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3 INRIA Rhônes-Alpes, INRIA, Villeurbanne, France

†These authors contributed equally to this work.
* ssindi@ucmerced.edu

Abstract

The use of yeast systems to study the propagation of prions and amyloids has emerged
as a crucial aspect of the global endeavor to understand those mechanisms. Yeast prion
systems are intrinsically multi-scale: the molecular chemical processes are indeed
coupled to the cellular processes of cell growth and division to influence phenotypical
traits, observable at the scale of colonies. We introduce a novel modeling framework to
tackle this difficulty using impulsive differential equations. We apply this approach to
the [PSI+] yeast prion, which associated with the misconformation and aggregation of
Sup35. We build a model that reproduces and unifies previously conflicting
experimental observations on [PSI+] and thus sheds light onto characteristics of the
intracellular molecular processes driving aggregate replication. In particular our model
uncovers a kinetic barrier for aggregate replication at low densities, meaning the change
between prion or prion-free phenotype is a bi-stable transition. This result is based on
the study of prion curing experiments, as well as the phenomenon of colony sectoring, a
phenotype which is often ignored in experimental assays and has never been modeled.
Furthermore, our results provide further insight into the effect of guanidine
hydrochloride (GdnHCl) on Sup35 aggregates. To qualitatively reproduce the GdnHCl
curing experiment, aggregate replication must not be completely inhibited, which
suggests the existence of a mechanism different than Hsp104-mediated fragmentation.
Those results are promising for further development of the [PSI+] model, but also for
extending the use of this novel framework to other yeast prion or amyloid systems.

Author summary

In the study of yeast prions, mathematical modeling is a powerful tool, in particular
when it comes to facing the difficulties of multi-scale systems. In this study, we
introduce a mathematical framework for investigating this problem in a unifying way.
We focus on the yeast prion [PSI+] and present a simple molecular scheme for prion
replication and a model of yeast budding. In order to qualitatively reproduce
experiments, we need to introduce a non-linear mechanism in the molecular rates. This
transforms the intracellular system into a bi-stable switch and allows for curing to occur,
which is a crucial phenomenon for the study of yeast prions. To the best of our
knowledge, no model in the literature includes such a mechanism, at least not explicitly.
We also describe the GdnHCl curing experiment, and the propagon counting procedure.
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Reproducing this result requires challenging hypotheses that are commonly accepted,
and our interpretation gives a new perspective on the concept of propagon. This study
may be considered as a good example of how mathematical modeling can bring valuable
insight into biological concepts and observations.

Introduction 1

Amyloids are self-perpetuating protein aggregates, involved in many neurodegenerative 2

diseases in mammals such as Alzheimer’s Disease, Parkinsons’s Disease, 3

Creutzfeldt-Jakob Disease, Huntington’s Disease [1]. Prions are a particular case of 4

amyloids, where a conformational change is infectious and transmissible through 5

self-catalyzed aggregation [2]. Understanding the molecular mechanisms associated with 6

amyloid growth and prion replication is crucial in the effort against neurodegenerative 7

diseases. The yeast Saccharomyces cerevisiae has emerged as a powerful model system 8

in the study of these processes [3]. Native yeast prions share many specificities with 9

mammalian prions [4], and the protein quality control machinery involved in their 10

propagation is highly conserved between mammals and yeast. Furthermore, yeast 11

models are used to screen for anti-amyloid drugs through the artificial expression of 12

mammalian proteins [5]. Many kinetic models of aggregate growth and nucleation have 13

been proposed [6], but their validation using data from yeast colonies is challenging. 14

Indeed, the propagation of yeast prions is a multi-scale system where molecular 15

processes are coupled to cellular processes such as cell growth and division to produce 16

effects that are observable at the phenotypical scale, i.e. at the scale of colonies. An 17

illustration is proposed in Fig 1. Taking into account and relating those scales calls for 18

specific modeling approaches, but to our knowledge no mathematical modeling work 19

describes the whole system rigorously and in a controlled way. We propose a novel 20

approach based on the use of impulsive differential equations. It is important to 21

emphasize that this framework is versatile and can be used to study the evolution of any 22

chemically active intracellular components through mass-action kinetics inside growing 23

yeast colonies. 24

As a first application of this approach, we focus here on the yeast prion [PSI+]. It 25

has been studied in detail [7], and experimental results on [PSI+] have become essential 26

groundwork for the development of prion biology [8,9]. The [PSI+] phenotype is 27

associated with the oligomerization and loss-of-function of the Sup35 protein, an 28

enzyme release factor responsible that promotes stop-codon recognition. When 29

aggregates are formed, a change of color of the yeast colonies is observed (from red to 30

white) if they encode a stop-codon in either the ADE1 or ADE2 genes [10]. See Fig 1C 31

for an illustration of the change in phenotype. As is the case with most native yeast 32

prions, the [PSI+] phenotype is reversible. It can be cured using different 33

physico-chemical treatments [11,12] but also by introducing point mutations in Sup35 34

or its co-chaperones [13,14]. Curing experiments are widely used to derive information 35

on the molecular properties of Sup35 aggregates, depending on the curing treatment 36

applied or the strain studied. The most exploited one is Guanidine Hydrochloride 37

(GdnHCl) treatment, because it allows to infer prion seed numbers in [PSI+] 38

cells [15, 16]. We reproduce some of those curing experiments using a model for 39

aggregate replication at the molecular scale combined with a model for cell growth and 40

division, as described in Figure 2. By coupling those aspects, we build a full model of 41

prion propagation inside yeast colonies, which is detailed in Methods. Even by keeping 42

things as simple as possible, our model sheds light onto two specific characteristics of 43

the [PSI+] prion that were not uncovered in the past, as we detail in Results, the 44

replication of aggregates at low densities follows non-linear effects, with a kinetic barrier 45

preventing the expansion of the population of aggregates below a certain threshold. A 46

January 7, 2020 2/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2020. ; https://doi.org/10.1101/2020.01.13.904060doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904060
http://creativecommons.org/licenses/by/4.0/


second implication of our modeling work is that the effect of GdnHCl is not a complete 47

block of aggregate fragmentation, as was suggested before [11], rather a significant 48

reduction of the replication efficiency. 49

Yeast cell
[PSI+] colony

Sectored colony

[psi-] colony

Sup35 monomer Misconformed monomer

A B C

Fig 1. Different scales of yeast prion propagation.(A) Molecular processes of
protein conversion and aggregation. (B) Growth and budding, along with aggregate
transmission from mother to daughter. (C) Typical experimental observation of yeast
colonies (circles) in a culture plate (courtesy of T. Serio). Each colony was founded by
an isolated single cell.

Results 50

We develop a multi-scale model of prion replication and propagation in yeast to 51

investigate the relationship between molecular aggregation mechanisms and colony level 52

phenotypical properties. The model is presented in Fig 2 and Table 1. A detailed 53

mathematical introduction is led in Methods and an analytical study in S1 Appendix. 54

In order to understand the results one should keep in mind that, in our model, newly 55

born (daughter) yeast cells have a longer cell-cycle than their mothers. Furthermore, 56

aggregate transmission at the moment of cell division is biased towards retention in the 57

mother. Our goal was to develop the minimal molecular model required to reproduce 58

experimental observations. In this work, we compare to observations for the [PSI+] 59

prion, but it must be stressed that it could be adapted to any amyloid or prion 60

propagating in growing yeast colonies. Using experimental results from the literature, 61

we build a simple yet satisfying model and derive conclusions regarding the molecular 62

mechanism of aggregate replication. 63

Aggregate replication is limited by a kinetic barrier 64

The [PSI+] phenotype is reversible 65

We investigate the general concept of [PSI+] curing. A cell is considered free of [PSI+] 66

if, when plated onto regular medium (free of any treatment) it grows into a [psi−] 67

colony, as determined by a color assay (i.e. it grows into a dark red colony). In the 68

same exact environmental and genetic conditions cells can grow either into [PSI+] or 69

[psi−] colonies, depending on the history of treatments they have sustained, as is 70

illustrated in Fig 1C. This property is exploited to track the dynamics of curing during 71

continuous treatment with a de-stabilizing agent [11,12,15]. In order to reproduce 72
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Fig 2. Multi-scale model of yeast prion propagation. (A) Cell growth and
division model used for yeast budding. Cells are growing exponentially, and divide when
they reach the volume V0. Division is asymmetrical and daughter cells have a smaller
volume than mother cells. (B) Chemical model of aggregate replication, where V is the
concentration of normal soluble Sup35 and S is the concentration of Sup35 in the prion
conformation. (C) Corresponding equation system, the subscript k denotes the
impulsion number. The function f is a sigmoid that accounts for non-linear cooperative
effects of aggregate replication. See Methods for a description of each term.

experimental results involving [PSI+] curing, this is an essential aspect that must be 73

captured by the model. 74

A multi-stable molecular model 75

In terms of mathematical modeling, the fact that different outcomes are possible in the 76

same conditions is interpreted as multi-stability. Different stable solutions are able to 77

attract the trajectories of the system, and the outcome depends on the initial condition. 78

Our model introduces this property by including a non-linearity in the replication rate 79

of aggregates, with a sigmoidal dependency on the concentration of aggregates 80

portrayed by the function f in the model equations (see Fig 2). This shape of function 81

is frequently used to model cooperative reactions [20], it appears naturally from 82

ligand-receptor interaction equations. Without knowing the specific kinetic scheme, we 83

empirically choose a Hill function. With this non-linearity, the colony grown from a cell 84

will exhibit one of three possible behaviors depending only on its initial condition. 85

• A full [PSI+] (totally white) colony, when all cells have a positive concentration 86
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Table 1. Parameter values used by default in the simulations

Parameter Value Unit Description

TM 2* hr Mother doubling time

TD 3* hr Daughter doubling time
π 0.6† - Mother/daughter volume ratio
ε 0.1 - Mass transmission bias
αM

ε
π - Mother concentration bias

αD − ε
1−π - Daughter concentration bias

γM − 1
TM

ln(π) = 0.26 hr−1 Mother growth rate

γD − 1
TD

ln(1− π) = 0.31 hr−1 Daughter growth rate

λ 0.7 ‡ µM.hr−1 Sup35 monomer basal production rate

ρ 10 hr−1 Maximal aggregate replication rate
K 1 µM Replication efficiency threshold
n 5 - Replication efficiency order

Simulations presented in the text use those values unless specified otherwise. See
Figure 2 and Methods for a description of the equations. *: [17].†: [18].‡: [19]

of aggregates. 87

• A full [psi−] (dark red) colony, when all cells have a zero concentration of 88

aggregates. 89

• A sectored colony (part white, part red), when parts of the colony are [PSI+] and 90

others are [psi−]. 91

Numerically, the aggregate concentration never reaches exactly zero even when the 92

solution is converging towards the prion-free solution. In practice, when needed, we 93

differentiate between a [PSI+] cell and a [psi−] cell by comparing the aggregate 94

concentration to a critical value, that was set to 0.5µM . Fig 3 shows an example of 95

simulation output for each of those cases, and Fig 2C shows a typical experiment 96

exhibiting all three possible cases of phenotypes. It must be emphasized that without 97

the bi-stability introduced in the molecular kinetic scheme, those three outcomes would 98

not be possible simultaneously (i.e. without changing the model parameters). This 99

result is justified mathematically in Methods. These only represent the fate of three 100

different cells growing in the same exact conditions, but starting with a different 101

aggregated state of Sup35. Those three types of behavior are observed in every curing 102

experiment monitored by color assays [7]. By numerically investigating the model, we 103

derive a map linking the aggregated state of Sup35 in the founder cell to the phenotype 104

of the colony grown from that cell, as shown in Fig 4. This map is numerically derived 105

from the study of the two extreme lineages, mother-only and daughter-only. Those 106

lineages correspond to periodic impulsive systems, and the corresponding solutions are 107

attracted to periodic solutions. In each case (mother system or daughter system), two 108

different periodic solutions are locally stable, a prion-free periodic solution and a 109

[PSI+] periodic solution. A similar behavior was proven with a one-dimensional 110

bi-stable equation in [21], but our results are only numerical so far. Those solutions are 111

denoted on the phenotype map in Fig 4, corresponding to the first point in each periodic 112

impulsion. They provide information regarding the whole colony, because they represent 113

the most extreme behavior imposed by the transmission bias. After a sufficient amount 114

of time, any lineage in the colony is predicted to be in-between those two lineages. 115
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A

B

C

Fig 3. Representative simulation outputs of the bi-stable impulsive model.
Evolution of the aggregate S and monomer V concentration for three different initial
conditions. Each trajectory shown corresponds to a different lineage. Because cells are
dividing the number of trajectories plotted increases in time, as does the number of cells.
The trajectories for S and V are shown in the same color for the same cell. The
parameters used are described in Table 1. The initial conditions used are to be related
with the attraction basin showed in Figure 4. (A) Completely cured ([psi−]) colony
(V (0) = 0.07µM,S(0) = 0.3µM) (B) Full [PSI+] colony
(V (0) = 0.07µM,S(0) = 0.5µM) (C) Sectored colony (V (0) = 0.07µM,S(0) = 0.4µM).

The particular case of colony sectoring 116

The phenomenon of colony sectoring is the consequence of both the kinetic barrier and 117

asymmetrical division. Indeed, our model includes a transmission bias that favors 118

retention of aggregates by mother cells. (This bias is supported by numerous 119

studies [7,9,22].) This means that under conditions of [PSI+] de-stabilization, daughter 120

cells are more likely to fall under the threshold of efficient aggregate sustaining, and 121

become [psi−]. This provides an explanation for sectoring that is relevant with many 122

aspects of the biology. First, sectoring occurs more often when cells are treated with 123

de-stabilizing agents. In Fig 4, we see how reducing the proportion of aggregated Sup35 124

will bring cells into the region corresponding to a sectored phenotype. Furthermore, we 125

also know that “weak” strains are more likely to exhibit sectors [9].Fig 4 (B) shows the 126

phenotype map for a strain that has a slightly reduced aggregate replication rate. We 127

see immediately that the region leading to sectored phenotypes is enlarged, and also 128

closer to the periodic solutions. This means that such a strain is more likely to be 129

de-stabilized by random perturbations or by chemical treatment. In the literature, 130
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Fig 4. Predicting colony color phenotype. Numerical prediction of colony
phenotype based on the state of the founder cell, for two different strains. The periodic
solutions for the mother-only and daughter-only solutions are also shown. The
parameters used for this diagram are described in Table 1. Panel (A) shows a strong
strain with a maximal replication rate ρ = 10hr−1 and panel (B) is a weak strain with
ρ = 0.87hr−1

sectoring is often dismissed by counting mosaic colonies as either full [PSI+] or half 131

and half [3, 11]. Perhaps some valuable information could be obtained by studying the 132

phenomenon in more detail. 133

GdnHCl does not completely block aggregate replication 134

The propagon count experiment 135

Among the various agents that de-stabilize [PSI+], GdnHCl is one of the most studied. 136

It acts by impairing the chaperone Hsp104, which fragments Sup35 aggregates, thus 137

preventing the creation of new aggregates [11]. [PSI+] colonies growing under GdnHCl 138

treatment progressively lose the prion phenotype, by dilution of the aggregates between 139

dividing cells. This property was used to infer the number of prion “seeds” in individual 140

cells [15] by fitting an exponential model to the curing curve. This approach was 141

supported by [3], with the discovery that during GdnHCl treatment, the number of 142

[PSI+] revertants (cells that will grow into a [PSI+] colony when transferred back onto 143

regular medium) reaches a plateau. This number was interpreted as the number of 144

propagons in the initial cell, where propagon refers to the hypothetical prion elementary 145

seed. The interpretation of the GdnHCl curing experiment is illustrated by Fig 5. 146

Propagon counts and statistics on those counts are often used to characterize 147

strains [23], to quantify the bias of transmission between mother and daughter cells [17], 148

to study the effect of different point mutations [13]. It needs to be emphasized that this 149

interpretation is based on two hypotheses. The first hypothesis is that the threshold 150

between a [PSI+] cell and a [psi−] cell is the presence of aggregates or not. In our 151

modeling framework, this hypothesis translates to the presence of a concentration 152

threshold under which aggregate replication is inefficient. The second hypothesis is that 153

GdnHCl instantaneously and totally blocks the creation of new aggregates. Our results 154

contradict this second hypothesis as explained below. 155
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Yeast cell
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[PSI+] colony

[psi-] colony

A B
%[PSI+]
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#[PSI+] 

(log scale)

Time

Fig 5. The GdnHCl curing experiment and propagon counting. (A) Two
phase propagon counting experiment. Propagons are distributed in dividing cells under
GdnHCl treatment. Cells are then plated onto regular medium and the color phenotype
([PSI+] or [psi−]) of each subsequent colony is determined by color assay. The number
of [PSI+] colonies is counted and gives the propagon count. (B) Curves obtained
during the GdnHCl curing experiment. In black is the percentage of [PSI+] cells in the
colony (logarithmic scale), in red is the number of [PSI+] cells in the colony
(logarithmic scale). The plateau in the red curve corresponds to the propagon count.
See [9] for an experimental example of such curves.

The propagon plateau 156

During GdnHCl treatment, the number of [PSI+] cells in a colony reaches a plateau [9]. 157

Our model reproduces this property under specific parameter choices, as shown in Fig 6. 158

In those simulations, cells are scored as [PSI+] as soon as the concentration of 159

aggregated Sup35 is above a given threshold (we used 0.5µM). However the qualitative 160

result does not depend on the scoring method, because we know that a finite number of 161

lineages in the colony are attracted by a solution with a positive concentration of 162

aggregates. All the other lineages are attracted by the prion-free solution. This behavior 163

is possible with our model but only if aggregates continue to replicate in GdnHCl 164

conditions, which strongly contradicts former experimental studies [11,15]. The 165

hypothesis that GdnHCl interrupts all chemical activity of aggregates was nuanced in 166

previous experimental work. Indeed it was shown GdnHCl does not stop aggregate 167

growth [11,17,24]. Furthermore, [25] used fluorescent tagging to track aggregates during 168

GdnHCl treatment, and report a decrease in cells with foci slower than the halving 169

predicted by the segregation hypothesis. 170

Reproducing the propagon count experiment with our model requires very specific 171

kinetic parameters for the replication reaction. Those conditions are found numerically 172

by studying the mother-only lineage in the model. Indeed when this lineage is attracted 173

to a [PSI+] solution but each of its daughters becomes [psi−], we are assured that the 174

total number of [PSI+] cells in the colony reaches a plateau. Once again this is the 175

consequence of bi-stability in the molecular model as well as the asymmetric division 176

favoring aggregate retention by mother cells. The fact that those conditions correspond 177

to a very narrow parameter range is worth emphasizing and discussing further. 178
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Fig 6. Reproducing a propagon count experiment. Evolution of the [PSI+]
cells count and [PSI+] proportion simulated by our model, in the case of ρ = 0.21hr−1

(all other parameters as in Table 1). Cells are scored as [PSI+] as soon as they contain
a concentration of aggregated Sup35 higher than 0.5µM .

Discussion 179

How to explain the concentration threshold for aggregate 180

replication 181

In previous modeling work, one approach was to study aggregates as discrete 182

entities [15,26,27]. When doing so, the kinetic barrier hypothesis is implicit and the 183

threshold lies at the difference between 0 and 1 aggregate. However, it is not a proper 184

modeling approach when it comes to studying chemical reactions, because mass-action 185

kinetics cannot be applied to numbers in isolation but rather to densities. Our model 186

implements chemical modeling inside a multi-scale phenomenon in a rigorous way and 187

provides a powerful tool for generating insights into existing experimental outcomes: 188

colony sectoring and propagon counting assays. 189

Our work suggests that the multi-stability in the intracellular scale is essential to 190

reproduce the experimental results for yeast prions. That is, the prion-free state and the 191

prion state both need to be locally stable. But what is the mechanistic origin of this 192

multi-stability? The non-linearity we introduced could be interpreted by a cooperativity 193

phenomenon, where the replication of aggregates (for instance fragmentation) is 194

chemical reaction that is catalyzed by the presence of other aggregates. Due to the lack 195

of clear biological evidence, there is so far no real hypothesis to explain such a 196

mechanism. One idea is to take into account the action of chaperones, in particular 197

Hsp104. However, even if fragmentation is limited by the presence of Hsp104 the model 198

does not exhibit bi-stability [28]. We would like to emphasize that this type of modeling 199

(global models) is universally used in the prion biology, in particular with the 200

widespread use of the Nucleated Polymerization Model (NPM) [29,30]. The 201

introduction of bi-stable systems was suggested in earlier work [31,32], in the case of 202

mammals and more recently to study interaction between prion strains [33]. The benefit 203

of the framework we suggest here is that it could allow to use data to validate a precise 204

kinetic scheme of aggregate replication. In particular, the sectoring phenomenon should 205

be studied with a new perspective, especially during curing experiments. 206

What is the effect of GdnHCl? 207

Our results question all previous assumptions made about the effect of GdnHCl. With 208

our model, the propagon experiment is reproduced only if the chemical replication rates 209

are chosen very carefully. This is potentially explained by two reasons. The first is that 210

our model might be too simple to capture the possibilities of the full biological system. 211
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This would also explain why sectoring is reduced to such a narrow region in the 212

phenotype map Fig 4. 213

A second explanation is that our model may be missing an essential chemical 214

process, which remains unaffected when GdnHCl is present. There is precedent for this 215

assumption, because there is evidence that aggregates are still chemically active under 216

GdnHCl treatment. First GdnHCl does not prevent aggregates from growing by 217

polymerizing newly synthesized Sup35 [17,34]. Furthermore, there is evidence for an 218

action of Hsp104 that is not affected by GdnHCl [35,36]. This brings up the 219

controversial question of the roles of Hsp104 in the propagation of [PSI+] and other 220

yeast prions. The only conclusion our results bring is that GdnHCl curing is not 221

explained by an exponential dilution model as suggested previously [15,18], because of 222

the plateau of [PSI+] cells. Our study is a first step in the design of a more elaborate 223

kinetic model that includes the effect of Hsp104. 224

Conclusion and Perspectives 225

We introduced a novel modeling tool to the field of yeast prions, with the major benefit 226

of relating different scales in a controlled and rigorous way. From the molecular 227

mechanisms, with a kinetic scheme built using mass-action kinetics, to the phenotypical 228

traits at the colony level, this framework has the potential of taking into account every 229

aspect of the system. In the case of the [PSI+] prion, we build a simple model with the 230

primary goal to qualitatively reproduce experimental observations from the literature. 231

We focus on curing experiments, and reproducing any curing experiment with our 232

framework requires introducing a very particular characteristic into the molecular 233

model. The kinetic scheme needs to be bi-stable, where the prion-free state and the 234

prion state are both simultaneously stable, and the transition between the two of them 235

is a bi-stable switch. This allows the possibility of curing, and it concomitantly explains 236

the phenomenon of sectoring in a deterministic way. This phenomenon is often 237

dismissed but is in fact instructive with regards to the molecular processes. By 238

investigating in more detail the case of GdnHCl curing, we have reason to question the 239

suggested effect of this agent. Indeed this experiment is reproduced by our model, but 240

the fragmentation of aggregates must not be completely inhibited contrary to the 241

commonly accepted effect of GdnHCl. 242

Overall, the framework of impulsive differential equations is versatile and could be 243

adapted to many different cases. Studying the [PSI+] prion already revealed 244

instructive, even though work is still in progress. In the future, we aim to use this 245

framework to build and validate a complete model of aggregate replication including the 246

role of Hsp104 and possibly its co-chaperones, a size-distribution of aggregates, 247

stochasticity in the cell division events. This would be done through hypothesis testing 248

and close collaboration with biologists. Inferring parameters is a long-term goal, that 249

first requires understanding the very structure of the molecular processes. In particular, 250

it needs to be clear what is the mechanistic origin of the cooperativity in the replication 251

of aggregates. Another use of the model is to extend it to other yeast prions and 252

amyloid models, as yeast models are used to screen for anti-amyloid drugs, and a 253

specific modeling framework would help interpreting those experiments. 254

Methods 255

Using impulsive differential equations to model cell division 256

We first introduce impulsive differential equations (IDEs) and use them to model a
population of dividing yeast cells. Given a system of ordinary differential equations
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f(Z, t), where Z ∈ Rn represents the concentrations of the biochemical species we are
tracking, and given Z0 ∈ Rn, Z0 ≥ 0 an initial condition, we define the impulsive system

dZ

dt
=f(Z, t), t ∈ R+\{tk, k ∈ N},

Z(t+k )− Z(t
−
k ) =αk · Z(t

−
k ), k ∈ N,

Z(0) =Z0.

The sequence (tk)k∈N∗ represents the impulsion times, which we choose to be fixed. We 257

require 0 ≤ t0 < · · · < tk . . . and limk→∞ tk =∞. Each impulsion corresponds to a cell 258

division, and the vector αk ∈ Rn represents the partition rate at the moment of division 259

k. A solution to this system is a piece-wise continuous function Z on (tk, tk+1], for 260

k ∈ N∗. The existence and the properties of such solutions are studied 261

theoretically [37,38]. IDEs are used in various modeling fields, including 262

epidemiology [39], population dynamics [40] and more recently T-cell differentiation [21]. 263

In order to model cell division with IDEs, we need to clarify how species are 264

distributed between mother and daughter cells. Consider a yeast cell about to bud and 265

produce a daughter. The volume of the mother cell is V0, which will split into two parts 266

right after division. The mother’s volume becomes VM = πV0 and the daughter gets 267

VD = (1− π)V0, where π is the volume asymmetry. For yeast cells it has been observed 268

that π = 0.6 [18]. Next consider a chemical component in the mother of mass M0 and 269

concentration C0 = M0

V0
. During division this mass is distributed between the mother 270

and the daughter cells. With no bias (fast diffusion) it should distribute with the same 271

ratio as the volume. If we introduce a bias, the mother retains the mass 272

MM = (π + ε)M0 and the daughter receives MD = (1− π − ε)M0. The parameter ε 273

represents the bias, with a positive value corresponding to a retention of the mass by 274

the mother. In order to ensure positive mass we require 275

−π < ε < 1− π.

After division, the mother concentration (CM ) and the daughter concentration (CD) are
given by

CM =(1 + αM )C0,

CD =(1 + αD)C0,

where αM =
ε

π
, αD = − ε

1− π
.

We dot not consider degenerate cases where ε = −π or ε = 1− π, corresponding to 276

the case where the transmission from mother to daughter is (respectively) full or null. 277

This hypothesis is biologically relevant in the sense that it seems highly unlikely that 278

exactly no misconformed protein be transmitted at the moment of division. 279

We assume that cells are exponentially growing, and that they divide when they
reach the volume V0. In other words, the intracellular dynamics of prion aggregation
have no impact on the division cycle. This is consistent with [17]. This assumption
imposes a relation on the growth rate γ and the division time T . As before, if we denote
the mother parameters with a subscript M and the daughter parameters with a
subscript D, we have the following two relations

e−γMTM =π,

e−γDTD =1− π.

As a consequence when π, TM and TD are fixed (as measured experimentally [9, 17]), 280

γM and γD are determined by these relations. Figure 2A shows a visual representation 281
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of the cell division model we are using. (The parameters we used in results are given in 282

Table 1.) 283

An impulsive differential equation model allows one to follow a cell lineage and its 284

intracellular components in time. The cell history is described by the sequence of 285

impulsions it undergoes, either mother or daughter impulsions. Analytically, we study 286

in detail the two extreme lineages, mother-only and daughter-only. Indeed those 287

lineages are subject to periodic and identical impulsions, which facilitates the 288

analysis [37]. If we use the IDEs to track all lineages starting from a single cell, we can 289

study the complete yeast colony. Having formalized the cell division dynamics model, 290

we next introduce the model for intracellular dynamics. 291

A bi-stable prion replication process 292

In this section, we introduce a two-dimensional bi-stable model of prion dynamics, at
first without considering the effect of impulsions. In each yeast cell, we track the
concentration of soluble Sup35 (V ), and of Sup35 in the prion conformation (S). The
model is illustrated in Figure 2B, and described by the following system of ordinary
differential equations

dV

dt
=λ− γV − ρV f(S),

dS

dt
=ρV f(S)− γS.

The parameters λ and γ are respectively the Sup35 monomer production rate and the 293

cell growth rate. For simplicity we do not include the aggregate size dynamics but 294

model the recruitment of monomers into prion aggregates. It occurs with a cooperative 295

reaction, at maximal rate ρ and non-linear efficiency f(S). The function f is chosen to 296

be a Hill function of order n(> 1) and threshold K 297

f(S) =
Sn

Kn + Sn
.

This function is chosen for one distinct feature: it makes the system multi-stable as 298

soon as n > 1. The prion-free equilibrium (with S = 0) exists under any choice of 299

parameters and remains locally stable. Two other equilibria appear from a saddle-node 300

bifurcation, one of them is unstable and the other is locally stable. In conditions when 301

the three equilibria exist (one prion-free and two prion equilibria), the asymptotic 302

outcome of the model depends on the initial condition. Starting with a concentration of 303

aggregates too low will cause the solution to converge to the prion-free equilibrium, 304

whereas if the initial concentration of aggregates is sufficient their population will be 305

stably maintained. See S1 Appendix for the mathematical description and proof of this 306

property, as well as some numerical illustration of the bi-stability. As detailed in 307

Discussion, it is essential that we use a model with multi-stability because we are 308

investigating a curing experiment, where cells can lose the prion phenotype. 309

Complete bi-stable model with impulsions 310

When combining the bi-stable model and the impulsive differential equation framework, 311

we obtain a complete model of aggregate replication and transmission in growing yeast 312

colonies. The choice of parameters used by default is detailed in Table 1. The cell 313

division parameters (doubling time and mother-daughter volume ratio) are measured 314

experimentally and we choose values within the typical observed range [16,17]. The 315

mass transmission bias is a parameter that will require a thorough investigation in 316
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further work but we choose a reasonable value of ε = 0.1 for the time being. The Sup35 317

monomer production rate is such that the prion-free steady-state concentration of Sup35 318

in cells is λ
γ ≈ 2.5µM [19]. The prion replication parameters ρ,K and n are used as 319

adjustment parameters to investigate the behavior of the model. 320

Supporting information 321

S1 Appendix. Analytical study of the bi-stable impulsive system for yeast 322

prion propagation. 323
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