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Abstract		
	
	
Sensory	inputs	to	the	dorsal	vs	ventral	olfactory	bulb	derive	from	distinct	receptor	families,	

and	drive	distinct	behaviors.	To	address	whether	second-order	OB	neurons	and	circuits	

exhibit	matching	heterogeneity	for	input-specific	readout,	we	clustered	spatial	expression	

profiles	of	>2,000	genes	from	the	mitral	cell	layer	(MCL).	We	observed	clear	dorsal	and	

ventral	clusters,	together	with	dorsoventral	differences	in	mitral	cell	physiology.	Bulbar	

circuits	may	therefore	be	tuned	for	zone-specific	computation.	
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Main		
	
The	main	olfactory	bulb	receives	topographically	organized	sensory	inputs,	partitioning	this	

structure	into	columnar	domains	defined	by	individual	glomeruli1,2,	as	well	as	larger	dorsal	

and	ventral	glomerular	zones	defined	by	receptor	clades3–5		(Fig.	1A).	In	genetic	ablation	

studies	of	the	OB’s	zonal	organization,	it	was	found	that	the	dorsal	and	ventral	OB	support	

innate	vs.	learned	odor	behaviors,	respectively6	.	Consistent	with	this,	dorsal	and	ventral	

portions	of	the	bulb	differ	in	their	connectivity	to	downstream	targets7,8	as	well	as	their	

sources	of	centrifugal	input9.	

	

While	zonal	differences	in	the	OB’s	inputs	and	projections	are	well	appreciated,	it	is	not	

clear	whether	the	OB’s	second-order	neurons	(mitral	cells,	in	particular)	and	their	

associated	local	circuits	show	matching	zonal	organization.	At	one	extreme	(Fig.	1A,	top),	

the	mitral	cell	layer	(MCL)	may	comprise	a	homogeneous	cell	population	that	provides	

invariant	readout	across	glomeruli.	At	the	other	extreme	(Fig.	1A,	bottom),	mitral	cells	may	

be	both	heterogeneous	and	spatially	organized	for	input-specific	readout	and	formatting	of	

sensory	inputs.	While	other	studies	have	observed	heterogeneity	in	mitral	cell	physiology10,	

and	described	its	organization	at	the	single-glomerulus	scale11–13,	the	critical	question	of	

whether	mitral	cells	show	zonally	organized	differences	has	not	been	directly	addressed.	

	

To	distinguish	between	the	models	of	intra-laminar	heterogeneity	above	(Fig.	1),	we	first	

investigated	spatial	gene	expression	profiles	along	the	mitral	cell	layer,	at	genomic	scale	(i.e.	

for	thousands	of	genes).	In	contrast	to	the	serial	and	piecewise	examination	of	individual	

marker	genes,	this	unbiased	approach	investigates	the	high-dimensional	organization	of	

transcription,	in	search	of	region-defining	expression	motifs.	Similar	approaches	have	been	

used	in	the	hippocampus	to	confirm	the	intra	and	inter-laminar	differences	of	classical	

histology14,15,	as	well	as	to	discover	new	ones	16	

	

We	fetched	all	(~30,000)	coronal	in-situ-hybridization	(ISH)	experiments	for	the	olfactory	

bulb	from	the	Allen	Institute’s	mouse	brain	expression	atlas17,	and	spatially	registered	these	

into	a	high-dimensional	atlas,	allowing	clear	differentiation	of	the	OB’s	laminae	(Fig.	1B,C).	

Briefly,	our	registration	pipeline	used	a	convolutional	neural	network	(CNN)18	to	classify	

sections	and	design	templates	for	non-affine	registration	of	ISH	experiments	(See	Methods;		
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Fig.	1.	A	genomic-scale	atlas	of	registered	in-situ-hybridization	(ISH)	experiments	for	
the	mouse	olfactory	bulb	derived	from	the	Allen	Mouse	Expression	Atlas.	A)	Two	
contrasting	models	of	mitral	intra-laminar	heterogeneity.	Top:	mitral	cell	population	is	
homogeneous,	providing	invariant	readout	of	zonally	organized	inputs.	Bottom:	mitral	cell	
population	is	heterogeneous	(comprised	of	cellular	and/or	local	circuit-subtypes)	for	
zonally	organized	readout	and	computation.	B)	Demonstration	of	successful	large-scale	
image	registration.	1)	example	of	a	single	registered	ISH	image;	2)	median	intensity	
projection	of	~2K	pre-processed	(unregistered)	ISH	images;	3)	median	projection	image	of	
the	same	images,	post-registration.	Note	that	figures	(B)	and	(C)	are	reproduced	in	part	
from	a	previous	methods-paper	(Andonian	et.	al,	2019).	C)	Line-intensity	profiles,	
calculated	across	the	lines	of	interest	shown	in	B1-3,	demonstrating	clear	delineation	of	the	
mitral	cell	layer	in	registered	images.	Abbreviations:	OPL	-	outer	plexiform	layer;	MCL	-	
mitral	cell	layer;	IPL	-	inner	plexiform	layer;	GCL	-	granule	cell	layer.	D)	Histogram	of	
median	expression	level	of	all	genes	in	the	mitral	cell	layer.	In	agreement	with	previous	
work,	the	majority	of	genes	show	little	or	no	expression.	Left	axis	(corresponding	to	filled	
gray	bars)	is	linear,	and	right	axis	(corresponding	to	black	line)	is	logarithmic.	E)	CV	vs.	
mean	of	gene	expression	in	the	mitral	cell	layer,	for	all	genes	in	this	study	(gray	dots).	
Purple	and	maroon	circles	are	genes	previously	identified	as	‘non-expressors’	and	‘neuron	
enriched’,	respectively,	in	Lein	et	al.	2007.	Gray	area	shows	genes	retained	for	the	present	
study,	with	the	dashed	line	indicating	the	chosen	expression	threshold.		
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Supp.	Video	1).	Methods	are	described	more	thoroughly	in	a	previous	publication19.	For	

ease	of	interpretation,	our	analysis	only	included	relatively	rostral	sections	of	the	OB,	in	

which	the	MCL	is	closed	and	contiguous.	Expression	energy	(see	methods)	was	calculated	

along	the	mitral	cell	layer	in	193	contiguous	2D	(5	pixel	x	5	pixel)	bins.		

	

Consistent	with	previous	results15,17,	the	majority	of	genes	showed	either	no	expression	or	

negligible	expression	in	the	mitral	cell	layer	(Fig.	1D).	Indeed,	there	was	strong	agreement	

on	the	identities	of	enriched	and	non-enriched	genes	between	our	curated	data	set	and	

previously	published	work	(Fig.	1E).	To	validate	our	extracted	expression	values	against	a	

second	source	using	a	different	assay	of	gene	expression,	we	compared	median	expression	

values	in	our	mitral	cell	atlas	with	those	from	the	publically	available	spatial	transcriptomic	

RNA-seq	set20(Fig.	S1).	Again,	we	observed	a	strong	correlation	between	the	two	data	sets	

(R=0.57,	p<8.63	x	10-22).		

	

Figure	2A	shows	the	matrix	of	gene-expression	x	distance	along	the	mitral	cell	layer	which	

we	analyzed	for	potential	low-dimensional	structure.	Scanning	across	all	genes	(i.e.	across	

rows	of	the	matrix),	we	observed	greater	differential	enrichment	in	comparisons	between	

dorsal	and	ventral	locations	relative	to	comparisons	between	adjacent	locations	(Fig.	2B).	

As	shown	in	figure	2C,	the	histogram	of	pairwise	distances	(that	is,	distances	in	gene-space)	

between	all	MCL	points	was	multimodal,	indicating	that	gene	expression	profiles	are	not	

uniform	across	this	cell	layer,	and	may	instead	aggregate	into	several	discrete	types.	To	

further	investigate	this	possibility,	we	performed	a	“component-based”	clustering	of	

expression	profiles	using	non-negative	matrix	factorization	(NMF15,21;	see	methods;	Fig.	S2).	

For	a	2-d	decomposition,	we	observed	prominent	dorsal	and	ventral	spatial	modes	

describing	gene	expression	(Fig.	2D).	Notably,	these	clustering	results	reflect	strictly	

genomic	distances	between	points	along	the	mitral	cell	layer,	and	make	no	explicit	use	of	

spatial	information	in	the	clustering	process.	More	plainly:	the	NMF	results	suggest	that	

many	individual	genes	show	strong	and	selective	dorsal	or	ventral	patterning.		

	

Accordingly,	expression	profiles	of	individual	genes	were	readily	clustered	by	their	

resemblance	to	one	of	the	two	given	modes	(and	to	the	exclusion	of	the	other),	and	figure	

2E	shows	that	there	are	many	candidate	genes	with	strongly	biased	dorsal	vs.	ventral	

expression.	In	principle,	it	is	possible	that	individual	expression	profiles	do	not	show		
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Figure	2.	Clustering	of	mitral	cell	layer	(MCL)	gene	expression	profiles.	A)	Matrix	of	
genes	(rows)	x	distance	along	the	MCL	(columns).	Left-most	column	is	expression	data	from	
the	most	dorsal	point	of	the	mitral	cell	layer.	Consecutive	columns	‘trace’	the	mitral	cell	
layer	counter-clockwise,	until	arriving	at	the	same	starting	dorsal	point	(see	schematic	in	
panel	G).	B)	Illustration	of	dorso-ventral	gene	enrichment.	Blue	line	shows	rank-ordered	
gene	expression	values	from	a	dorsal	location	in	the	MCL	(column	indicated	by	teal	triangle	
in	(A));	Purple	bar-plot	shows	gene	expression	values	from	a	ventral	location	(purple	
triangle	in	(A)),	ordered	according	to	the	rank-ordered	dorsal	values.	Note	that	while	the	
overall	trend	is	similar,	there	are	genes	that	are	highly	expressed	ventrally	that	are	virtually	
unexpressed	dorsally.	The	converse	is	also	true,	but	difficult	to	see	in	the	densely	packed	
bars.	C)	Histogram	of	pairwise	distances	(Euclidian	distance	in	gene-expression	space)	
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between	all	pairs	of	193	points	along	the	mitral	cell	layer.	D)	Gene	expression	clusters	(i.e.	
‘features’)	derived	from	performing	non-negative	matrix	factorization	(NMF)	on	the	matrix	
in	(A),	showing	prominent	dorsal	(teal)	and	ventral	(purple)	modes	defining	transcription	
in	the	MCL.	E)	Clustering	of	individual	mitral	cell	gene	expression	profiles	by	their	relative	
NMF	weights	(i.e.	by	their	resemblance	to	the	either	mode	1	or	mode	2	in	(C)).	Each	radial	
line	corresponds	to	one	gene,	with	expression	amplitude	indicated	by	length,	and	degree	of	
clustering	indicated	by	angular	deviation	from	the	identity	line	(dashed	line).	Teal	and	
purple	lines	are	genes	considered	‘strongly	clustered’	dorsally	and	ventrally,	respectively	
(strong	clustering	is	defined	here	as	those	genes	with	angular	deviations	>1.5	SDs	from	the	
mean	of	the	angular	distribution).	F)	Averaged	expression	profiles	for	the	20	most	strongly	
expressed	dorsal	and	ventral	genes.	Shaded	area	is	S.E.M.	G)	Sample	expression	profiles	of	
individual	genes.	Left	schematic:	convention	for	plotting	expression	profiles.	Profiles	begin	
at	the	dorsal-most	point	of	the	MCL,	and	proceed	counter-clockwise	along	the	extent	of	the	
MCL.	Right	panels:	examples	of	genes	with	strong	uniform	expression	(left	column);	strong	
and	selective	dorsal	expression	(middle	column);	strong	and	selective	ventral	expression	
(right	column).	Raw	&	unadjusted	ISH	images	corresponding	to	data	in	(G)	are	shown	in	
Supplementary	Figure	S3)		
	

	

	

	

categorical	dorsal	or	ventral	enrichment,	and	that	the	derived	components	are	instead	a	

decomposition	of	a	complex,	multi-peaked	expression	profile	shared	by	many	genes.	

Although	the	histogram	of	Fig.	2C	already	argues	against	this,	we	investigated	this	further	

by	averaging	the	expression	profiles	of	the	top	20	genes	in	the	dorsal	and	ventral	clusters.	

The	averaged	profiles	strongly	resemble	the	components	derived	from	NMF	(Fig.	2F),	

arguing	that	there	exist	categorical	dorsal	vs.	ventral	expressors.		
 

Examples	of	individual	gene	expression	profiles	are	shown	figure	2G.	The	left	column	shows	

examples	of	strong	uniform	expressors	(Olfactomedin	1	and	Gad1),	the	middle	column	

shows	examples	of	strong	dorsal	expressors	(Synaptotagmin	2	and	Slc9A1)	the	right	

column	shows	examples	of	strong	ventral	expressors	(Wnt8A,	and	Fkbp6).	Raw	images	of	

these	same	ISH	experiments	are	provided	in	Fig.	S3,	and	argue	against	the	possibility	that	

asymmetries	simply	reflect	pathological	cases	in	which	part	of	the	mitral	cell	layer	was	

missing	or	damaged.	Taken	together,	our	analysis	indicates	that	many	genes	in	the	OB	

mitral	cell	layer	exhibit	dorsal	and	ventral	patterning,	in	apparent	correspondence	with	the	

dorsal	and	ventral	patterning	observed	for	the	bulb’s	sensory	inputs.		
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While	many	of	the	genes	showing	spatially	localized	enrichment	are	involved	in	cellular	

excitability	and	synaptic	transmission,	it	is	still	possible	that	this	does	not	manifest	as	

physiologically	observable	or	meaningful	differences	in	mitral	cell	properties.	As	in	other	

systems,	there	may	simply	be	different	genetic	programs	capable	of	producing	

phenotypically	equivalent	mitral	cells22,23.	Additionally,	it	is	possible	that	the	observed	

transcriptional	differences	are	only	important	for	cellular	migration	and	axonal	targeting,	

and	not	excitable	properties	or	local	computation.		

	

To	explore	this	possibility,	we	made	whole-cell	recordings	from	coronal	sections	of	the	

olfactory	bulb,	and	compared	physiological	properties	between	dorsal	vs.	ventral	mitral	

cells	(see	Methods).	We	observed	a	marked	difference	in	the	firing	rate	vs.	input	(FI)	

relationship	for	the	two	cell	types,	with	ventral	mitral	cells	exhibiting	steeper	FI	gain.	Peak	

firing	rate	for	dorsal	mitral	cells	was	42.85±7.03	Hz,	whereas	peak	firing	rate	for	ventral	

mitral	cells	was	79.90±12.19	Hz	(p=0.02,	unpaired	t-test,	n=15	in	both	cases).	Input	

resistance	and	resting	potential	did	not	differ	for	the	two	cell	populations	

(Rinput(dorsal)=113.26	±19.62	vs.	Rinput(ventral)=148.93±44.67,	p=0.43,	unpaired	t-test,	

n=12	and	n=11;	(Vrest(dorsal)	=	55.2±1.9	mV	vs.	Vrest(ventral)=57.1±2.3	mV	,	p=0.51,	

unpaired	t-test,	n=13	and	n=15,	respectively).	On	inspection	of	all	individual	FI	curves	(Fig.	

3C),	it	was	evident	that	the	ventral	population	contained	a	subset	of	cells	supporting	higher	

firing	rates;	this	is	additionally	suggested	by	the	greater	variance	of	peak	firing	rates	in	

ventral	mitral	cells	(Fig.	3C).		
 

We	also	tested	for	differences	in	the	magnitude	of	recurrent	inhibition	in	dorsal	vs.	ventral	

mitral	cells	by	eliciting	a	fixed	number	of	action	potentials,	and	measuring	the	slow,	AHP-

like	potential	after	the	final	spike.	This	potential	is	known	to	reflect	local	circuit	dynamics	--	

specifically,	recurrent	dendrodendritic	inhibition	mediated	by	granule	cells24–26.	We	again	

observed	a	marked	difference	between	dorsal	and	ventral	mitral	cells,	with	ventral	cells	

having	showing	~	70%	more	inhibition	than	dorsal	cells	(Peak	AHP	amplitude	(dorsal)	=	-

2.92±0.52	mV;	Peak	AHP	amplitude	(ventral)=	-5.08±0.69	mV,	p=0.02,		unpaired	t-test,	n=12	

and	n=13,	respectively).	When	peak	MC	firing	and	peak	MC	inhibition	were	plotted	on	the	

same	axes,	a	subset	of	ventral	cells	were	characterized	by	both	high	firing	rates,	and	greater	

recurrent	inhibition.	Under	the	assumptions	of	a	simple	model	in	which	mitral	cells	are	

presumed	to	merely	gate	throughput	to	downstream	structures,	these	two	effects	appear	to	

be	in	opposition.	One	possibility	is	that	the	more	pronounced	inhibition	is	a	homeostatic		
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Figure	3.	Electrophysiological	differences	between	dorsal	and	ventral	mitral	cells.	A)	
Action	Potential	Frequency	vs.	input	(FI)	relationship	for	mitral	cells.	Stimuli	were	1s	
injections	of	step-currents	in	current	clamp	(see	Methods).	B)	Dorsoventral	differences	in	
intrinsic	properties	of	mitral	cells.	C)	Montages	summarizing	all	experiments	investigating	
the	FI	relationship	between	dorsal	and	ventral	mitral	cells.	D)	Traces	showing	APs	observed	
in	dorsal	and	ventral	mitral	cells,	in	response	to	the	stimulus	evoking	peak	firing.	E)	Left:	
Traces	showing	recurrent	inhibition	in	dorsal	and	ventral	MCs	elicited	by	a	fixed	number	of	
supra-threshold	stimuli.	Right:	Differences	in	peak	amplitude	of	recurrent	inhibition	in	
dorsal	and	ventral	mitral	cells.	F)	Timecourse	of	recurrent	inhibition	for	dorsal	and	ventral	
MCs.	G)	Scatterplot	of	firing	rate	and	amplitude	of	inhibition,	for	all	cells	with	both	
measurements.			
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adjustment	to	counter-act	greater	excitability.	Of	course,	these	differences	are	not	

necessarily	opposed,	functionally,	and	may	play	more	complex	roles	in	shaping	local	

population	dynamics	(synchrony,	oscillatory	behavior,	etc)	as	well	as	the	spatiotemporal	

formatting	of	activity	for	downstream	targets	with	different	ecological	roles27.		
 

In	sum,	we	combined	‘genomic-anatomical’	and	physiological	analyses	to	show	that	

olfactory	bulb	mitral	cells	are	heterogeneous	and	zonally	organized.	We	note	that	our	

analysis	only	establishes	a	lower	bound	on	this	heterogeneity,	and	does	not	exclude	the	

possibility	that	there	are	additional	mitral	cell	or	local	circuit	subtypes.	One	intriguing	

possibility	raised	by	our	study	is	that	inputs	to	the	dorsal	vs.	ventral	bulb	undergo	distinct	

local	formatting,	in	a	manner	that	is	either	input	or	target	specific	(or	both).	A	limitation	of	

our	study	is	that	our	methods	cannot	unambiguously	differentiate	between	a	model	in	

which	there	are	two,	unmixed	and	non-overlapping	populations	of	different	mitral	cells,	

versus	two	mixed	populations	that	differ	in	relative	abundance	in	the	dorsal	vs.	ventral	

bulb.		Future	work	employing	single-cell	sequencing	techniques	will	be	able	to	address	this	

more	directly.		

	
	
Methods	
	
Image	registration		
	
Our	registration	and	image-processing	methods	–	including	comparisons	to	other	methods,	

and	analysis	of	registration	accuracy	--	are	described	in	detail	in	a	recent	methods-paper	

from	our	group17.	Code	for	all	described	procedures	is	available	at	

https://github.com/CastroLab/ImageRegistrationPipeline.	Briefly,	our	workflow	consists	of	

data	fetching,	pre-processing,	classification	and	registration	template	design,	registration,	

and	clustering.	

	

1)	Image	fetching.	All	(~	30,000)	in-situ	hybridization	(ISH)	coronal	experiments	containing	

olfactory	bulb	were	downloaded	from	the	Allen	Brain	Atlas	(ABA),	using	the	Allen	Institute’s	

API	and	our	own	custom-written	Python	scripts.	In	addition,	we	also	downloaded	the	

expression	image	masks	for	each	ISH	experiment,	which	are	thresholded	and	segmented	

image	masks	derived	from	the	raw	data	that	map	expression	differences	to	a	common	8-bit	

scale.	Images	were	JPEGs	~	2MB	each	and	were	maintained	on	local	servers.	Details	on	the	
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ABA	tissue-processing	pipeline	have	been	described	in	detail	in	previous	publications,	and	

are	also	documented	on	publicly	available	white-papers	from	the	Allen	Institute:	

(http://help.brain-map.org/display/mousebrain/Documentation).	

	

Each	ABA	coronal	tissue	section	is	annotated	with	a	unique	section-ID	indicating	rostro-

caudal	position	relative	to	a	reference	brain	sectioned	at	100	μm	intervals.	We	grabbed	all	

tissue	sections	with	section	IDs	>	400	(larger	values	are	more	rostral,	and	the	bulb	is	the	

most	rostral	structure	of	the	mouse	brain).	This	conservative	range	was	chosen	empirically	

to	miss	no	sections	with	olfactory	bulb	(OB).	Owing	to	this	conservative	criterion,	we	

initially	retained	some	sections	that	did	not	contain	OB,	and	which	included	portions	of	

frontal	cortex,	piriform	cortex,	and	the	anterior	olfactory	nucleus	(AON).	

	

2)	Image	pre-processing.	Custom-written	Python	scripts	were	used	for	segmentation,	

thresholding,	cropping,	and	affine	transformations	to	correct	for	differences	in	image	scale	

as	well	as	slight	differences	in	image	orientation.	Images	were	converted	to	grayscale,	

centered,	and	downsampled	to	220	×	220.	After	thresholding,	the	binary	segmentation	

mask	underwent	a	morphological	closing	operation	(skimage.morphology.binary_closing)	

with	a	disk	structuring	element	of	radius	2.	This	mask	was	used	to	set	all	background	pixels	

to	pure	white,	which	was	critical	for	registration.	

	

3)	Derivation	of	a	CNN-based	image	similarity	metric.	We	trained	a	convolutional	neural	

network	(CNN)	to	classify	OB	tissue	sections	into	one	of	6	groups	(5	anatomical	section	

types	&	1	‘other’	category	comprising	damaged,	low-quality,	or	otherwise	un-classifiable	

sections).	The	network	was	trained	on	a	random	set	of	2,227	images	that	were	expert-

labeled	(by	JBC).	The	classifier	was	implemented	in	MatConvNet	(vlfeat.org)	28and	we	used	

a	transfer	learning	approach	using	a	pre-trained	architecture	(the	popular	Alexnet	

architecture29,	trained	on	ImageNet	(www.image-net.org)),	and	fine-tuned	only	the	last	fully	

connected	layer	and	softmax	classifier.	Briefly,	the	architecture	comprises	5	

Convolutional/Rectified	Linear	Unit	(ReLU)	layers,	three	of	which	are	followed	by	max	

pooling,	and	three	fully	connected	(“dense”)	layers,	for	a	total	of	7	hidden	layers	and	an	

output	layer.		The	network	was	trained	on	a	custom-built	machine	with	2	x	SLI	Dual	

GeForce	GTX	Titan	x	12GB	GPUs,	and	training	took	~2–3h.	All	downloaded	ABA	ISH	images	

were	passed	through	the	trained	CNN,	and	the	weights	of	the	7th	(and	final)	fully-connected	
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layer	(fc7)	were	used	as	feature	vectors	to	describe	the	images.	Pairwise	Euclidian	distances	

between	these	fc7	vectors	were	used	as	a	proxy	for	image	similarity.		

	

To	design	a	set	of	registration	templates,	we	chose	12	uniformly	distributed	seed-points	

across	the	image	space	of	closed	MCLs	to	define	a	grid.	We	then	hand-picked	10	individual	

ISH	experiments	within	each	of	these	12	neighborhoods,	choosing	images	for	symmetry,	

tissue	quality,	and	contrast.	These	sets	of	ten	images	were	registered	groupwise	using	the	

Medical	Image	Registration	Toolbox	(MIRT)30-a	Matlab-based	package	for	performing	

parametric	(B-spline)	registrations.	Registrations	(both	groupwise	and	pairwise)	were	

performed	using	cubic	B-splines	for	image	deformation,	and	similarity	between	the	fixed	

and	target	images	was	assessed	by	calculating	material	similarity	and	mutual	information	
31as	these	metrics	showed	the	least	sensitivity	to	differences	in	contrast.	Registration	was	

performed	with	mostly	default	parameters,	with	the	exception	of	regularization	weight,	

which	we	increased	from	the	default	0.01	to	0.1	to	prevent	biologically	unmeaningful	image	

deformations.	The	image	transformations	were	discovered	for	ISH	images	and	also	applied	

to	the	corresponding	expression	images	for	subsequent	quantification	and	analysis	of	gene	

expression.	To	ensure	that	derived	expression	profiles	reflected	genuine	spatial	variation	in	

expression,	and	not	artifacts	introduced	by	tissue	damage,	poor	registration,	or	other	

sources	of	error,	registration	quality	for	all	registered	images	was	ground-truthed	by	hand	

(by	JBC,	and	DP).	Approximately	72%	of	images	were	judged	to	be	successfully	registered,	

which	is	in	accord	with	work	in	other	systems	32	

	

Formatting	and	clustering	of	expression	data	

	

Expression	data	from	of	each	registered	image	was	extracted	as	a	1-D	contour	that	traced	

the	mitral	cell	layer	(left	bulb),	beginning	at	the	dorsal	pole	of	this	cell	layer,	and	continuing	

counterclockwise	until	joining	the	original	dorsal	seed	point.	The	mitral	cell	layer	was	tiled	

with	193	non-overlapping	5	x	5	bins,	and	at	each	bin	the	median	value	was	computed	and	

reported	as	the	‘expression	value.’	Note	that	this	is	a	unit-less	measure	from	0-255	in	which	

pixel	intensity	serves	as	a	proxy	for	the	intensity	of	gene	expression.	While	there	is	no	

straightforward	way	to	report	this	number	as	an	RNA	count	or	a	FPKM	we	did	observe	a	

strong	rank	correlation	between	our	extracted	expression	values,	and	those	from	the	

publicly	available	Spatial	Transcriptomic	(ST)	database33	(data	expressed	as	Transcripts	per	
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Million	(TPM),	see	Fig.	S1).		ST	expression	data	are	uniformly	sampled	across	coronal	

sections	of	the	OB	in	spots	of	diameter	100µ ,	with	center-to-center	distances	of	

200µ between	spots.	We	used	the	R-based	package	SpatialCPie	

(http://bioconductor.org/packages/devel/bioc/vignettes/SpatialCPie/inst/doc/SpatialCPi

e.html)	to	extract	spot-data	from	the	left	mitral	cell	layers	of	all	12	available	ST	replicates.	

Only	spots	which	spanned	the	MCL	exclusively	and	unambiguously	(i.e.	including	no	

portions	of	the	granule	cell	layer)	were	chosen.	This	yielded	data	from	a	median	of	3	spots	

per	ST	replicate.	Median	TPM	was	computed	for	all	genes	across	all	spots	and	all	replicates	

to	generate	a	super-set	of	ST	expression	values.	The	set	of	these	genes	concordant	with	the	

Allen	genes	we	curated	is	what	is	reported	in	figure	S1.		

	

Non-negative	matrix	factorization	(NMF)	is	a	popular	method	of	dimensionality	reduction	

for	genomic	data,	owing	the	intrinsic	non-negativity	of	gene	expression,	and	the	ease	of	

interpreting	NMF-derived	clustering	results.	NMF-based	methods	have	been	used	in	

component-based	analyses	of	gene	expression	in	the	hippocampus15,	as	well	as	in	the	

olfactory	bulb	as	a	whole.		Briefly,	NMF	seeks	a	low-dimensional	approximation	of	an	m	

(genes)	x	n	(bins)	data	matrix,	A,	as	the	product	of	two	lower	dimensional	matrices21:	A	

matrix	of	features,	W	(m	x	s)	and	a	matrix	of	weights,	H	(s	x	n).	The	new	dimensionality,	s,	is	

chosen	such	that	s<<m.	We	employed	Matlab’s	standard	implementation	of	NMF	(nnmf.m)	

using	the	alternating	least-squares	algorithm,	and	using	a	maximum	of	1,000	iterations.		

The	data	matrix,	A,	was	divided	into	random	but	equal-sized	training	and	testing	halves	for	

each	of	250	runs	of	the	factorization.	Because	the	factorization	is	not	unique,	we	monitored	

the	consistency	of	the	derived	basis	vectors	(Wi)	in	consensus	matrices	(Fig.	S2),	and	

observed	that	clustering	for	s=2	was	strong	and	reliable.	Briefly,	we	initiated	an	m	x	m	

connectivity	matrix,	C,		and	updated	its	entries	by	1	for	each	NMF	run.	That	is,	if	genes	i	and	

j	were	co-clustered	on	a	given	run,	then	entry	Cij	was	increased	by	1.	If	the	genes	did	not	co-

cluster,	entry	Cij	was	unchanged.	If	clustering	is	stable	and	basis	vectors	are	consistent,	we	

expect	that	the	distribution	of	elements	of	C	after	all	runs	will	be	strongly	bimodal,	with	

entries	aggregating	at	0	and	1,	as	in	figure	S2.	We	reported	the	most	stable	version	of	the	

basis	vectors	by	computing	KL	divergence	between	all	pairs	of	the	250	instances	of	W,	and	

selecting	W	with	the	lowest	mean	KL	divergence	value.		
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Electrophysiological	methods.	Acute	coronal	OB	slices	(300µ)	were	prepared	from	P21-P28	

C57/Bl6J	mice	(Jackson	labs)	using	a	vibratome	(Campden	Instruments).	Mice	were	

anesthetized	with	isoflurane,	decapitated,	and	their	brains	removed	and	submerged	in	ice-

cold	oxygenated	(95/5	O2/CO2)	artificial	cerebrospinal	fluid	(ACSF)	with	the	following	

composition	(in	mM):		125	NaCl,	2.5	KCl,	25	NaHCO3,	1.25	NaH2PO4,	1MgCl2,	25	glucose,	2	

CaCl2.	Following	sectioning,	slices	were	incubated	in	the	same	oxygenated	ACSF	at	37°C	for	
at	least	45	minutes	before	beginning	physiology	experiments.	Only	sections	with	a	

contiguous	MOB	mitral	cell	layer	(uninterrupted	by	the	accessory	olfactory	bulb)	were	used	

for	experiments.	After	incubation,	slices	were	transferred	to	an	electrophysiology	rig,	where	

they	were	perfused	with	the	same	oxygenated	ACSF	solution,	and	visualized	under	DIC	

optics	(Olympus	BX51).	Whole	cell	recordings	were	obtained	with	glass	electrodes	(2-8MΩ)	

filled	with	the	following	internal	solution	(in	mM):	150	potassium	gluconate,	2	KCl,	10	

HEPES,	10	sodium	phosphocreatine,	4	MgATP,	and	0.3	Na3GTP,	adjusted	to	pH	7.3	with	

KOH.	Recordings	were	made	using	a	Multiclamp	700B	amplifier	(Molecular	Devices),	and	

digitized	at	10kHz	with	an	ITC-18	A/D	board.	Data	collection	was	performed	using	custom-

written	routines	in	Igor	Pro	(Wavemetrics).	When	the	slice	was	first	placed	in	the	recording	

chamber,	x,y	coordinates	of	the	micromanipulator	(Sutter)	were	marked	for	the	most	dorsal	

and	most	ventral	points	along	the	mitral	cell	layer.	To	be	included	as	a	“dorsal”	cell	for	

subsequent	analysis,	the	y	coordinates	of	a	given	cell	body	had	to	be	in	the	dorsal-most	

third	of	the	mitral	cell	layer	(as	defined	by	the	previously	measured	extreme	points).	

Similarly,	to	be	included	as	a	“ventral”	cell	for	analysis,	the	cell	body	had	to	be	in	the	

ventral-most	third	most	third	of	the	mitral	cell	layer.	All	experiments	(measurements	of	

input	resistance,	firing	rate,	and	recurrent	inhibition)	were	performed	in	current	clamp,	

with	the	experimenter	manually	adjusting	holding	current	in	between	sweeps	to	maintain	

cells	near	-55	mV.	The	only	exception	to	this	was	on	sweeps	when	resting	potential	was	

explicitly	measured,	and	no	holding	current	or	stimulus	was	applied.	Cells	with	high	

spontaneous	activity,	or	for	which	this	target	voltage	could	not	be	maintained	with	<	150	pA	

current	injection	were	not	included	for	analysis.		

	

Stimuli	used	included	the	following:	1)	Hyperpolarizing	steps	(to	measure	input	resistance)	

of	1s	duration,	from	-50pA	to	-200pA,	in	4	steps	of	50	pA;	5	blocks	for	a	total	of	20	sweeps.	

2)	Depolarizing	steps	(to	measure	the	FI	relationship)	of	1s	duration,	from	+	50	pA	to	+1200	

pA,	and	proceeding	in	steps	of	50	pA	for	24	sweeps	(3	blocks	total);	3)	Supratheshold	
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current	pulses	(to	measure	recurrent	inhibition):	10	pulses	at	40Hz,	each	pulse	2ms	in	

duration;	30	total	sweeps.	Starting	pulse	amplitude	was	2nA,	and	was	increased	if	necessary	

to	evoke	supratheshold	responses	to	all	10	pulses	in	a	sweep.	Sweeps	in	which	APs	did	not	

occur	for	all	10	stimuli	were	not	included	in	the	analysis.	Data	analysis	was	performed	using	

custom-written	routines	in	IgorPro	(Wavemetrics)	and	Matlab	(MathWorks),	and	was	done	

with	analysts	blinded	to	cell	identity	(dorsal	vs.	ventral).	Except	where	otherwise	indicated,	

all	electrophysiological	measurements	are	expressed	as	mean	±	SEM.	Box-plots	in	Figure	3	

show	group	medians	and	25th	and	75th	percentiles,	with	whiskers	indicating	10th	and	90th	

percentiles.	Statistical	significance	of	between-group	comparisons	was	assessed	using	

unpaired	t-tests.		
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