidase 1 
(LeACO1, NP_001234024), abscisic acid 8’-hydroxylase (CYP707A1, NP_001234517), and the 
cytochrome P450 SlKLUH (XP_004236064). In these cases, the mispredictions were likely due 
to gene expression-related features. While LeACO1 exhibited a maximum log2 fold change of 7.0 
based on the fruit ripening dataset (Dataset S1), which is consistent with the higher values 
observed for SM genes (median=1.9) than for GM genes (1.2, p=1.3e-15). Similarly, the 
variance of log2 fold change in expression during fruit ripening for SlKLUH is 2.5, which is 
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consistent with significantly higher median variance for SM genes (1.5) compared with GM 
genes (1.0, p=1.9e-21). CYP707A1 is up-regulated under many developmental conditions (13), 
which is not typical for tomato GM genes (SM median =16, GM median = 9, p=9.3e-26). 
Additionally, the expression of LeACO1, CYP707A1, and SlKLUH correlates highly with that of 
other SM genes (PCC= 0.87, 0.63, and 0.83, respectively). The similarity of these expression 
feature values as those of SM genes likely contributed to their mis-prediction by Models 1 and 4.  

Importantly, Models 5 and 7 likely predict these three genes correctly as GM genes 
because of the reduced reliance of these models on features associated with gene expression. 
Models 1 and 7 both use the full feature set, but filtered training data were used to train Model 7. 
In Model 1, expression variance in fruit ripening was ranked 46 among important features, while 
in Model 7 it was ranked 120 (Table S4). Similarly, when comparing Models 4 and 5, which 
both use the shared feature set but differ in whether filtered training data were used, the features 
expression breadth under development and expression correlation between SM genes were 
ranked higher for Model 4 (6 and 16, respectively) than for Model 5 (22 and 20, respectively) 
(Table S4). Model improvement is also due to higher ranking of evolutionary features, such as 
maximum dN/dS between tomato genes and C. canephora homologs, median dN/dS between 
tomato genes and homologs in Arabidopsis lyrata, and maximum dN/dS between tomato genes 
and homologs in Populus trichocarpa. In Model 5 these features were ranked 1, 2, and 3, 
respectively; in Model 4 they were ranked 2, 3, and 8, respectively; Table S4); in Model 7 they 
were ranked 1, 2, and 7, respectively; and in Model 1 they were ranked 2, 9, and 16, respectively 
Table S4. LeACO1 and CYP707A1 both have maximum dN/dS values from comparisons to C. 
canephora homologs (0.07) more similar to those of GM genes (median=0.10) than to SM genes 
(0.17). Similarly, SlKLUH has a maximum dN/dS value from comparisons to A. lyrata of 0.11, 
which is closer to the GM median (0.09) than to the SM median (0.15). Because in Models 5 and 
7 these dN/dS features were weighted more heavily and certain expression features were 
weighted less heavily, the dN/dS feature values contributed to their correct classification as GM 
genes. 

In addition to the features discussed thus far, we also found that gene family size was no 
longer the most important feature in Models 5 and 7, ranked 24 and 27, respectively, as it was 
Models 1, 3 and 4. Considering that some of the largest enzyme families - such as cytochrome P-
450 and terpene synthases - contain both SM and GM genes, this reduced importance likely 
contributed to improved predictions. Despite the improvement, Models 5 and 7 are by no means 
perfect and erroneous predictions still occur. For example, PSY1 is a fruit ripening-related gene 
manually curated as an SM benchmark gene, but it was predicted as a GM gene by both Models 
4 and 5. PSY1 represents an unusual case of duplication-associated sub-functionalization and is 
specifically expressed in chromoplast-containing tissues such as ripening fruits and petals (55). 
PSY1 has comparatively low dN/dS values (similar to GM genes), especially between tomato and 
C. canephora (maximum dN/dS = 0.06).  Because this dN/dS feature was the most important 
feature for Model 5, this ultimately contributed to the misprediction of PSY1 as a GM gene.  
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Other examples are two GM terpene synthases involved in the biosynthesis of 
gibberellin, a plant hormone (56): copalyl diphosphate synthase (CPS, NP_001234008) and 
kaurene synthase (KS, XP_004243964). Both CPS and KS are mis-predicted as SM genes in all 
models, presumably because of their high dN/dS values from comparisons to homologs in several 
species (CPS median dN/dS= 0.20, KS median dN/dS= 0.26). These two enzymes were derived 
from an ancestral dual functional enzyme containing both copalyl diphosphate synthase and 
kaurene synthase activities (7). Angiosperm terpene synthases seem to have lost one activity or 
the other, but the ancient timing of the CPS/KS duplication (after divergence between bryophytes 
and the other land plant lineages) makes the high rate of evolution unusual. It is unknown what 
effect the loss of activity has on the evolution of the terpene synthase sequence. For all three 
genes, PSY1, CPS, and KS, the atypical evolutionary rates, either unusually low or high, led to 
mis-prediction. Overall, our machine learning approach led to a highly accurate SM/GM model 
with an F-measure of 0.91 (where a value of 1 indicates a perfect model). However, while our 
approach ensures the identification of typical SM/GM genes, SM/GM genes with atypical 
properties that defy the general trend still are likely mis-predicted.  
 

Conclusions 
Many SM genes are unknown due to the vast number of specialized metabolites are 

limited to specific species and SM and GM genes are difficult to distinguish because SM genes 
are often derived from GM genes. Additionally, many specialized metabolites of interest are 
found in medicinal plants or crops that are not well annotated. If data from a better annotated 
species such as Arabidopsis could be used, directly or indirectly, to make cross-species 
predictions in another species, such as tomato, this could greatly improve annotations in non-
model species. Here we used machine learning to establish models for classifying genes with SM 
and GM functions in tomato, but consistent with the lower quality of the tomato annotation, 
these models established using tomato features had relatively poor performance compared with 
models built in Arabidopsis. We also found that a substantial number of important features and 
predictions differed between the models based on Arabidopsis (Model 3) and tomato (Model 4). 
We discovered that the differences in feature importance and model performance were likely the 
result of mis-annotation of some tomato genes, which contributed negatively to the performance 
of machine learning models. Therefore we attempted to perform cross-species knowledge 
transfer by using a machine learning approach called transfer learning (40), where knowledge 
learned from a previously trained model (e.g., our Arabidopsis Model 3) is used (in this case, to 
remove predictions inconsistent with annotations) to train another model (e.g., tomato Model 5). 
By filtering out TomatoCyc-annotated genes that had predictions opposite from those of the 
Arabidopsis-based Model 3 from the training data, we significantly improved the accuracy of 
tomato SM/GM gene predictions. We demonstrated that this improvement would not have been 
possible without informed removal of potentially mis-annotated data. This approach can be 
applied more generally to any problem in a species that is relatively information poor by 
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transferring knowledge from an information-rich one. Using transfer learning we may also be 
able to better annotate less well studied species. 

It is important to note that a limitation of the transfer learning approach is that it is only 
useful for transferring knowledge, mechanisms, or phenomena that are similar across species. In 
our study, the transfer learning approach worked well for GM genes, but it did not have an 
appreciable impact on the prediction of SM genes, likely because SM pathways are by definition 
specialized–what you learn in one species does not necessarily apply to another. A specific 
example of where transfer learning can suffer is in predicting genes with atypical properties. The 
machine learning approach excels at spotting patterns in data, and the performance of machine 
learning models improves as more high-quality instances (e.g., experimentally validated SM/GM 
genes) and more informative features (e.g., dN/dS) are incorporated. However, it is a challenge to 
generate high-quality instances, and expert knowledge dictates what kinds of features are 
incorporated. In addition, the representation of genes that are considered "atypical" in the model 
can be limited by our ability to scour the literature for novel features to represent these genes.   

In future studies, transfer learning can be used to predict GM genes and, to a lesser 
extent, SM genes in species that lack annotations and/or experimental evidence such as non-
model, medicinal plant species. An open question in this area that needs to be addressed is 
whether more closely related species, even though they may not be as well annotated, are better 
candidates for transfer learning than better annotated but more distantly related species. In 
addition, as discussed above, our models can potentially be further improved by incorporating 
additional features, particularly those that are shared between species, using transfer learning. 
For example, data that are incorporated as features for across species models should come from 
experiments performed in more similar ways in terms of treatments applied and tissues 
investigated. Furthermore, we found that SM gene annotations can vary across species, so 
reliance on information from a particular species may skew the model predictions and the 
features that are most important for the model. Thus, in future studies comparisons between 
models using data from single and multiple species can potentially inform further efforts to 
improve cross-species predictions via transfer learning. Another consideration is that we treated 
our research problem as a binary (SM or GM) classification problem. Over the course of 
evolution, SM pathways may branch off from GM pathways or some SM pathways may 
ultimately become GM pathways because of increasingly wider taxonomic distribution. Thus, 
the extent to which a gene is considered to be SM is likely continuous, where genes at the end of 
an SM pathway may be more “SM-like” than genes at the beginning of the pathway, which may 
be linked to GM pathways. The question is how to define the degree of involvement of a gene in 
SM pathways and determine whether continuous SM scores, where GM and SM genes have low 
and high scores, respectively, are good proxies for involvement in these pathways. This can be 
accomplished by mapping SM scores to pathways to see if they are predictive of where a gene 
lies in a pathway.  
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Methods 
Annotation 

Only enzyme genes were included in this study. A gene was considered to be an enzyme 
gene if it had an EC or RXN number annotation in TomatoCyc or assigned using E2P2 v3.0 (31). 
Tomato pathway annotations were downloaded from the Plant Metabolic Network Database, 
TomatoCyc v. 3.2 (32). Pathways that were nested under “Secondary Metabolism Biosynthesis” 
or “Secondary Metabolites Degradation” were considered specialized metabolism (SM) 
pathways and genes within those pathways were considered SM genes. All other pathways were 
considered to be general metabolism (GM) pathways. If a gene was annotated as being in both an 
SM pathway and a GM pathway, the gene was considered to be dual function (DF). Additionally, 
the biosynthesis of plant hormones was considered GM even though some hormone pathways 
fell under the DF category. If a pathway was nested under both “secondary metabolism 
biosynthesis” and other general biosynthesis categories, the pathway was determined to be DF. 
For specific SM pathway annotations, the path ID from TomatoCyc was used. 
 

Benchmark genes  
The benchmark gene set was identified based on expert knowledge and literature mining. 

Tomato genes were defined as GM, SM, or DF based on in planta functional analyses of mutant 
generated through gene silencing or knockout mutations and/or studies of in vitro biochemical 
activity. For the identity of the benchmark genes (i.e. manually curated as SM, GM, or DF 
genes), the evidence used for manual curation, and publications supporting the evidence, see 
Table S1. 

  

Features used for machine learning 
All gene feature values can be found in Dataset S1. These 7,286 features are divided into 

several categories, each with different numbers of features: protein domains (4,232 features), 
expression value (280), co-expression (2,670), evolution (78), and gene duplication (26). Protein 
domain Hidden Markov Models from Pfam v.30 (pfam.xfam.org/) was used to identify protein 
domains in annotated tomato protein sequences with HMMER 
(https://www.ebi.ac.uk/Tools/hmmer/https://www.ebi.ac.uk/Tools/hmmer/) using the trusted 
cutoff, then a binary matrix for each gene and domain was created where 1 indicates the protein 
sequence of a gene has a given domain and 0 indicates it does not.  
 

Expression value features 
For expression value features, RNA-seq Sequence Read Archive (SRA) files for tomato 

were downloaded from National Center for Biotechnology Information (NCBI; 
https://www.ncbi.nlm.nih.gov/) totaling 47 studies and 926 samples (Table S6). These data sets 
included development (13 studies including fruit, flower, leaf, trichome, anther, and meristem 
tissues), hormone-related (5 studies: cytokinin, auxin, abscisic acid, gibberellic acid, and auxin 
inhibitor treatments), mutant (14 studies which compared various mutants against wild type), 
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stress treatment (16 studies including shade, various pathogens, cold, light, and heat treatments), 
and circadian (1 study with 60 samples). RNA-seq data were processed to determine both fold 
change and fragments per kilobase of transcript per million mapped reads (FPKM) 
(https://github.com/ShiuLab/RNAseq_pipeline).https://github.com/ShiuLab/RNAseq_pipeline). 
The SRA files were converted to fastq format and filtered with Trimmomatic (Bolger et al., 
2014) for sequence quality with default settings. Bowtie (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml) was used to create the genome index from the tomato 
NCBI S. lycopersicum genome 2.5, then RNA-seq reads were mapped to the tomato genome 
using TopHat (57). Samples with <70% mapped reads were discarded. Cufflinks was then used 
to obtain FPKM values for mapped reads. HTSeq (58) was used to get raw counts for fold 
change analysis. Fold change analysis was performed using edgeR version 3.22.5 (59). Using 
each data set individually or all data sets combined, the median and maximum, and variation 
values for each gene were calculated. For breadth of differential expression, the number of 
conditions under which a gene was up- and down-regulated was determined using log fold 
change values for each data set or combination of data sets. A gene was considered up-regulated 
if it had a log fold change > 1 and a multiple-testing corrected p-value < 0.05 and down-
regulated if it had a log fold change < -1 and a corrected p-value < 0.05. 
 

Co-expression features 
For co-expression features, expression correlation was calculated using three methods: 

Pearson’s Correlation Coefficient (PCC), Spearman’s correlation, and Partial Correlation 
(Corpcor). For each enzymatic gene (annotated and unknown), its expression correlation with 
each annotated SM/GM/DF gene was calculated (excluding self-correlation) using each method, 
each expression measure (fold change or FPKM) and each individual expression dataset (with a 
distinct Gene Expression Omnibus GSE number), combination of datasets, and all datasets 
combined (see Table S6). Then, for an enzymatic gene, E, the median and maximum of the 
correlation values of gene E for each class (SM, GM, or DF) of genes was determined and used 
as feature values. Next, tomato genes were clustered into co-expression modules using six 
methods (k-means, c-means, complete/average/ward hierarchical clustering, and weighted 
correlation network analysis) across each individual expression dataset, dataset combination, and 
all datasets combined (same as for expression correlation). This was done using both fold change 
and FPKM values. Using Random Forest from Python package Scikit- Learn (60), the top 200 
co-expression modules that were the best for distinguishing SM and GM genes for each 
clustering method were selected to be part of the feature matrix for the models. 
 

Evolutionary features 
Orthologs and duplication nodes were determined using OrthoFinder (61). For input, 

protein sequence files from 26 different species were downloaded from Phytozome 
(https://phytozome.jgi.doe.gov/pz/portal.html), Sol Genomics Network (SGN,  
https://solgenomics.net/), PlantGenIE (http://plantgenie.org/), or NCBI 
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(www.ncbi.nlm.nih.gov/genome): Physcomitrella patens 318 v3.3 (Phytozome), Marchantia 
polymorpha 320 v3.1 (Phytozome), Selaginella moellendorffii 91 v1.0 (Phytozome), Picea abies 
V1.0 (PlantGenIE), Amborella trichopoda 291 v1.0 (Phytozome), Oryza sativa 323 v7.0 
(Phytozome), Brassica rapa 277 V1.3 (Phytozome), Capsella rubella 183 V1.0 (Phytozome), 
Arabidopsis thaliana 167 TAIR10 (Phytozome), Arabidopsis lyrata v2.1 (Phytozome), 
Medicago truncatula 285 Mt4.0v1 (Phytozome), Vitis vinifera 145 Genoscope 12x (Phytozome), 
Aquilegia coerulea V3.1(Phytozome), Populus trichocarpa 210 v3.0 (Phytozome), Theobroma 
cacao 233 v1.1 (Phytozome), Coffea canephora (SGN), Ipomoea trifida V1.0 (NCBI), Solanum 
tuberosum V3.4 (SGN), Solanum pennellii SPENNV200 (NCBI), Solanum lycopersicum V2.5 
(NCBI), Capsicum annuum CM334 v.1.55 (SGN), Capsicum annuum var. glabriusculum V2.0 
(SGN), Nicotiana tabacum TN90 AYMY-SS NGS (SGN), Nicotiana tomentosiformis V01 
(NCBI), Solanum melongena r2.5.1 (SGN), and  Petunia axillaris V1.6.2 (SGN).  

To identify putative orthologs, OrthoFinder was first run using default settings, including 
a BLAST run using protein sequence data for each pair of species with default parameters (E-
value<0.001), markov clustering (inflation parameter=0.1) to create initial orthogroups, and 
dendroblast to create distance matrices between protein sequences of genes within each initial 
orthogroup. Initial gene trees were created using OrthoFinder. Three initial orthogroups were 
found to contain a single copy gene from each of the 26 species. Protein sequences of genes in 
each of these three orthogroups were aligned with MAFFT (Nakamura et al., 2018), and the 
alignment was used to build a phylogeny with RAXML (-m PROTGAMMAJTT -number of 
bootstraps 100 -outgroups Mpoly, Ppaten). This putative species tree was used as input into 
OrthoFinder to reconcile the gene trees for redefining orthogroups. Genes were considered to be 
homologous if they were in the same orthogroup. dN/dS (non-synonymous to the synonymous 
substitution rate ratio) was calculated with the yn00 program using PAML version 4.4.5 (62). 
Gene family size was determined by the number of genes in an orthogroup within the species S. 
lycopersicum. 

Duplication mechanism was determined using MCScanX-transposed (63). Four 
duplication mechanisms were used as features: 1) syntenic duplicates: paralogous genes present 
in within-species collinear blocks; 2) dispersed (transposed) duplicates: for a pair of paralogs in 
species A, only one of their corresponding orthologs in species B is present in the inter-species 
syntenic block; 3) tandem duplicate: a gene is adjacent to its paralog; 4) proximal duplicates: a 
gene is separated by no more than 10 genes from its paralog. Genomic clustering features were 
derived from the genome annotation Solanum lycopersicum V2.5. A gene pair X and Y was 
considered to be in the same genomic cluster if gene X was located within 10 kbps downstream 
of the 3'-end or upstream of the 5'-end of gene Y, and X and Y were within 10 genes from each 
other. For gene X, the numbers of genes that qualified as Ys were determined separately for Ys 
in SM and GM pathways. The time point of the most recent duplication was determined from the 
most recent speciation node associated with each gene as determined by OrthoFinder (61). 
Duplication nodes ranged from most ancient (Node 0) to most recent (Node 24). The most recent 
duplication points for genes appearing to originate from multiple duplication nodes were defined 
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by the highest-numbered node they belonged to (Figure S7). Pseudogenes in tomato were 
determined as in Wang et al. (2018) where genomic regions with significant similarity to protein-
coding genes but with premature stops/frameshifts and/or were truncated were treated as 
pseudogenes (64). Detailed methods and parsing scripts for different features can be found in: 
https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum. 
 

Statistics 
Statistical calculations were performed using R and Python. For discrete features, their 

relationships with SM/GM designations were determined by the Fisher’s exact test. For 
continuous data, either the Mann Whitney U test (for comparing two groups) or the Kruskal-
Wallis test followed by Dunn Pairwise Comparisons (for >2 groups) were used for tests of 
significance. Statistical results are in Table S5. 

 

Machine learning models 
Multiple prediction models were made using the Python Sci-kit learn package (60) with 

two algorithms, Random Forest (RF) and Support Vector Machine (SVM). The pipeline (Figure 
1) used to run the models can be found here: https://github.com/ShiuLab/ML-
Pipelinehttps://github.com/ShiuLab/ML-Pipeline. For each model, 10% of the data was withheld 
from training as an independent, testing set. The remaining 90% was used for training. Because 
the dataset was unbalanced (2,321 GM genes, 537 SM genes), 100 balanced datasets were 
created from random draws of GM genes to match the number of SM genes. Using the training 
data, grid searches over the parameter space of RF and SVM were performed. The optimal 
hyperparameters identified from the search were used to conduct a 10-fold cross-validation run 
(90% of the training dataset used to build the model, the remaining 10% used for validation, 
Figure 1) for each of the 100 balanced datasets. In total eight models were established using 
different feature and training datasets as described in Results & Discussion. For a subset of 
models, feature selection using RF was implemented to reduce the features to 50, 100, 200, 300, 
400, 500, and 1000 to determine the optimal number of features. Model performance was 
evaluated using F-measure, the harmonic mean of precision and recall. Each model outputs an 
SM score for each gene that is defined as the mean of predicted class probabilities of a sample to 
be in the SM class based on all decision trees in the forest. For each tree, the SM class 
probability was the fraction of genes predicted as SM. The threshold of the SM score used to 
determine if a gene was an SM or GM gene was the SM score value when the F-measure was 
maximized. The models also have an importance score for each input feature, which takes into 
account the weight of the feature by assessing how well the feature (node) splits the data between 
SM and GM genes in a decision tree in the "forest" and this is weighted by the proportion of 
samples reaching that node (impurity score). The decrease in impurity score from each decision 
tree is averaged across all decision trees in the forest so that the higher the number, the more 
important the feature (65, 66).  
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Shared features between Arabidopsis and tomato 
 Dataset S2 lists the shared features and their values for Arabidopsis and tomato. For 
binary data, the features that were shared by both species were kept. These included two types of 
binary features: (1) protein domains: ~4,000 Pfam domains common between Arabidopsis and 
tomato; (2) evolutionary features: presence of a homolog in one of the 26 species, pseudogene 
paralog, and tandem paralog, and whether the most recent duplication events took place in the 
lineages leading to the nodes shared by both species (nodes 0-7). The shared features also 
included the following continuous features: gene family size, genomic cluster gene count, 
median/maximum dN/dS values between genes and their homologs in each of the 26 species, 
median/maximum dN/dS values between genes and their paralogs, and expression-based 
features. To generate shared expression features, expression data were placed into four categories 
– abiotic, biotic, hormone, and development – in both species. For each category, the 
Arabidopsis expression breadth, breadth of differential expression, and co-expression correlation 
values using PCC were obtained from an earlier study (38). The same sets of features were 
generated for tomato in this study. Continuous values were normalized within each species so 
that they would be comparable across species. For the normalization script see 
https://github.com/ShiuLab/SM-gene_prediction_Slycopersicum. 
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Figure Legends 
 

Figure 1: Machine learning diagram 
(A) Schematic showing the input data for machine learning. The first inputs are labeled 
instances, collectively referred to as the model training set. In this case the instances are genes 
and the labels are the gene classes (response variable; either SM or GM). The second input is 
features, or the predictive variables in the model. In this study, five feature categories, which 
each contain multiple features, were utilized: evolutionary properties, duplication features, 
protein domains, expression properties, and co-expression data. Each gene (instance) has a value 
for each feature. (B) The machine learning process. First the data set was split into training 
(90%) and testing (10%) sets. Next, equal numbers of training instances (i.e., 500 GM and 500 
SM genes) were randomly selected from the training set to learn prediction models. This step 
was repeated 100 times, with different subsets of GM/SM genes selected from the training set in 
each repeat, to assess the robustness of prediction models. For each repeat, a 10-fold cross-
validation was performed where the selected instances were further divided into a training subset 
(90%) for building the model and a cross-validation subset (10%; distinct from the testing set 
withheld from model building) to evaluate the model. After cross-validation, the optimal 
parameters were chosen to establish the final model for a given training/feature data set. Model 
performance assessed using the cross-validation sets was represented using the average F-
measure of all repetitions. In addition to assessing performance based on cross-validation, 
another F-measure was calculated for the final model based on its application to the testing set 
that was held out from the very beginning and never used for training. (C) The final model is 
applied on unannotated enzymatic genes to make predictions. 
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Figure 2: Model 1 machine-learning results 
(A) Schematic illustrating the first model, in which a tomato data set with 7,286 tomato features 
were used. The model was built using TomatoCyc annotations and applied to tomato genes. 
For B-C: SM likelihood score is represented on the x-axis, number of genes is on the y-axis. 
Prediction threshold, based on the score with the highest F-measure, is indicated by the dotted 
line, and predicted SM genes are shown to the right of the line in red while predicted GM genes 
are shown to the left of the line in blue. (B) Distribution of Model 1 gene likelihood scores for 
the TomatoCyc-annotated SM and GM genes used in training the model. (C) Distribution of 
Model 1 gene likelihood scores for test SM and GM genes (which were withheld from the model 
completely). 
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Figure 3: Duplication, evolutionary, and 
expression features important for Model 
1 predictions of SM vs. GM genes 
(A-F) GM genes are denoted in blue, SM 
genes are denoted in red. (A) Log 10 of 
the number of gene family members 
(paralogs) for each class of genes (SM and 
GM). (B) Percent of genes with a known 
duplicate (tandem or syntenic) for each 
class (SM and GM). (C) Maximum dN/dS 
values from comparisons of SM and GM 
genes to homologs in C. canephora and 
(D) S. lycopersicum. (E) Phylogenetic tree 
of 26 species showing speciation nodes, 
and a bar plot showing the percentage of 
tomato genes in each class (SM and GM) 
that have a homolog in an orthologous 
group in a given species. (F-I) Distribution 
of maximum fold change between all 
samples in a given dataset for genes in 
each class (GM and SM) over a (F) 
meristem development dataset (1 study, 18 
samples), (G) circadian dataset (1 study, 
86 samples), (H) mutant dataset (14 
studies, 239 samples, see Table S6 for list 
of mutants) and (I) hormone treatment 
dataset (5 studies, 89 comparisons, see 
Table S6 for hormone treatments). (J-K) 
Distribution of variation in fold change in 
expression over a (J) fruit ripening dataset 
(1 study, 12 samples) and (K) a dataset 
from the late termination mutant, which 
shows delayed flowering and precocious 
doming of the shoot apical meristem (1 
study, 12 samples, see Table S6, LTM 
mutant) for each gene class (GM and SM). 
P-values are from the Mann-Whitney U 
test between SM and GM genes.      
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Figure 4: Feature distributions of 
genes with predictions contrary to their 
annotated classification 
All plots show four classes of 
predictions from Model 1 (GM�GM 
indicates a GM gene predicted as GM, 
GM�SM: a GM gene predicted as SM, 
SM�GM: an SM gene predicted as 
GM, SM�SM: an SM gene predicted 
as SM). (A) Log 10 of the number of 
gene family members (paralogs). (B) 
Percentage of genes with a known 
duplicate (tandem or syntenic). (C) 
Maximum dN/dS values from 
comparisons to homologs in C. 
canephora and (D) S. lycopersicum. (E-
H) Distributions of maximum fold 
change over (E) the meristem 
development dataset (1 study, 18 
samples), (F) the circadian dataset (1 
study, 86 samples), (G) the mutation 
dataset (14 studies, 239 samples, see 
Table S6 for list of mutants) and (H) the 
hormone dataset (5 studies, 89 
comparisons, see Table S6 for hormone 
treatments). (I-J) Distribution of 
variation in fold change in expression 
over (I) the fruit ripening dataset (1 
study, 12 samples) and (J) the late 
terminal mutant dataset (1 study, 12 
samples). For continuous data, p-values 
are from the Kruskal-Wallis test and 
post-hoc comparisons were made using 
the Dunn’s test.  Different letters 
indicate statistically significant 
differences between groups (P < 0.05). 
For binary data (B) overrepresentation 
(+) and underrepresentation (-) were 
determined using the Fisher’s Exact test,
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where (+) is significant enrichment of SM genes and (-) is significant enrichment of GM genes. 
A p-value less than 0.05 after Benjamin-Hochberg multiple testing correction was considered 
significant. 
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Figure 5: Arabidopsis Model 3 and tomato Model 4 predictions. 
(A) Schematic diagram showing the Arabidopsis model (Model 3) built using the shared feature 
set between Arabidopsis and tomato. Model 3 was trained using Arabidopsis annotations and 
was then applied to Arabidopsis genes. (B) Schematic diagram showing the tomato model built 
using the shared feature set between Arabidopsis and tomato. (Model 4). Model 4 was trained 
using tomato annotations and was then applied to tomato genes. (C) Distribution of SM 
likelihood scores for Arabidopsis SM and GM training set genes from Arabidopsis Model 3. (D) 
Distribution of SM likelihood scores from tomato Model 4. Scores for tomato training set GM 
and SM genes are shown. (E) Schematic diagram of Arabidopsis Model 3 built using the shared 
feature set between Arabidopsis and tomato. Model 3 was trained using Arabidopsis annotations 
and then applied to tomato genes. (F) Distribution of SM likelihood scores from Arabidopsis 
Model 3. Scores for annotated tomato GM and SM genes are shown. For figures C, D, and F, SM
likelihood score is shown on the x-axis, number of genes is on the y-axis. Prediction threshold, 
based on the score with the highest F-measure, is indicated by the dotted line, and predicted SM 
genes are shown to the right of the line in red while predicted GM genes are shown to the left of 
the line in blue.  
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Figure 6: Tomato Model 4 and Arabidopsis Model 3 comparison 
(A-B) Comparison of the SM score distributions from tomato Model 4 (y-axis) and Arabidopsis 
Model 3 (x-axis). For both models Random Forest (RF) and a shared feature set were used. 
Density of data points ranges from high (yellow) to medium (blue-purple), to low (white). (A) 
SM scores for TomatoCyc-annotated GM genes. (B) SM scores for TomatoCyc-annotated SM 
genes. (C) Comparison of importance score distributions for features of tomato Model 4 (y-axis) 
and Arabidopsis Model 3 (x-axis). Arrows point to important features: (1) Gene Family Size; (2) 
PCC (Pearson’s correlation coefficient) between SM genes, development data; (3) Breadth of 
expression, development data; (4) the normalized maximum dN/dS between Arabidopsis or 
tomato genes and their C. canephora homologs; (5) PCC between GM genes, hormone data. (D-
F) Feature distributions for annotated SM and GM genes that are predicted as SM or GM genes 
by Arabidopsis Model 3 and tomato Model 4. The x-axis lists the annotations for each group of 
genes, how they were predicted using Arabidopsis Model 3, and how they were predicted using 
tomato Model 4. P-values are from the Kruskal-Wallis test and post-hoc comparisons were made 
using the Dunn’s test.  Different letters indicate statistically significant differences between 
groups (P < 0.05). (D) Gene family size; (E) Expression breadth under development; (F) 
normalized maximum dN/dS between Arabidopsis or tomato genes and their homologs in C. 
canephora. 
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Figure 7: Important features for the S. lycopersicum reduced-class model (Model 5)  
(A) Schematic diagram showing the tomato model trained on filtered annotations (Model 5) 
applied to tomato. The shared data set was used to build a binary model using tomato SM and 
GM annotations after removing those annotations that were mis-predicted by Arabidopsis Model 
3. The model was then applied to tomato genes. (B) Distribution of SM likelihood scores from 
Model 5 using Random Forest (RF). Scores are for tomato training set GM and SM genes. SM 
likelihood score is shown on the x-axis, number of genes is on the y-axis. Prediction threshold, 
based on the score with the highest F-measure, is indicated by the dotted line, and predicted SM 
genes are shown to the right of the line in red while predicted GM genes are shown to the left of 
the line in blue. (C) Importance scores for Model 5. Importance scores were normalized, with 1 
or -1 being the highest importance score, and 0 being the lowest. Red and blue bars indicate 
whether a feature is correlated with SM genes and GM genes, respectively. Normalized 
importance scores are shown on the x-axis and features are shown on the y-axis. Feature type is 
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shown as a bar on the y-axis where the color indicates the feature type: evolutionary (blue), 
duplication (green), expression (yellow), functional domain (purple), and co-expression (orange). 
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Supplemental Figures 

Supplemental Figure 1: Comparison of all model scores and feature importance values for 
Model 1 
(A) Comparison of model scores. F-measure is shown on the y-axis and model is shown on the 
x-axis. Model type is denoted by color. Gray indicates Models 1-8 variants (i.e., different ML 
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algorithms and/or numbers of features used) that are not described in the text. RF: Random 
Forest. SVM: Support Vector Machine. featsel25-1000: features selected, sets of 25 to 1000. For 
model names, see Table S2. (B) Bar plot of the top 50 most important features for Model 1. The 
importance score is on the y-axis and all scores are normalized to the score of the most important 
feature, which was set as 1. Red bars represent features that are enriched for SM genes while the 
blue bars represent features enriched for GM genes. Features are listed along the x-axis, with the 
color denoting the feature category.  
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Supplemental Figure 2: Important features for Model 1. 
(A-K) Distributions or bar plots of feature values for TomatoCyc-annotated SM and GM genes. 
(A-J) Significance determined by the Mann-Whitney U test. (A-H) Distributions of the 
maximum or median dN/dS value for a given gene relative to their homolog in P. patens, S. 
moellendorffii, A. trichopoda, O. sativa, B. rapa, A. coerulea, P. trichocarpa and S. pennellii. (I, 
J) Distributions of log 10 of median FPKM values for the Inflorescence data set and Root data 
set. (K) Percent of genes with a given Pfam domain. Overrepresentation (+) and 
underrepresentation (-) was determined using those genes with a p-value less than 0.05 from a 
Fisher’s Exact test between SM and GM genes with Benjamin-Hochberg multiple testing 
correction.  
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Supplemental Figure 3: Features important for SM vs. GM predictions  
For all distributions of each predicted class, GM�GM represents GM genes predicted by Model 
1 as GM, GM�SM represents GM genes predicted by Model 1 as SM, SM�GM represents SM 
genes predicted by Model 1 as GM, and SM�SM represents SM genes predicted by Model 1 as 
SM. Significant differences between continuous variables were determined by the Kruskal-
Wallis test (A-J) and post-hoc comparisons were made using Dunn’s test. Different letters 
indicate statistically significant differences between groups (P < 0.05). For binary data (K), 
overrepresentation (+) and underrepresentation (-) were determined by the Fisher’s Exact test 
where (+) is significant overrepresentation of a predicted class and (-) is significant 
underrepresentation. A p-value < 0.05 after Benjamin-Hochberg multiple testing correction was 
considered significant. (A-H) Distributions of the maximum or median dN/dS value for a given 
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gene from comparisons to its homolog in P. patens, S. moellendorffii, A. trichopoda, O. sativa, 
B. rapa, A. coerulea, P. trichocarpa and S. pennellii. (I, J) Distributions of log10 (median 
FPKM) values for the Inflorescence (I) and Root (J) data sets. (K) Percentage of genes with a 
given Pfam domain.  
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Supplemental Figure 4: SM likelihood scores for manually annotated genes 
(A-D) Distribution of SM likelihood scores for manually annotated benchmark genes from 
Model 1. TomatoCyc-XX indicates the TomatoCyc annotation and BM-XX indicates the 
benchmark annotation. SM likelihood score is shown on the x-axis, number of genes is on the y-
axis. Prediction threshold, based on the score with the highest F-measure, is indicated by the 
dotted line, and predicted SM genes are shown to the right of the line in red while predicted GM 
genes are shown to the left of the line in blue. (E) Bar plot showing the percentage of manually 
annotated benchmark genes predicted as SM or GM by Model 3. The original annotation from 
TomatoCyc is shown first, followed by the benchmark annotation and then the prediction. (F) 
Same as (E), except that the predictions were made using the tomato Random Forest (RF) model 
(Model 4) with shared features.  
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Supplemental Figure 5: S. lycopersicum and A. thaliana model comparison and model 
performance 
(A-B) Comparison of the SM score distributions for tomato Model 4 (y-axis) and Arabidopsis 
Model 3 (x-axis). Support Vector Machine (SVM) and a shared feature set were used for both 
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models. Density of data points ranges from high (yellow) to medium (blue-purple) to low 
(white). (A) SM scores for GM genes; (B) SM scores for SM genes; (C-F) Feature distributions 
for annotated SM and GM genes that are predicted as SM or GM genes by Arabidopsis Model 3 
and tomato Model 4. The x-axis lists the annotations for each group of genes predicted using 
Arabidopsis Model 3 and tomato Model 4. P-values are from the Kruskal-Wallis test and post-
hoc comparisons were made using the Dunn’s test. Different letters indicate statistically 
significant differences between groups (P < 0.05).  (C) maximum Pearson’s Correlation 
Coefficient (PCC) between a given gene and all other SM genes under stress conditions; (D) 
maximum PCC between a given gene and all other SM genes during development; (E) maximum 
PCC between a given gene and all other GM genes under hormone treatment; (F) normalized 
median dN/dS values between tomato or Arabidopsis genes and their homologs in O. sativa. 
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Supplemental Figure 6: Benchmark and test set predictions from finalized models with A. 
thaliana mis-predictions removed (Models 5 and 7) 
(A) Bar plot showing the percentage of manually annotated benchmark genes predicted as SM or 
GM by Model 5. The original annotation from TomatoCyc is shown first, followed by the 
benchmark annotation and then the prediction. Distributions of SM likelihood scores are shown 
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in plots B, C, G, and H. (B) Model 5 test set SM and GM genes, which were held out from the 
model building process completely. (C) TomatoCyc SM and GM genes with annotations 
opposite to Arabidopsis Model 3 predictions removed from the filtered training set. (D) 
Schematic diagram showing the application of tomato Model 7 to tomato. The full tomato 
feature dataset was used to build a binary model using TomatoCyc SM and GM annotations after 
removing genes mis-predicted by Arabidopsis Model 3. The model was then applied to tomato 
genes. (E) TomatoCyc filtered training set SM and GM genes from tomato Model 7. (F) Bar plot 
showing the percentage of manually annotated benchmark genes predicted as SM or GM by 
Model 7. The original annotation from TomatoCyc is shown first, followed by the benchmark 
annotation and then the prediction. (G) Model 7 test set: SM and GM genes, which were held out 
completely from the tomato Model 7 building process and (H) unannotated tomato enzymes. For 
plots (B, D, F, and G): SM likelihood score is shown on the x-axis, number of genes is on the y-
axis. Prediction threshold, based on the score with the highest F-measure, is indicated by the 
dotted line, and predicted SM genes are shown to the right of the line in red while predicted GM 
genes are shown to the left of the line in blue.  
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Supplemental Figure 7: Speciation nodes 
Phylogenetic tree of 26 species showing speciation nodes (N0-N24). Most recent gene 
duplication node in text refers to the speciation node where gene was last duplicated. 
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Supplemental Tables 
 
Table S1: Tomato gene annotation information 
Annotation information based on TomatoCyc and manual annotation. 
 
Table S2: Model scores  
Scores and information for all models. 
 
Table S3: SM gene scores 
SM prediction scores for all genes for each of the models. 
 
Table S4: Feature Importance 
Feature importance scores for all models discussed in the text. 
 
Table S5: Feature Statistics 
Statistics for original and shared features. 
 
Table S6: Transcriptome studies 
Information about all expression datasets used in the models. 
 
Dataset S1: Original features 
Dataset includes all of the features used for Models 1, 2, 7, and 8. 
 
Dataset S2: Shared features 
Dataset includes all of the shared features between Arabidopsis and tomato used for Models 3, 4, 
and 5. 
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